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Time-Frequency Representation of Signals 
Using Kalman Filter 

Jindřich Liška and Eduard Janeček 
Department of Cybernetics, University of West Bohemia in Pilsen,  

Univerzitní 8, 306 14 Pilsen,  
Czech Republic 

1. Introduction 

Data analysis is a necessary part of practical applications as well as of pure research. The 

problem of data analysis is of great interest in engineering areas such as signal processing, 

speech recognition, vibration analysis, time series modelling, etc. Sensing of physical effects 

transformed to time series of voltage represents measured reality for us. However, the 

knowledge of time characteristics of measured data is often quite insufficient for description 

of real signal properties. Therefore, frequency analysis, as an alternative signal description 

approach, has been engaged in signal processing methods. Unfortunately, data from real 

applications are mostly non-stationary and represent non-linear processes in general. This 

fact has leaded to introduction of joint time-frequency representation of measured signals. 

Former time-frequency methods dealing with non-stationary data analysis, such as the 
short-time Fourier transform, repeatedly use a block of data processing with the assumption 
that frequency characteristics are time-invariant and/or a process is stationary within the 
usage of the data block. The resolution of such methods is then given by the Heisenberg-
Gabor uncertainty principle. This limitation is mainly addressed by Fourier pairs and by the 
block processing. 
In this chapter, the definition of instantaneous frequency introduces a new approach to acquire 
a proper time-frequency representation of a signal. The description of limitations which have 
to be taken into account in order to achieve meaningful results is also given there. 
The section that deals with the instantaneous frequency phenomenon is followed by the part 
describing the construction of the signal model. A signal is modelled as an output of a 
system that consists of sum of auto-regressive (AR), linear time-invariant (LTI), second-
order subsystems. In fact, such a model corresponds to a system of resonators formed in 
parallel. The reason for such model selection is simplicity in matrix implementation as well 
as preservation of a physical meaning of decomposed signal components. The signal model 
is developed in state space and there is also demonstrated how to select adequately all 
system matrices. 
The estimation of particular signal components is then obtained through the adaptive 
Kalman filtering which is based on the previously defined state space model. The Kalman 
filter recursively estimates time-varying signal components in a complex form. The complex 
form is required in order to compute the instantaneous frequency and amplitude of the 
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signal components. Furthermore, the algorithm recursive form facilitates implementations 
in signal processing devices. Initial parameters of the Kalman filter are obtained from 
frequency spectrum characteristics and from estimation of signal spectral density through 
the adaptive algorithm by matching the auto-regressive prediction model and the signal. 
To illustrate performance of the proposed method, experimental results are presented in 
order to show comparisons of common time-frequency techniques and the Kalman filter 
method. Moreover, results from analysis of example signals (chirp signal, step frequency 
change, etc.) are added. The contribution of this method mainly consists in improvement of 
the time-frequency resolution as discussed in the last section, which concludes the whole 
chapter. 

2. Instantaneous frequency and the complex signal 

In mechanics, the frequency of vibration motion is defined as the number of oscillations per 
time period. In the course of one oscillation, the body deflects from the equilibrium, goes 
through the extremes and the oscillation ends again in the equilibrium position. The simple 
harmonic sine wave is often used for representation of such a vibration motion. The 
harmonic motion actually represents projection of circle body move with uniform velocity 
on a circle diameter.  
However, in many applications the motion velocity and therefore also the oscillation 
frequency changes in time. Signals with these properties are often referred to as 
nonstationary and their important characteristic is the dependence of frequency on time, 
therefore the notion of instantaneous frequency. In other words, instantaneous frequency is 
the time-varying parameter which describes the location of the signal’s spectral peak in 
time. It can be interpreted as the frequency of a sine wave which locally fits the analyzed 
signal, but physically it has meaning only for monocomponent signals, where there is only 
one frequency or a narrow range of frequencies varying as a function of time (Boashash, 
1992a).  
Let’s assume the simple harmonic motion in following form: 

 ftatsr πωθω 2),cos()( =+=  (1) 

where a is amplitude, ω is the angular frequency, θ is a phase constant and the argument of 

the cosine function is the instantaneous phase φ(t) (namely θω +t ). In the case of frequency 

changing the instantaneous phase φ(t) is then the integral of frequency in time and the signal 
form should be rewritten as  

 ))(cos()(
0

θω += ∫
t

r dttats  (2) 

 Considering the monocomponent signal, instantaneous frequency )(tω  is defined, with 

respect to (2), as a derivation of phase φ (t) 

 )(2
)(

)( tf
dt

td
t πφω ==  (3) 

In most cases, there is no way how to determine the instantaneous phase directly from the 
real signal. One of the tricks how to obtain the unknown phase is the introduction of 
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complex signal )(tz  which somehow corresponds to the real signal. As described in (Hahn, 

1996) or in (Huang, 1998), the Hilbert transform is the elegant solution for generating of 

complex signal from the real one. The Hilbert transform of a real signal )(tsr of the 

continuous variable t  is 

 ∫
∞

∞− −
= η

η
η

π
d

t

s
Pts r

i

)(1
)( , (4) 

where P  indicates the Cauchy Principle Value integral. The complex signal )(tz  

 )()()()()( tj

ir etatsjtstz ϕ=⋅+= , (5) 

whose imaginary part is the Hilbert transform )(tsi  of the real part )(tsr  is then called the 

analytical signal and its spectrum is composed only of the positive frequencies of the real 

signal )(tsr . 

From the complex signal, an instantaneous frequency and amplitude can be obtained for 
every value of t . Following (Hahn, 1996) the instantaneous amplitude is simply defined as 

 22 )()()( tststa ir +=  (6) 

and similarly the instantaneous phase as 
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)(
arctan)(

ts

ts
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r

i=ϕ . (7) 

The instantaneous frequency is then equal to 
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Even with the Hilbert transform, there is still considerable controversy in defining the 
instantaneous frequency as mentioned also in (Boashash, 1992a). Applying the Hilbert 
transform directly to a multicomponent signal provides values of )(ta  and )(tω  which are 

unusable for describing the signal. The idea of instantaneous frequency and amplitude does 
not make sense when a signal consists of multiple components at different frequencies. It 
leads (Huang, 1998) to introduce a so called Empirical Mode Decomposition method to 
decompose the signal into monocomponent functions (Intrinsic Mode Functions). In this 
work, another method for signal decomposition is introduced. 

3. Complex signal component model 

Let’s consider the multicomponent real signal sr(t)  

 ∑ +=
=

N

n

n

rr
ttsts

1

)( )()()( ρ  (9) 

which consists from noise )(tρ  representing any undesirable components and from N 

single component nonstationary signals described by envelopes a and frequencies ω. 
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 )cos()()( tats nn

n

r ⋅⋅= ω  (10) 

The first derivation of the signal component is 

 )sin()()( tats nnn

n

r ⋅⋅⋅−= ωω�  (11) 

and the second one is described as follows  

 )()cos()( )(22)( tstats n

rnnnn

n

r ⋅−=⋅⋅−= ωωω��  (12) 

On the basis of equation (12) the state space model of signal component )()( ts n

r  can be 

derived as second-order ( 2=n ) model of auto-regressive (AR), linear time-invariant (LTI) 

system.  
Let’s assume an AR state space model with state x(t)  

 )()( txAtx ⋅=�  (13) 

and system’s model output y(t) 

 )()( txCty ⋅=  (14) 

where A  is the state matrix and C is the output matrix. The state vector x(t) consists, in our 

case, of two internal states: real state part xr(t) and imaginary part xi(t). 
With respect to the former introduced notation of the signal components and considering 

the analytical signal, we can choose the state vector components as )cos()( tx n

n

r ω=  and 

)sin()( tx n

n

i ω= . This choice takes into account the Hilbert transform and the orthogonal 

character of both components. Hence, the corresponding state space model is represented by 
the following state equation 
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and the model’s output is 

 [ ] ⎥
⎦

⎤
⎢
⎣

⎡
⋅=
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In this case the model output )(tyn  represents the signal component )()( ts n

r . The state matrix 

A of the model is a 2D rotation matrix whose eigenvalues are pure imaginary numbers. The 
trajectory in state space is a circle and the model represents in fact an undamped resonator 

(oscillator) with natural frequency in ωn. The solution of the state equation consist only from 
the homogenous part (there is no model input) and is described by the following form 

 )()( 0

)()0()( txetx n

r

ttAn

r

−= . (17) 

Computing state transition matrix Ate and using discretization step of ht =Δ , the discrete 

state space representation is acquired as 
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and the output equation is 
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⎦
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The generalized output equation for all signal components is then  

 )()()( kkxCky η⋅Δ+⋅= . (20) 

In previous equations, )(kξ  is the state noise and )(kη  is the output noise of state model. 

Both noise vectors, )(kξ  and )(kη , are zero-centred with identity covariance matrices. The 

specific features of the noises are characterized by the covariance matrix Γ  and value Δ . 
This derived resonator model forms together with Kalman filtering approach an estimator 
of analytical signal. The estimation of the first model state is a real part (sine function) of the 
signal component and estimation of the second state is an imaginary part (cosine function). 

3.1 Selection of matrices Γ and value Δ 

The choice of the proper matrix Γ and value Δ is the important part in definition of the 
signal component model. These two parameters decide what amount of energy of the 
original signal will be assigned to the actual signal component.  
We have already defined the description of the complex signal in equation (5) which 
represents the general output of the component model. Let’s assume that the amplitude a of 

the nth complex signal component )(kzn  is not constant but it changes from sample k to 

sample k+1 of deviation ε(k): 

 )1())()(()1( +⋅+=+ kj

n ekkakz ϕε . (21) 

It means that the amplitude in sample k+1 is described in recursive form by the following 
equation 

 )()()1( kkaka ε+=+ , where ),0(~)(
2

εσε Nk . (22) 

The time changing phasor with its corresponding amplitude a(k), phase ϕ(k) and deviation 

ε(k) is displayed in Fig.1. The real trajectory of the complex signal mode is marked by black 
curve and phasor trajectory in case of the constant amplitude in time k is signed as grey-
dashed circle. The recursive form of the amplitude progression model is shown in the left 
picture in Fig. 1. Each phasor amplitude differs from the previous one (green dotted line) of 

deviation ε (red line). 
The right picture of the Fig. 1. shows in detail the progression of the phasor in samples k and 
k+1. The characteristics of the γ1 and γ2 parameters are derived in the following text. 
The state in the sample k+1 in dependence on the state in sample k is described, as above 
defined, in the following form 

 )()()()1( kkkxAkx ξ⋅Γ+⋅=+ , where )1,0(~)( Nkξ  (23) 
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Equation (23) describes model, where the complex signal )(kx  is firstly rotated by the 

matrix A and the sum with )(kε produces a new state vector )1( +kx . Let’s assume equation 

(23) in a new form, where vector )(kx is firstly summed with )(kε and as late as then rotated 

by matrix A: 

 ( ))()()()1( kkkxAkx ξ⋅Γ+⋅=+  (24) 

This form is used in order to reveal the relation between ε  and Γ and that is why the new 

vector Γ  is introduced into the state equation. 

 

Fig. 1. The time changing phasor with its corresponding amplitude a(k), phase ϕ(k) and 

deviation ε(k). 

Equation (24) can be also rewritten in quadratic form (in vector domain, the transposed 
vectors and matrices are used) 

 ( ) ( ))()()()()()()1()1( kkAkxAkkAkxAkxkx
TT ξξ ⋅Γ⋅+⋅⋅⋅Γ⋅+⋅=++  (25) 

The converted form of the equation  

 
2)()()()()()(

)()()()()()1()1(

kkAAkkxAAkk

kkAAkxkxAAkxkxkx

TTTT

TTTTT

ξξ
ξ

⋅Γ⋅⋅⋅Γ+⋅⋅⋅Γ⋅+

+⋅Γ⋅⋅⋅+⋅⋅⋅=+⋅+
 (26) 

The quadratic form equality is valid also for the recursive amplitude equation 

 ( ) 2222 )()()(2)()()()1( kkkakakkaka εεε ++=+=+  (27) 

Using (27) and the following knowledge of the state product 

 )()()( 2 kxkxka T=  (28) 

the equation (26) can be rewritten into (30) where product of system matrices AAT ⋅  is 
substituted by the identity matrix I as follows 

ϕ(k) 

a(k)

ε(k) 

sr(k) 

ϕ(k) 

a(k) 

ε(k) 

sr(k) 

si(k)

γ1(k) 

γ2(k)

ϕ(k+1)
a(k) 

si (k)
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 )()()()();()()()( kkkAAkkxkxkxAAkxIAA TTTTTTT Γ⋅Γ=Γ⋅⋅⋅Γ⋅=⋅⋅⋅⇒=⋅  (29) 

The result is following 
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The main reason of this derivative description is the need to obtain a relation between ε  

and Γ . Application of mean value operator on (30) results in the equation where only the 
required variables are presented: 

 

( ) ( ) ( )

( ) ( ) ( ) ( )2

00

2

2

0

2

)()()()()()()()()()(

)()()(2)(

kkkEkxkkEkkkxEkaE

kEkkaEkaE

TTT ξξξ

εε

⋅Γ⋅Γ+⋅Γ⋅+⋅Γ⋅+=

=++

��� 
��� 	���� 
��� 	�

��
��	�
 (31) 

and resulting equation which connects ε  and Γ is 

 )()(
2

kk T Γ⋅Γ=εσ  (32) 

The Γ  vector consists of two components (because of second order model) and the result 

from multiplying of the Γ  vectors is the sum of the square vector components  
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k
k T γγ
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⎡
=Γ  (33) 

Using (32) the first condition for selection of Γ  is obtained as 

 2

2

2

1

2
)()( kk γγσ ε += . (34) 

The second condition can be obtained from the presumption that the phasor of the state x(k) 
and of the deviation )(kε  have the same normal line. Going from the estimation of the state 

components xr(k) and xi(k) the ratio between them should be the same as the ration between 

)(1 kγ  and )(2 kγ  (see(35)). To be precise, there is a product of vector Γ and stochastic 

variable ξ  in the ratio equation but because of the same stochastic value in sample k the 

variable ξ  is then cancelled out from the ratio (therefore the 1γ  and 2γ  coordinates of ε  in 

Fig. 1. are also used without variable ξ ) 
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The converted form of the ratio equation  
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is then substituted into (34) and results in formula for the first parameter of vector )(kΓ  
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and for the second one 
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These equations rewritten for the original model definition with the vector )(kΓ  have the 

following form 
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This formula describes the characteristics of the amplitude deviation between samples k and 
k+1 namely in the state model in (18) which is then together with (19) used as a model for 

Kalman estimation. In Kalman filter computation of )(kΓ  an estimate )(kμ of state )(kx is 

used (see(46)). Selection of value Δ in the output equation (20) is the next step of defining the 

state model. Output )(ky of n component model is formed only from the real parts of the 

components. This is acquired through the vector C and the product of )(txC ⋅ . The value Δ 

makes it possible to include the measurement noise ( )(kη⋅Δ ) into the output equation. In 

fact, Δ is the variance of additive error of the measuring chain. For example in case where 
the sensor accuracy class is defined in statistical sense so that the absolute additive error is 
95% quantile in limits of product of accuracy class×measuring range, the 95% quantile 

represents the range of σ20±  where σ  is the standard deviation of additive error. In this 

case the following form of the measurement error variance can be accepted 

 

2

2

rangemeasuringclassaccuracy
⎟
⎠
⎞

⎜
⎝
⎛ ×

=Δ . (40) 

4. Use of Kalman filter for estimation of the signal components 

In this work, an adaptive Kalman filter based approach is used for estimation of the 
analyzed signal. Signal is modelled as sum of resonators (signal components) and it is 
required that the estimated components are complex functions because of efficient 
computation of the instantaneous frequency. 

4.1 Discrete Kalman filter 

A discrete-time Kalman filter realizes a statistical estimation of the internal states of noisy 
linear system and it is able to reject uncorrelated measurement noise – a property shared by 
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all Kalman filters. Let’s assume a system with more components as mentioned above. Then 
the state matrix consists of following blocks: 

 ,
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)sin()cos(
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nn

nn

n
hh
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A

ωω
ωω

. (41) 

and the state noise vector blocks are defined as in (39). Then in state-variable representation, 
the description of the whole system, which is characterized by the sum of resonators, is 
given by the following matrices: 
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the output matrix is following 

 ;]010101[
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×

= . (43) 

and state and measurement noise is characterized by the following parameters 
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Commonly, the Kalman estimation includes two steps – prediction and correction phase. 

Let’s assume that the state estimate )0(μ  is known with an error variance )0(P . A priori 

value of the state at instant k+1 can be obtained as 

 )()1( kAk μμ ⋅=+  (45) 

The measured value )(ky  is then used to update the state at instant k. The additive 

correction of the a priori estimated state at k+1 is according to (Vaseghi, 2000) proportional 

to the difference between the a priori output at instant k defined as )(kC μ⋅  and the 

measured )(ky : 

 ( )( ))()()()()1( kCkykKkAk μμμ ⋅−⋅+⋅=+  (46) 

where )(kK  is the Kalman gain which guarantees the minimal variance of the error 

)()( kkx μ− . 

Also, at each step the variance )1( +kP  of the error of )1( +kμ  is calculated (see (Vaseghi, 

2000)): 
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 ( )TTTT AkPCkKAkPAkP Γ⋅Δ+⋅⋅⋅−Γ⋅Γ+⋅⋅=+ )()()()1(  (47) 

This variance matrix is then used for calculation of Kalman gain in the next step of the 
recursive calculation (correction phase): 

 ( ) ( ) 1

)()()(
−

Δ⋅Δ+⋅⋅⋅Δ⋅Γ+⋅⋅= TTTT CkPCCkPAkK  (48) 

4.2 Estimation of initial parameters 
The initial parameters for Kalman filter are obtained from the estimation of the signal 
spectrum. In principle, there are many ways how to fix the parameters, let’s present two of 
them. Generally, there is need to define which modes, or more precisely which frequencies 

nω , should be estimated and what is the variance of the amplitude on these frequencies.  

The first way how to acquire the initial parameters is based on the short-time Fourier 
transform (STFT) algorithm. The half length of the STFT window can be used as an order of 
the modelled system (number of modelled resonators) and the corresponding frequencies 
are then the frequencies of the modelled signal components. The variation of the amplitude 

in the STFT frequency bands serves then as the estimation of the variation 
2

εσ of ε for each 

resonator. This approach shows the Kalman filter method based on the short-time Fourier 
frequency analysis. 
The second alternative is based on the estimation of spectral density by fitting an AR 
prediction model to the signal. The used estimation algorithm is known as Burg’s method 
(Marple, 1987), which fits an AR linear prediction filter model of a specified order to the 
input signal by minimizing the arithmetic mean of the forward and backward prediction 
errors. The spectral density is then computed from the frequency response of the prediction 
filter. The AR filter parameters are constrained to satisfy the Levinson-Durbin recursion. The 
initial Kalman filter parameters (frequencies of the resonators) are then obtained as local 
maxima of estimated spectral density which are greater than a predefined level. These 
values indicate significant frequencies in spectral density and determine the order of the 
model. 
The Fig. 2. shows the schema of the whole method. The estimated parameters from the input 
signal form the system model which is then used in the estimation phase of the algorithm. 
  

 

Fig. 2. Schema of the method for time-frequency decomposition of the signal using Kalman filter 
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Kalman filter estimates the states of the modelled system in form of complex signal. It 

means that the imaginary parts of components are estimated simultaneously with the 

estimation of real signal components. This procedure substitute the Hilbert transform in 

generation of analytical signal and is performed recursively.  

Each component in complex form serves then for calculation of the instantaneous amplitude 

and instantaneous frequency (see (6) and (8)). The output of the method is the time-

frequency representation of the analyzed signal. The representation consists of amplitude 

curves with changing frequency in contrast to other time-frequency methods whose TF 

representation is computed in bands that is why the resolution in time and frequency is 

limited. 

5. Examples 

In this section, some examples of the time-frequency analysis using Kalman filter method 

are shown. The most important indicators in comparison with other analysis methods are 

the sharpness of the estimated frequency curves and the adaptability to the changes in the 

component amplitudes. These attributes are deciding for the next signal processing in the 

class of problems which are solved by authors. 

Let’s have a signal with three harmonic components, with kHz1  sampling rate and the total 

analyzed length of the signal is 1 second ( 1000=N points). Signal is formed by sinus 

functions with oscillation frequencies Hzf 101 = , Hzf 302 =  and Hzf 503 = . The amplitude 

for all three components is set to 10, the second component is set to zero for the first 0.5 

seconds. The output noise with mean 0=ηm  and variance 1
2 =ησ  was added to the 

simulated signal. The initial parameters for Kalman filter were obtained through Burg’s AR 
linear prediction filter of order 10 and the level for local maxima in the Burg’s spectral 

density was determined as 1max > . The initial conditions of Kalman estimator were set up 

in the following way: [ ]T11)0( …=μ , IP ⋅= 610)0( , 1=Δ , where 1)dim( ×= nμ  and 

nnP 22)dim( ×= . 

The time-frequency representation of the instantaneous frequency and amplitude is shown 

in Fig. 3 (left). The result shows that the adaptation of one of the model component has an 

influence also on the instantaneous frequency estimates of other components which is 

expressed in the oscillation between 0.5 and 0.6 second (the overall oscillation of the 

instantaneous frequency is the effect of the output noise). 

The adaptation rate is shown in Fig. 3 (right), where the comparison of estimate convergence 

of the component at Hzf 302 = using Hilbert approach and Kalman filter is performed. The 

Hilbert transform was applied artificially to the component itself, not to the analyzed signal 

(in order to compare the adaptation). The reason is the disadvantage of the Hilbert 

transform that requires the pre-processing of the signal through some signal decomposition 

method. 

The above introduced Kalman filter method uses for decomposition of the signal into its 

components, as already mentioned, the model of sum of resonators and thus simultaneously 

decomposes the signal and estimates the time progression of its components. 
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Fig. 3. Simulation signal with three components (left). Complex signal (right) obtained 
through Hilbert transform (dotted line) and through Kalman estimation (solid line). 

 The algorithm based on Kalman estimation is also illustrated on another signal example 

(see Fig. 4). It consists from signal components, where the first one is the stationary 

harmonic signal with constant frequency. This signal part is summed in time with the 

concave parabolic chirp signal where its frequency changes from 0.45 to 0.1 of normalized 

frequency. Both components exist in time between 100=t  and 900=t . The initial conditions 

of Kalman estimator were set up as mentioned in previous example and initial frequencies 

of the model were obtained through Burg’s AR linear prediction filter of order 25 (number 

of estimated frequencies was n=10 and thus order of the estimated system was 20). 

The Kalman filter method is compared with other typical time-frequency methods and the 
results are shown in Fig. 4. For comparison, the short-time Fourier transform - STFT, 
wavelet transform – WT (using Morlet wavelet) and smoothed pseudo Wigner-Ville 
distribution – SPWVD, were used. The output of Kalman estimation in time-frequency 
domain has comparable resolution as the output of the SPWVD. The other methods have 
relative wide frequency bands containing the signal energy. 
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Fig. 4. Estimation of instantaneous frequency and amplitude of harmonic and chirp signal 
components. 

Similarly, the result of methods comparison in Fig. 5. shows the Kalman filter method and 

SPWVD as more detailed time-frequency approaches. The test signal consists, in this case, of 

four harmonic components and the accuracy of the methods to identify the frequency and 

time of the component origin or end is tested. The signal begins again in time 100=t  and 

ends in 900=t . The frequency changes in 300=t  and 600=t , whereas there are two 

components simultaneously between these times. The ability of methods to distinguish 

between these two component frequencies is visible. SPWVD and Kalman filter 

representations display these two simultaneous components separately. On the contrary 

STFT and WT representations contain time-frequency artefacts between components and 

that’s why the identifying of each component separately using these methods could be in 

such cases really difficult. 

www.intechopen.com



 Robotics, Automation and Control 

 

36 

 
Fig. 5. Estimation of instantaneous frequency and amplitude of harmonic components of the 
signal. 

 

Fig. 6. Estimation of instantaneous frequency and amplitude of loosened part impact signal: 
Kalman filter method (left) and STFT (right). 
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The last example is the transform of the acoustic signal from the real equipment where the 

nonstationary event took place. This event is measured result of loosed part impact in 

primary circuit of nuclear power plant. Signal was measured with 100 kHz sampling rate. 

For comparison, in Fig. 6, the time-frequency-amplitude responses of STFT (right) and of the 

Kalman method (left) are compared. Kalman filter signal model was initialized with 

frequencies from the frequency analysis with window of length 82  samples. The same 

window length with 75% overlapping was used for analysis by means of STFT (Fig. 6 right). 

An event (impact) which occurs at time 0.041 seconds is well visible in both spectrograms 

(see the frequency band 1 - 12 kHz). The advantage of the Kalman version of spectrogram is 

its better resolution in time and frequency than in STFT spectrogram (which is used by 

authors for improvement of impact location).  

6. Conclusion and perspective 

The new approach for time-frequency signal analysis and for representation of 

instantaneous frequency and amplitude has been introduced in this chapter. The procedure 

is based on the Kalman estimation and shares its advantages regarding the suppression of 

measurement noise. In this method the Kalman filter serves for dissociation of signal into 

modes with well defined instantaneous frequency. The analyzed signal is modelled as sum 

of second-order subsystems (resonators) whereby the Kalman filter decompose the system 

by estimating these subsystems. Simultaneously with the signal decomposition the time 

progression of signal components in complex form is evaluated. This procedure utilizes the 

adaptive feature of the Kalman filter and it is done recursively for each sample.  

In cases where the short–time Fourier transform cannot offer sufficient resolution in time-

frequency domain, there can be taken the advantage of this method despite of higher 

computational severity. Also the experimental results show that the resolution of the 

introduced method is equal or higher than in other usual time-frequency techniques. 

In vibro-diagnostic methods, where time-frequency information is used for location of non-

stationary events, the sharpness of the introduced method is helpful for the improvement of 

the non-stationary event location. The next tasks of the Kalman filter method development 

are the systematization of the results from different actually solved problems in loose part 

monitoring and finding the new branches where the method could be effectively apllied. 
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