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1. Introduction    

Providing human users with a structured insight into extensive data collections is a problem 
that, in the latter years, has gathered increasing attention by the scientific community. An 
even more daring and ambitious research challenge is the recent attempt to address the 
same problem within the scope of the so-called multi-agent systems. In this context, 
multiple autonomous and heterogeneous entities, i.e. the agents, populate the environment 
performing actions and taking decisions based on internal policies and their knowledge of 
the world.  
The courses of action of the agents and their interaction with the environment and with 
themselves generates extensive amounts of information. Underneath such flat data 
collections lies fundamental knowledge concerning strategies and common behaviors 
emerging from the agent actions. The advantage of extracting such “strategic” knowledge is 
twofold. On the one hand, it allows users a deeper insight into the multi-agent system, 
permitting to discover interesting patterns of actions that can be identified as interesting 
behaviors in the particular problem at hand. Consider, for instance, a multi-agent system 
simulating negotiation/selling phases in a particular market (Viamonte et al., 2006): the 
detection of interesting patterns of actions can bring to light specific market strategies that 
can be exploited to optimize revenues. On the other hand, the identified strategic 
knowledge can be exploited by the agents themselves to improve their performance, for 
instance by updating their internal representation of the world and their behavioral policies. 
In order to extract such “strategic” knowledge, in this work we take a data mining approach 
using Association analysis, enriching it with the expressive power and the flexibility of 
ontologies. Association rules can effectively tackle both aspects of strategic behavior 
extraction, since they both provide a human understandable representation means for the 
extracted knowledge and an action rule base that can be used to supply agents with 
procedural and high-level knowledge concerning the identified strategies. 
Ontologies offer a structured description of the domain knowledge while maintaining data 
and their representation separated. An ontology refers to an “engineering artifact”, 
consisting of a specific vocabulary containing the terms used to describe a certain domain, 
and a set of explicit assumptions regarding the meaning of vocabulary words. This set of 

O
p
e
n
 A

c
c
e
s
s
 D

a
ta

b
a
s
e
 w

w
w

.i
-t

e
c
h
o
n
lin

e
.c

o
m

Source: Advances in Robotics, Automation and Control, Book edited by: Jesús Arámburo and Antonio Ramírez Treviño,  
ISBN 78-953-7619-16-9, pp. 472, October 2008, I-Tech, Vienna, Austria

www.intechopen.com



 Advances in Robotics, Automation and Control 

 

172 

assumptions has usually the form of a logical theory, where terms correspond to unary or 
binary predicates, respectively called concepts and relations. For our purposes the logics 
supplies the formal language, the semantics and a set of proof procedures for representing 
the various aspects of the knowledge and for reasoning about it, in order to drive the data 
mining process.   
In general, data mining consists of a series of transformation steps, starting from data 
preprocessing up to post-processing, for converting raw data into useful information. The 
ontology drives the association rules extraction process intervening in the pre and post 
processing phases. Complex categories of domain-specific constraints are specified during 
the preprocessing phase, while during the post-processing phase, the extracted association 
rules are further filtered for providing better and more fitting results.  
Recent works have introduced the use of association rules for imitation learning in robotic 
agents within a reactive paradigm (Hellström, 2003), as well as in learning simple grasping 
and picking behaviors in agricultural robots (Zou et al., 2006), while (Makio et al., 2007) 
exploited association analysis to discover basic motor skills from human motion capture 
data. However, here we are not interested in determining low level motor behaviors in 
single agents, e.g. fight or fly reactions; rather, we seek to discover high level strategies 
underlying the actions of complex multi-agents systems. Within this respect, the 
introduction of ontologies for constraint-based multi-level association rule mining induces 
advantages in terms of the human interpretability of the strategies resulting from the 
Association analysis. Moreover, ontologies offer a simple mean for providing the agents 
with a representation of the extracted strategies that can be used, for instance, as high level 
primitives in the planning step of the agents’ control hierarchy. 
The rest of the chapter is organized as follows: Section 2 introduces the data mining 
concepts that are used thorough the paper and describes related works in the area of 
behavior mining in agent-based systems. Section 3 formalizes the proposed model, while in 
Section 4 we describe the behavior mining approach and we present an example related to 
the simulated robotic soccer league. Section 5 concludes the paper with final considerations 
and future developments. 

2. Background 

The following subsections describe the background knowledge as well as the main concepts 
of Data Mining and Association analysis, together with a brief survey of the application of 
association rules to Behavior Mining in Agent-based Systems. Moreover we introduce the 
ontology theory that is used in the definition of the proposed model. 

2.1 Constrained association rule mining  
Knowledge Discovery in Databases (KDD) (Tan et al., 2005) is an emerging field that covers a 
wide range of applicative domains, several models for representing extracted patterns and 
models, and a large number of algorithms for data preprocessing, model extraction and 
model reasoning. KDD addresses the task of extracting “meaningful information” from 
large volumes of data. Data Mining (DM) is an important part of the knowledge discovery 
process, whose aims is to convert raw data into useful information. DM  consists of a series of 
transformation steps, from data pre-processing to post-processing. Pre-processing reduces and 
transforms raw input data into an appropriate format for the mining step. Post-processing 
ensures that only valid and useful results are retained. 
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Association analysis is a central task in DM. It aims at finding strongly correlated sets of 
events from large databases. In 1993, (Agrawal et al., 1993) introduced association rules for 
discovering regularities among products in large scale transaction data recorded by point-
of-sale (POS) systems in supermarkets. For example, the rule {onions, vegetables} å {beef} 
indicates that if a customer buys onions and vegetables together, he/she is likely to buy beef 
as well. Such information can be used as the basis for decisions about marketing activities, 
such as promotional pricing or product placements. In addition to the above example from 
market basket analysis, association rules are employed today in many application areas 
including web mining, intrusion detection, bioinformatics and so on. 
Nowadays, one of the most important open issue in association rules mining is due to the 
large number of extracted rules. In fact, it is not unusual for the collection of rules to be too 
large for being handled directly by an analyst. Moreover, often one would like to be able to 
focus the mining process on a particular portion of the search space or, in other words, it is 
important to have some additional expressiveness in order to define what is interesting and 
what is not. In order to solve these problems, frameworks for constrained association rule 
mining have been developed. 
In the remaining of this section, we formalize the problem of association rules mining, 
briefly introducing the Apriori algorithm; finally, we review the constraints-based 
association rule mining problem. 
Definition. Let I = {i1, . . . , in} be a set of literals, called items. Each item has some predefined 
attributes (e.g. price, type, etc.). Let D be a set of transactions, which form the database that is 

going to be disclosed. Each transaction t ∈ D is an itemset, such that t ⊆ I. A unique identifier 
(TID) is associated with each transaction. A transaction t supports X, i. e. a set of items in I, if 

X ⊆ t. An itemset X has support s = supp(X) if s% of the transactions supports X. If |X| = k, 
then X is called a k-itemset. 

An association rule (AR) is an implication of the form X å Y , where X ⊂ I, Y ⊂ I and X ∩ Y = 

∅. X is said antecedent (or body) and Y consequent (or head). An AR has a support s on D, if s% 

of the transactions in D contain X ∪ Y. An association rule has a confidence c on D if the c% of 
the transactions in D containing X, also include Y. In formulas: 

• supp(X å Y) = supp(X ∪ Y) = |X ∪ Y| / |D|;   

• conf(X å Y) = supp(X ∪ Y) / supp(X). 
It is worth noticing that, while support is a measure of the frequency of a rule, confidence is 
a measure of the strength of the relation between sets of items. 
An itemset is said frequent, if its support is higher than a user-specified minimum support. A 
rule is said strong if its support and its confidence are higher than a user-specified minimum 
support and a user-specified minimum confidence, respectively. 
A constraint on itemsets is a function CI:2I å {true, false}. An itemset I satisfies a constraint C, 
if and only if CI (I) = true. Similarly, a rule constraint is a function CR:R å {true, false}, where 
R is the set of association rules. In general, given a conjunction of constraints, the 
constrained association rule mining problem requires to compute all the rules that satisfy 
the constraints. 
Algorithms for AR mining. Association rule mining algorithms scan the database of 

transactions and calculate the support and confidence of the candidate rules to determine 

whether they are significant or not. Their computational process is composed of two steps: 

(1) given a minimum support, find all frequent itemsets; (2) given a set of frequent itemsets 

and a minimum confidence, find all the association rules that are strong. Step (1) is, usually, 
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harder than rule generation and the main difficulty of itemsets generation comes from the 

large size of the search space.  

Apriori has been the first frequent itemset algorithm to be proposed (Agrawal et al., 1994). It 

exploits a bottom-up, level-wise exploration of the lattice of frequent itemsets. During a first 

scan of the dataset, all the frequent singletons, denoted with L1, are found. Next, L1 is used 

to find the set of frequent 2-itemsets L2, and so on until all the frequent patterns have been 

discovered. 

Each iteration is composed of two steps: candidate generation and support counting. During the 

first step, a collection of possibly frequent itemsets Ck of length k is generated, and their 

actual support is calculated with a single scan over the dataset during the second step. In 

principle, it would be easy to generate all the possible k-itemsets at each iteration, given that 

I is known. As a result, we will have an extremely large collection of itemsets that have to 

pass the support counting phase. The Apriori algorithm exploits a pruning of the search 

space in order to reduce the number of candidates before each iteration. Pruning is based on 

the concept that, if X ∈ Ck has a subset of length k - 1, that does not belong to Lk-1 i.e. the 

subset is not frequent, X cannot be frequent as well, and it can be removed from Ck. 

A survey of constraints-based AR mining. The fundamental idea inspiring constrained AR 

mining is to introduce a set of constraints that association rules should satisfy. The analyst 

can use a conjunction of constraints for specifying the properties of the patterns of interest. 

As a trivial example, let us focus on market basket analysis. Lets suppose that each item is 

associated to a fixed price, and that we are interested only on those co-occuring set of items 

such that their average price is higher than a given threshold. KDD systems should be able 

to exploit such constraints to speedup the knowledge extraction process. 

The most important classes of constraints and their properties are shown in Fig. 1. For a 

complete and formal definition please refer to (Bonchi & Lucchese, 2007). 

 The first interesting class is the anti-monotone (Agrawal et al., 1993), which was already 

introduced with the Apriori algorithm (i.e. the minimum frequency is an anti-monotone 

constraint). It simply states that, if a predicate holds for a set S, then it holds for any subset 

of S. At the opposite, the monotone (Bucila et al., 2002) constraints state that, if a predicate 

holds for a set S, it holds also for any superset of S. For example, the constraint max(S.price) 

> 100 is monotone, while max(S.price) ≤ 100 is anti-monotone.  

The succinct constraint (Han et. al., 1999) states that the decision concerning the satisfaction 

of a predicate can be determined based on the single element of the S set. For instance, the 

max constraints defined above are both succinct, since a single element of S can be used as a 

comparator. The avg(S) constraint is not succinct.  

The class of convertible anti-monotone (resp. convertible monotone) (Pei & Han, 2000) includes 

constraints CCAM (resp. CCM) that define an item ordering relation such that whenever an 

itemset S satisfies CCAM (resp. violates CCM), so does any prefix of S. For instance, 

mean(S.price) > 100 is a convertible anti-monotone constraint, with respect to the descending 

price order. In fact, CCAM(S) ⇒ CCAM(T), where S is a prefix of T.  

The class of loose anti-monotone constraints, introduced by (Bonchi & Lucchese, 2005), simply 

states that, given an itemset S with |S| > 2, a constraint is loose anti-monotone (denoted 

CLAM) if: CLAM(S) ⇒ ∃i∈ S: CLAM (S \ {i}). It is trivial to show that variance(S.price) < 100 is a 

loose anti-monotone constraint.  

www.intechopen.com



Discovering Strategic Behaviors in Multi-Agent Scenarios by Ontology-Driven Mining 

 

175 

 

Fig. 1. Characterization of the classes of constraints. 

For each of these classes, there exists a specialized algorithm, which is able to take 
advantage of its peculiar properties. Techniques for constraint-driven pattern discovery can 
also be classified, depending on the KDD phase in which they are evaluated, in the 
following categories: 

• pre-processing constraints are evaluated during the pre-processing phase, restricting the 
source data to the instances that can generate only patterns satisfying the constraint; 

• mining constraints are directly integrated into the mining algorithm (e.g. Apriori) used 
for extracting the rules; 

• post-processing constraints are evaluated for filtering out patterns after the  mining 
algorithm. 

(Wojciechowski & Zakrzewicz, 2002) focuses on improving the efficiency of constraint-based 
frequent pattern mining, by using dataset filtering techniques that conceptually transform a 
given data mining task into an equivalent one operating on a smaller dataset. 
A first preliminary effort to propose a general framework for constrained frequent itemsets 
mining is (Bonchi & Lucchese, 2007), in which the authors present the design of 
ExAMinerGEN, a general Apriori-like algorithm, which is able to exploit all the possible kinds 
of constraints presented above. In particular, the authors suggest a data reduction technique 
for obtaining advantages from the conjunction of monotone and anti-monotone constraints. 
They observe that a transaction that does not satisfy the monotone constraint CM, can be 
removed since none of its subsets will satisfy CM either, and therefore the transaction 
cannot support any valid itemset. This data reduction, in turn, lowers the support of other 
frequent but invalid itemsets, thus reducing the search space and improving anti-monotone 
pruning techniques. This virtuous circle is encoded level-wise in the Apriori algorithm. 
Constraints can also improve the comprehension of the extracted rules, with the aid of a 
concept hierarchy. A concept hierarchy is a multilevel organization of the various entities or 
concepts defined in a particular domain. For example, in the market basket analysis a 
concept hierarchy has the form of an item taxonomy describing the “is-a” relationships 
among the items sold in a store, e.g. “milk” is a kind of “food” and “DVD” is a kind of “home 
electronics” equipment. Mining on concept hierarchies is also called constraint-based 
multilevel DM and association rules extracted with the aid of a taxonomy are also called 
multi-level.  
The main advantages of incorporating concept hierarchies into association analysis are: (i) 
items at lower levels may not have enough support to appear in any frequent itemsets and 
(ii) rules found at lower levels of a hierarchy tend to be too specific and may not be 
interesting as rules at higher levels.   
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Methods to define and integrate item constraints on a concept hierarchy are originally 
introduced in (Agrawal & Srikant, 1995) and (Fu & Han, 1995). Originally, multilevel 
constraints are evaluated during the pre-processing phase, generalizing items at bottom 
level to higher levels of the hierarchy before applying Apriori. Basically, each transaction t, 
is replaced with its “extended transaction”, which contains all the items in t along with their 
corresponding ancestors. (Srikant et al., 1997) and (Han et al., 1999) can be seen as the first 
attempts to integrate both constraint-based and multilevel mining directly into the rule 
extraction algorithm, employing anti-monotone proprieties existing across levels: “if a high-
level item is infrequent, none of its descendants can be frequent”. 
In (Goethals & Van den Bussche, 2003) the authors integrate the evaluation of constraints 
into the mining process, so that the amount of computation is proportional to what the user 
gets, limiting the exponential generation of patterns and rules. The constraints considered in 
this work are Boolean combinations of atomic conditions, e.g. Body(i) (or Head(i)) specifies 
that a certain item i occurs in the body (respectively, in the head) of a rule. Another 
interesting work on integrating constraints evaluation in the mining process is represented 
by DualMiner (Bucila et al., 2003). This system implements a new algorithm for finding 
frequent itemsets, that efficiently prunes its search space by employing both monotone and 
anti-monotone constraints. 
Other remarkable constraint-based optimizations can be found in (Gallo et al., 2005) and 

(Esposito et al., 2006).  The former proposes an “incremental” approach exploiting the 

results of previous queries in order to reduce the response time to new queries. In this 

context the term incremental describes the fact that the outcome of a new query starts from a 

previous result. The proposed algorithm is able to deal with context-dependent constraints. 

A similar idea is used in (Esposito et al., 2006), where a new query is rewritten in terms of 

union and intersection of the result sets of other previously executed and materialized 

queries. The authors propose a two-step approach. Firstly, they find conditions to apply 

various typologies of constraints (essentially on items properties), then, by using an 

optimizer, they recognize equivalent queries avoiding repeated heavy computations. 

Finally, (Wang et al., 2003) explores support constraints, that specify what minimum support 
is required for each itemsets, so that only the necessary itemsets are generated. The three 

constraints supp1(B1, B3) ≥ 0.2, supp2(B3) ≥ 0.4 and supp3(B2) ≥ 0.6 are examples of support 
constraints where each Bi, called bin, is a set of disjoint items which, taken in isolation, do 
not need to satisfy any minimum support requirement. 
In this chapter, we focus on pre-processing and post-processing multi-level constraints. 
However, we plan to develop further our model by integrating constraints evaluation 
directly into the mining phase, taking advantage of the peculiar properties of each 
constraint. 

2.2 Behavior mining in agent-based systems 
In last twenty years, data mining has been extensively applied to provide users with a deep 
insight into data collections, supplying powerful tools for extracting high-level knowledge 
from extensive, often poorly structured, information sources. Recently (Cao et al., 2007) 
attention has started to shift from the classical view of data mining as a tool for transferring 
knowledge from raw data to human agents (i.e. the users), to a novel interpretation where 
data mining serves to transfer knowledge from data collections to intelligent artificial 
agents, under the form of strategic patters of actions, i.e. behaviors.   
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At the beginning, most of the works focused on learning single agent behaviors from 
demonstrational data: in (Hellström, 2003), for instance, a robotic system based on the 
reactive paradigm that learns complex behaviors by imitation is presented. Through a 
stimuli/response mapping, the system determines the appropriate robot action as a direct 
function of its sensory inputs. This mapping is provided by a set of association rules that are 
extracted from sensory/action data gathered as the human user exemplifies the behaviors 
that have to be learned by the robotic agent. Similarly, (Zou et al., 2006) use association rules 
to learn picking behaviors for agriculture robots. Other recent works focused on data mining 
as a tool for extracting motor primitives from motion data:  (Makio et al., 2007) discusses 
how to discover motor skills by mining human motion capture data to extract association 
rules and frequent patterns that describe the dependencies among the body parts and the 
relative movements. In (Xu et al., 2007), on the other hand, association rules are used to 
discover and describe knowledge of chewing behavior in an object oriented framework. 
(Mori et al., 2005) collects information on the household behavior of people in daily life: by 
means of association rules, they discover frequent combinations of events, called episodes, 
that are used to predict and support the daily actions of the user. 
The models described so far relate to single agent scenarios (either robotic or purely 
software), but much of the recent works have been devoted to multi-agent systems.   These 
ones differ from single agent systems in the sense that there is no global control and globally 
consistent knowledge and, since data and control are distributed, multi-agent models have 
the inherent advantages of distributed systems, such as scalability, fault-tolerance and 
parallelism. Notice that the term “multi-agent” refers to two aspects of the problem: the 
former and most straightforward one relates to the fact that the system itself is, indeed, 
composed of multiple agents. The latter aspect relates to the fact that the data used in the 
mining process is produced by multiple sources, i.e. by multiple human or artificial agents. 
This is the case of several agent based models with application to information retrieval, 
computational economics and robotics. In (Viamonte et al., 2006), for instance, is presented a 
Multi-Agent Market Simulator where the agents behavior follows the customers and seller 
profiles extracted by mining information from the market segment under analysis. (Bezek et 
al., 2006) presents an algorithm for extracting strategies from a RoboCup soccer scenario 
comprising several interacting agents with different roles and behaviors. In particular, the 
model extracts association rules from the sequences of basic multi-agent actions, showing 
how the constructed rules capture basic soccer strategies such as offensive moves and 
defense schemes. 
More generic models, such as the Agent Academy framework (Mitkas et al., 2004) support 
design and instantiation of agent communities as well as ontology definition. This system 
integrates an agent training procedure that is a mechanism for embedding rule-based 
reasoning capabilities and application-specific knowledge into agents. This is realized by 
means of a data-mining module that processes available behavioral knowledge in order to 
extract decision models for the agents. Another general purpose multi-agent framework is 
(Kaya et al., 2005). It uses association rule mining to estimate agent actions, maintaining an 
historic database of the past agent actions that is processed to extract association rules that 
are, in turn, used to update the action selection strategies of the agents. With a similar intent, 
(Dudek, 2007) proposes the APS (Analysis of Past States) framework, where web browsing 
agents alternate between work phases, during which actions are performed and information 
concerning the user preferences are recorded, and stand-by phases, where the agents are 
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idle and the historic information is mined to extract new user profiles under the form of 
association rules.  
In general, there is an increasing trend of integrating strategic behavioral knowledge into 
agents by mining repositories containing data collected either exogenously to the system 
(e.g. by human exemplification) or by analyzing historic data of the agents themselves. Such 
knowledge extraction mechanism requires tools capable of extracting significant behavioral 
patterns from large data collections. Additionally, the representation of such behavioral 
patterns should allow cross interpretability of the data mining results both from the 
machine and the user perspectives. We advise that association rules can play a key role in 
this sense, serving two key purposes: as knowledge representation means they provide 
humans with insight into data collections; as an action rule base, they can be used to supply 
virtual agents with procedural and high-level knowledge that can effectively be exploited 
for increasing the agents’ performance. In particular, we will focus on how the introduction 
of ontologies in the association mining process can successfully improve the interpretability 
of the association analysis’s results both from the point of view of the user and from the 
agents’ perspective.  

2.3 Ontology 
The ontology may be defined as the study of being as such. The construction of the word itself 
has remote origins and may be seen as an attempt to modernize the classical debate about 
metaphysics. One of the first exponent of this new “discipline” was Aristotle that, in 
(Aristotle, 350 B.C.), presents a first work that can be resembled to an “ontology”.  He 
provides a list of categories that represent an inventory of what there is, in terms of the most 
general kinds of entities. Later on, the Latin term “ontologia” appeared for the first time in 
the circles of German protestants around the 1600 (Göckelin, 1980) (Lorhard, 1613), while 
the first English appearance goes back to 1721 in the Baileys dictionary in which it was 
defined as “an Account of being in the Abstract”. The first use of the term ontology in the 
computer and information science literature occurs instead in 1967, in a work on the 
foundations of data modeling by S. H. Mealy (Mealy, 1967). 
From the scientific point of view, the ontology is, in its first approximation, a table of 
categories in which every type of entity is captured by some node within a hierarchical tree.  
While the philosopher-ontologist has only the goal of establishing the truth about the 
domain in question, in the world of the information systems the ontology is a software (or 
formal language) designed with a specific set of uses and computational environments. In 
this field, the ontologies are rapidly developing (from 1990 up to now) thanks to their focus 
on classification and their abilities in representing the domains, in sharing the knowledge 
and in keeping separate the domain knowledge from the operational one. Furthermore, they 
play a key role in the Semantic Web by providing a source of shared and precisely defined 
terms that can be used for describing the resources. Reasoning over such descriptions is 
essential for accessibility purposes, automating processes and discovering new knowledge. 
One of the modern ontology definition given by (Maedche, 2003) is reported below. An 
ontology O is defined as 

O = {C, R, AO}, 

where: 
1. C is a set whose elements are called concepts. 
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2. R ⊆ (C × C) is a set whose elements are called relations. For r = (c1, c2) ∈ R, one may 
write r(c1) = c2. 

3. AO is a set of axioms on O. 
To cope with the lexical level, the notion of a lexicon is introduced. For an ontology 
structure O = {C, R, AO} a lexicon L is defined as 

L = {LC, LR, F, G}, 

where: 
1.     LC is a set whose elements are called lexical entries for concepts. 
2.     LR is a set whose elements are called lexical entries for relations. 

3.     F ⊆ LC × C is a reference for concepts such that 

F(lC) = {c ∈ C: (lC,c) ∈ F} for all lC ∈ LC, 

F-1(c) = {lC ∈ LC: (lC,c) ∈ F} for all c ∈ C. 

4.     G ⊆ LR × R is a reference for concepts such that 

G(lR) = {r ∈ R: (lR,r) ∈ G} for all lR ∈ LR, 

G-1(r) = {lR ∈ LR: (lR,r) ∈ G} for all r ∈ R. 

We note that a hierarchical structure can be explicitly defined in terms of R.  
Finally, the mapping from elements in the lexicon to elements in the ontology structure 
corresponds to the notion of an interpretation in declarative semantics (Genesereth and 
Nilsson, 1987). Such a (semantic) interpretation associates elements of a language to 
elements of a conceptualisation. Based on the above definitions, an ontology can be formally 
defined as the couple <O, L> where O is an ontology structure and L is a corresponding 
lexicon. The ontology structure O plays the role of an explicit specification of a 
conceptualisation of some domain while the lexicon L provides the agreed vocabulary to 
communicate about this conceptualisation. 
The following example may be useful for explaining the above definitions. 
Let O = {C, R, AO} be an ontology structure such that C = {c1, c2} and R = {r}, where r(c1) = c2. 

Suppose that AO = ∅. Also, let L = {LC, LR, F, C} be a corresponding lexicon such that LC = 
{Mouse, Input_device}, LR = {is_a}, F(Mouse) = c1, F(Input_device) = c2 and G(is_a) = r. 
Fig. 2 depicts the elementary ontology described above. The top of the figure shows the 
ontology structure O. It consists of two concepts c1, c2 and one relation r that relates them. 
This corresponds to a conceptualisation of a domain of interest without any lexical 
reference. The latter is provided by the lexicon L depicted at the bottom of the figure. L 
provides the lexical references for O by means of F and G. F and G map lexical reference 

strings to the concepts and relations defined in O, respectively. For instance, for r ∈ R one 
may consider using G−1(r) to get the lexical reference, i.e. “is_a”, corresponding to r and vice 
versa. 
The Web Ontology Language (OWL) is the current standard provided by the World Wide 
Web Consortium (W3C) for defining and instantiating Web ontologies. An OWL ontology 
can include descriptions of classes, properties and their instances. The OWL language 
provides three increasingly expressive sublanguages:  

• OWL Lite supports a classification hierarchy and simple constraint features.  
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• OWL DL is more expressive than OWL Lite without losing computational completeness 
(all entailments are guaranteed to be computed) and decidability (all computations will 
finish in finite time) of reasoning systems. Its name is due to its correspondence with 
description logics (Baader, 2003), a field of research that has studied a particular 
decidable fragment of first order logic. 

• OWL Full is the most expressive with no computational guarantees.  
 

 

Fig. 2. Graphical representation of an ontology. 

We focus mainly on the first two variants of OWL because OWL-Full has a nonstandard 
semantics that makes the language undecidable and therefore difficult to implement. OWL 
comes with several syntaxes, all of which are rather verbose. Hence, in this chapter we use 
the standard DL syntax. For a full DL syntax description, please refer to (Baader, 2003). 
The main building blocks of an OWL ontology are (i) concepts (or classes), representing sets 
of objects, (ii) roles (or properties), representing relationships between objects, and (iii) 
individuals, representing specific objects. Furthermore they are composed of two parts: 
intensional and extensional. The former part consists of a TBox and an RBox, and contains 
knowledge about concepts (i.e. classes) and the complex relations between them (i.e. roles). 
The latter one consists of an ABox, containing knowledge about entities and the way they are 
related to the classes as well as roles from the intensional part. In the following is an 
example of DL formalization (according to the syntax defined in (Baader, 2003)) related to 
the previous ontology fragment. We add a property specifying the number of keys of each 
input device 

 TBox = ((Mouse  ⊆ Input_device) ∩ (Input_device ⊆ Thing) 

∩ (=1 hasKeysNumber) ⊆ Input_device 

∩ (∀ hasKeysNumber.integer)). 
 

All the possible ontology instances constitute the ABox which is interlinked with the 
intensional knowledge. An example of ABox related to the previous TBox is the following: 

ABox = {Logitech_device : Input_device, 

hasKeysNumber = 88, 
Optical_IBM_Mouse : Mouse, 

hasKeysNumber = 2} 
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Given such an ontology, the OWL formal semantics specifies how to derive its logical 
consequences, i.e. facts not literally present in the ontology, but entailed by the semantics. 
The semantics of OWL DL is fairly standard by DL standards. An example is in Fig. 3.  
An interpretation I = (ΔI, · I) is a tuple where ΔI, the domain of discourse, is the union of two 
disjoint sets ΔOI, (the object domain) and ΔDI (the data domain), and I is the interpretation 
function that gives meaning to the entities defined in the ontology. I maps each OWL class C 
to a subset CI ⊆ ΔOI, each object property PObj to a binary relation PIObj ⊆ (ΔOI × ΔOI), each 
datatype property PData to a binary relation PIData ⊆ (ΔOI × ΔDI). The complete definition can 
be found in the OWL W3C Recommendation1. 
 

 

Fig. 3. Example of well defined (model theoretic) semantics. 

Concepts and relations represent the explicit knowledge of an ontology, nevertheless 
another kind of knowledge (i.e. the implicit knowledge) can be “deduced” starting from the 
known facts. Its existence is implied by or inferred from observable behavior or performance 
by using the rule inference mechanism. Rules are an extension of the logical core formalism, 
which can still be interpreted logically. The simplest variant of such rules are expressions of 
the form C => D where C and D are concepts. The meaning of such a rule is “if an individual 
is proved to be an instance of C, then derive that it is also an instance of D”. Operationally, 
the semantics of a finite set R of rules can be described by a forward reasoning process. 
Starting with an initial knowledge base K, a series of knowledge bases K(0), K(1), … is 
constructed, where K(0) = K and K(i+1) is obtained from K(i) by adding a new assertion D(a) 
whenever R contains a rule C => D such that K(i) ≤ C(a) holds, but K(i) does not contain D(a). 
Semantic Web Rule Language (SWRL) is the W3C proposal for the rule language based on a 
combination of the OWL DL and OWL Lite sublanguages with the Unary/Binary Datalog 
RuleML sublanguages of the Rule Markup Language2. SWRL allows users to write Horn-
like rules that can be expressed in terms of OWL concepts and that can reason about OWL 
individuals (Horrocks, 2004). According to the SWRL syntax and referring to the previous 
example of TBox and ABox, the inference rule for deducing that an ontology element is an 
instance of Mouse stated that is an Input_device and has 2 keys, is reported below: 

  ∀x,y  Input_device(?x) ∧ hasKeysNumber(?x,?y) ∧ equalTo(?y, 2) → Mouse(?x), 

where equalTo(., .) is a SWRL built-in function.   

                                                 
1 The W3C webpage: http://www.w3c.org/. 
2 Rule Markup Language is specified at www.ruleml.org. 
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3. The system 

This section describes in detail our framework and the process for extracting multi-level 
association rules by using the ontological support (Bellandi et al., 2008). 
Our scenario consists of the set of components shown in Fig. 4.  
 

 

Fig. 4. Architecture of the system. 

As in the most common system architectures, our framework is composed of a set of 
“modules” and a set of repositories. There is a repository for the metadata, i.e. the 
ontologies, and a repository for the transactions, i.e. the DataBase (DB). The former 
repository contains the Domain Ontology (DO) and the Rule Ontology (RO). The DO 
describes the domain of interest, i.e. all the items that compose the transactions and that are 
stored in the DB. The RO, instead, is used for storing the association rules extracted during 
the process. It is different from the DO because it models the structure of an association rule 
according to its definition (see Section 2.1). The DO is the description model for the 
collection of data and is not designed for containing actual instances. The RO, instead, is 
used both for describing and containing the inference rules.  
The User Interface provides mechanisms for interacting with the system and for visualizing 
the results. The user can provide the system with two types of input: a set of user constraints 
for specifying what items must be considered in the discovering process, and another one 
for filtering the extracted association rules. The user specifies constraints by using the syntax 
presented in the Table 1. It includes both pruning constraints, used to filter a set of non-
interesting items, and abstraction constraints, which permit a generalization of the item on a 
concept of the ontology. We informally describe each constraint by means of an example. 
By using pruning constraints, one can specify a set of items which can be excluded from the 
input transactions set, and, as a consequence, from the extracted rules. This kind of 
constraints refers either to a single item, or to an ontology concept, and can include a 
condition expressed on a set of ontology properties. There exist two kinds of pruning 
constraints: 
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Table 1. Syntax of the Pruning and Abstraction constraints. 

• The constraint prune(e) excludes a single item or all the items belonging to an ontology 

concept expressed by “e”. As one could expect, removing an ontology concept c ∈ C 
also implies excluding all the items belonging to the descendent concepts of c. 

• The constraint prunecond(c) is similar to prune(e), except for uninteresting items that are 
selected according to a condition defined on a set of properties of c. The condition can 
also refer to a property of an ancestor of c. 

For example, let us suppose to have a simple ontology modelling all possible soccer actions 
performed by soccer agents. Every item represents an action and has a property 
hasPassesNumber to indicate the number of passes of an action. The ontology has the form 
of a taxonomy organized according to the kind of action (e.g. Action, GoalAction, Non-
GoalAction, CornerAction, etc.). The predicates prune(Non-GoalAction) and 
prunehasPassesNumber>5(GoalAction) allow to prune all the “Non-GoalAction” actions and all the 
“GoalAction” actions with a number of passes greater than 5, from the input transactions. 
Notice that hasPassesNumber is a property of the upper concept Action, while Non-
GoalAction and GoalAction are sub-concepts of Action. 
The Abstraction constraints enable to explore different levels of the ontology concepts. The 
generalization to a predefined level of the hierarchy increases the support of association 
rules and, consequently, avoids the discovery of a massive quantity of useless rules, 
especially in case of sparse data. More interesting is the exploitation of rules in which items 
are extracted at different levels of the hierarchy. The system offers three different predicates: 

• The predicate abstract(e, c) generalizes a single item e (or all the items belonging to the 
concept e) to the super-concept c. 

• The predicate abstractcond<c1>(c1, c2) is similar to the previous one, but it generalizes items 
according to a condition (cond<c1>) defined on a set of properties of the concept c1. Only 
items satisfying this condition are abstracted to the super-concept c2. As for prunecond(c), 
this condition can also refer to a property of an ancestor of c1. 

• Finally, the abstractlcond<e>(e) generalizes every element satisfying the condition cond<e> 
to the super-concept placed at level l of the hierarchy. In this case, e can be either a 
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single item or a concept. If the condition is not specified, all the items belonging to e are 
generalized to the super-concepts at level l. 

The symbol “ALL”in Table 1 can be used to select all the items defined in the ontology.  
Suppose that the ontology provides also a description of all the soccer field areas,  organized 
as an hierarchy; this permits to specify in which soccer field area each action is performed. 
Lets assume that LittlePenaltyArea is a sub-concept of PenaltyArea. The predicate 
abstract(LittlePenaltyArea, PenaltyArea) generalizes all the actions performed in the “Little 
Penalty Area” to a more generic “Penalty Area”. It is equivalent to the predicate 
abstract5(LittlePenaltyArea), if PenaltyArea is placed at level 5 of the ontology. 
The set of constraints VD is therefore a conjunction of pruning and abstraction constraints. 
The Interpretation Module in Fig. 4 translates the requests of an user into a set of formal 
constrains (defined on the DO) so that they can be supplied to the Ontology Query Engine 
by means of a suitable query language. In our system we used the Sesame RDF Query 
Language - SeRQL (Broekstra, 2004). 
The Ontology Query Engine interacts with the DO by performing some queries and 
retrieving the desired set of items (IS). This module uses a particular ontology query 
language according to the ontology management system that supports the operations.  
The output is used by the DB Query Engine for retrieving the DB transactions that contain 
the items specified in IS.  
The Association Rule Extraction Module contains an implementation of the Apriori 
algorithm that computes the set of association rules (AR). Such a rules are then stored in the 
RO. Finally, the Post-filter Module evaluates the post filtering constraints for selecting the 
most relevant association rules w.r.t. the user needs. Since the extracted rules are stored in 
the OR, this module interacts with the Ontology Query Engine for retrieving the correct 
items by means of directed queries. The post-filter module interacts with the GUI for 
receiving the SERQL queries and for presenting the output rules. It is important to notice 
that the constraints are conceived not only on the structure of the rules, but also on their 
semantics, since the domain ontology provides a mean to express the semantics of single 
items belonging to the rules. For example, let us consider the case in which the ontology 
models all the possible soccer actions performed by soccer agents. Association rules can be 
mined to highlight relations among the actions performed by all players. Given a set of 
output rules, we are able to focus only on those in which the antecedent contains at least one 
kick action made by a player having a particular role. In this case, the semantics of the item 
“kick” and “player role” are encoded in the domain ontology.  

4. Discovering strategic behaviors by association rules mining 

In this section we describe how the association rule mining system presented above can be 
instantiated in the context of behavior discovery in multi-agents system (in Section  4.1), and 
we describe (in Section 4.2) an application example in the field of simulated robotic soccer. 

4.1 Multi-agent planning with ontology-based association rules 
Earlier in the chapter, we have discussed the increasing trend of behavior discovery in 
multi-agent systems. Here, we focus on the role of association rule mining as a means for 
extracting such strategic action patterns: in particular, we point out the capital importance of 
an ontology based approach for extracting high-level planning knowledge that can 
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understood both by the human users as well as by the software agents. For this reason, we 
present an ontology-based planning scheme for intelligent computational entities.   
 

 

Fig. 5. Behavior mining with association rules in a multi-agent system 

Consider, for instance the scenario in Fig. 5: a set of reference agents, either human or 

artificial, is interacting within an environment, each of them pursuing a particular goal 

based on its internally defined policy. The configurations of the system, including the courses 

of actions of the agents as well as characteristic information (e.g. spatial location, battery 

level and signal strength in radio agents) are monitored and logged to a database (DB in Fig. 

5). After a sufficient amount of time, the database will contain massive amounts of flat 

information referring to the development of the agents’ behavior in time, as well as the 

strategies used to pursue their goals. Our work aims at analyzing such large data repository 

to extract a knowledge base (KB in Fig. 5) holding higher level information content that can 

be used to refine the planning strategies of the replicating intelligent agents in Fig. 5.  

Consider, for instance, the elements in Fig. 5 as being players from two soccer teams: by 

monitoring their actions during the whole match we can log interesting information, such as 

player location, speed, stamina, as well as events of interest, e.g. kick, pass, header, slide, 

dash, etc. Then, by applying association analysis, we can extract a set of association rules 

that describes the most likely decisions to be taken for the most frequent configurations of 

the game. For instance, the knowledge base can end up containing rules such as 
 

IF LeftPlayer10.location IS RightQuarterMidfield AND LeftPlayer10.pass AND 
LeftPlayer11.location IS  RightPenaltyArea  
THEN  LeftPlayer11.dash; 

 

which describes a typical soccer attack strategy, that is “when player 10 is on the attack and 

passes the ball, then player 11 should run for the pass in the penalty area”. The extracted 

rules are, in turn, used to populate our knowledge repository KB, which includes a 

description of our reference world given by the domain ontology. 

For the particular problem at hand, i.e. soccer matches, the ontology can include, for 

instance, a taxonomy of the areas of the field, a description of the players (e.g. in terms of 

physical/physiological parameters such as height, weight, stamina, speed, etc.) as well as a 

multi-layered description of the actions and events (e.g. the pass action that can be further 

differentiated in long and short pass, heal pass, etc.).  
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The novelty of our approach lies in the full integration between the ontology and the 
association analysis: the ontological description can be used to navigate the results of the 
association analysis at a given level of abstraction by imposing ontology-based constraints 
to filter the association rules in the KB. More formally, this is obtained by applying the rule 
ontology population scheme in Fig. 4: by exploiting the knowledge representation in the 
domain ontology we perform queries that filter the association rules at particular level of 
abstraction. The resulting rules serve to populate the rule ontology that is in turn used for 
the decision making process.  
Association rules filtering is of capital importance when approaching behavior mining in a 

multi-agent system, due to the explosive rule base complexity that may arise as a result of 

the association analysis. The interaction of multiple agents, in fact, generates a massive 

amount of data that populates the DB; as a consequence the traditional association analysis 

can generate a large number of rules addressing the behavior of several agents. Thus, a 

pruning technique is needed to reduce the cardinality of the association rules by filtering the 

results of the association analysis to obtain personalized views of the discovered procedural 

knowledge. In our approach this mechanism is implemented by means of ontology-based 

filtering. For instance, if we are interested in knowledge regarding heal pass actions 

performed in opponent’s team area, we apply the ontological definitions of heal pass and 

opponent’s area to the association rules in the knowledge repository. As a result only those 

rules satisfying the constraints are retained and used to plan the next decision. This 

approach offers a two-fold advantage: on the one hand, it allows human users to selectively 

tune their view on the extracted knowledge so that their analysis of the data can be more 

tightly focused.  On the other hand, such an approach is fully exploitable by intelligent 

software agents to obtain behavioral patterns that are tailored to the particular decision 

scenario they are addressing. The ontological description of the world can, in fact, be easily 

coded into the software agent. The agent itself can then use it to gather knowledge from the 

mare-magnum of the association rule base at the required descriptive level (i.e. abstraction 

constraints) or for a particular ontological relation (i.e. property constraints). By this means, 

we can define intelligent software agents that exploit their world description, i.e. the 

ontology, to learn useful behavioral patterns, i.e. the ontology-filtered rules, from a vast 

amount of flat data.  

Going back to our soccer example, we can interpret the replicating agents in Fig. 5 as being 

players in a virtual soccer match: the rule base extracted from the actual soccer players is 

accessed by each replicating agent that applies its ontology-based filter to extract those 

behavioral patterns that best fit the current game configuration. Then, the planning module 

of the replicating agent determines the next action (or sequence of actions) based on the 

retrieved decision rules (see Fig. 6 ). In a sense, the replicating agent is learning a behavioral 

pattern by analyzing the most frequent configurations generated by the actual agents and 

selecting only those that fits best its role and its personal view of the world. Notice that, in 

general, nothing prevents the real agents to be the same as the replicating agents; hence, by 

devising smart association rule filters, an agent can be made to learn from the history of its 

past actions. 

Fig. 6 depicts a prototypical planning module for a replicating agent that is based on the 

proposed ontology-driven behavior mining model. The agent builds the current 

configuration descriptor by gathering information from the environment, the proprioceptive 
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sensors as well as from its internal state. This information is used to determine the 

preconditions for the decision rules and is exploited by the planner to elaborate the next 

course of actions. In order to do so, the agent planner queries its knowledge base at the 

required level of abstraction and obtains a set of decision rules that match the current 

system configuration. Based on these rules, the planner determines the next actions that are 

forwarded to the actuator sub-system. 
 

 

Fig. 6. Agent planner based on the ontology-driven behavior mining model 

The simple soccer scenario that we have adopted to introduce the behavior mining scheme 

is not far from a real-world application of the model. Several soccer teams, in fact, have 

started monitoring their players with sensors both during training sessions and during 

games (e.g. see the MilanLab3 structure of AC Milan). Such information, if accessible, can in 

principle be used to extract strategic action patterns that can be exploited, for instance, to 

devise intelligent software agents for virtual soccer matches, such as in the Robocup league. 

Unfortunately, such data has not been disclosed, yet: hence, in the next section, we present a 

behavior extraction example based on the freely available logs from the Simulated Soccer 

League. 

4.2 Extracting strategic behaviors from robot soccer data: an example 
In this paragraph we provide a schematic example describing the steps of the analysis 

process. The example is based on data collected from the RoboCup simulated league. 

RoboCup is an international initiative to foster artificial intelligence and intelligent 

robotics by providing a standard test bed where several technologies can be integrated 

and examined. The RoboCup simulated league consists of teams of autonomous software 

agents competing against one another in soccer games. Logs were taken from each 

simulation game consisting of about 6000 simulation cycles. Each cycle contains 

information about player location and orientation, ball location, ball possessor, game 

                                                 
3 http://www.acmilan.com/InfoPage.aspx?id=565 
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score and play modes such as throw-ins, goal-kicks and so on. Since our aim is to “mine” 

the behaviour of a team in the soccer RoboCup league in the 2004 edition4, we have 

collected all the log events related to the match played by the winner team, focusing on 

position and action information. 

Step1: The ontology definition.  
We defined an ontology for describing the entities of the soccer domain, focusing on the 

variables actually contained in the collected data. We built the ontology by creating a 

taxonomy of concepts, adding interesting data as well as object properties according to the 

target of our analysis.  

In Fig. 7 is reported the ontology of the main concepts (superClasses) and their data and 

object properties. For our purposes it was necessary to model the concepts Player, Kick, Body, 

Ball, PlayerRole and FootballFieldArea. Concerning the kick action, it is interesting to know the 

actor and the receiver (2 players), where it is directed (the field area) as well as the body part 

that has produced it. The corresponding object properties are madeBy, towards, 

hasDestinationArea, madeByUsing.  

    
 

 
 

Fig. 7. The domain ontology for the soccer domain: the super-concepts. 

For a player is interesting to know its role and its position. The latter information is of 

interest also for the ball concept. 

For the concepts Body, FootballFieldArea and PlayerRole we realized three taxonomies of sub-

concepts (Fig. 8, Fig. 9 and Fig. 10 respectively), that in the following will be used to express 

AR constraints. 

                                                 
4 http://staff.science.uva.nl/~jellekok/robocup/rc04/ 
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Fig. 8. The Body taxonomy. 

 

 

Fig. 9. The FootballFieldArea taxonomy. 
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Fig. 10. The PlayerRole taxonomy. 

The information related to all the previous ontological entities, was not explicitly 

represented in the DB. Starting from the information contained in the DB, we inferred the 

new information according to our ontology entities. For instance, in the FootBallFieldArea 

taxonomy, we split the soccer field into 24 disjointed parts, that are used to characterize 

players and ball positions, as showed in figure Fig. 11. 

 

 

Fig. 11. Parts of the soccer field. 
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Starting from the coordinates of each position, inference rules are used for identifying each 
part of the soccer field. The SWRL rules have the following form: 
 

∀ x,y,z  Player(?z) ∧ hasPlayerPositionX(?z, ?x) ∧ hasPlayerPositionY(?z, ?y) ∧ 

                       GreaterOrEqualThan(?x, -52.5) ∧ LessOrEqualThan(?x, -47) ∧ 

                                                              GreaterThan(?y, -9.2) ∧ LessThan(?y, 0) 

                → isInFieldArea(?z, LLA_L). 
 

This rule states that a certain player (identified by the variable z), belonging to the Left team, 
is in the left part of the little area (LLA_L), where LLA_L is an individual of the LeftLittleArea 
ontology class. Similar rules have been used for deducting all the other ontology entities. 
According to the architectural description in Section 3, we introduce an ontology for storing 
the ARs, that is shown below in Fig. 12.  
 

 

Fig. 12. The Rule Ontology. 

This ontology models the structure of an association rule. The concept RDA identifies a rule: 
it has the reference to the confidence and the support, as well as the link (1:n relation) to 
concepts Antecedent and Consequent, that are, in turn, used to model the left and right hand 
side of a rule.  
Step2: Data collection  and preparation. 
Raw data consists of about 65.000 transactions and 108 attributes. The structure of each one 
of the 22 players is reported in Table 2. Moreover, we have some actual attributes related to  
 
 

Attribute Type Description 

pos_x real X Coordinate of a player position in the football field 
pos_y  real Y Coordinate of a player position in the football field 
actions_kick  {0, 1} 1 if actual action is equal to kick, 0 otherwise 
actions_dash  {0, 1} 1 if actual action is equal to dash, 0 otherwise 
actions_turn  {0, 1} 1 if actual action is equal to turn, 0 otherwise 
actions_catch  {0, 1} 1 if actual action is equal to catch, 0 otherwise 
actions_move  {0, 1} 1 if actual action is equal to move, 0 otherwise 
calculated_possessor {0, 1} 1 if player has ball, 0 otherwise 

Table 2. Player Attributes.  
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the ball state, such as the coordinate of the ball in the football field (ball_position), the 
distance of the ball from a goal (ball_goal_distance) and the possessor team of the ball 
(ball_possessor). 
The rule extraction algorithm is not applied directly to the collected data described above, 
whereas such information is abstracted or filtered in agreement with the user specified 
constraints. For example a player position, expressed by x-y coordinates, can be abstracted 
to whatever field zone defined by the ontology.  
We selected all the actions where the team under analysis is in “offensive state”. To 
determine an “offensive state”, we abstract the ball_position attribute to an ontology high 
level concept considering only those actions in which the ball is into a specific part of the 
football field, for example PenaltyArea, or simply in the opponent midfield. Then, we filtered 
the data considering only the actions where at least one player executes a kick. Finally, we 
observed the behavior of the forward players (e.g. with numbers from 9 to 11) related to the 
opposite defenders (e.g. with numbers from  2 to 5). 
It is important to notice that all the data transformations introduced above are expressed by 
means of constraints defined on the basis of a well-defined domain ontology, and 
automatically executed by the software interpreting the results provided by the ontology. 
Step3: The constraints definition. 
Our simple experimentation concerns two queries. In the first case, the objective is to find 
frequent itemsets involving “kicking players” and actions performed in the right middle 
soccer field. In the second case, we are interested in these specific kicking players: PlayerL9, 
PlayerL10, PlayerL11, PlayerR2, PlayerR3 and PlayerR4. By using our constraint language, 
an user can formulate the first query in the following way: 
 

               query1 =    (prune(belongsTo = 'R')(Player)  

  ∧ prune(hasNumber > 5 or hasNumber = 1)(Player)  

  ∧ prune(belongsTo = 'L')(Player)  

  ∧ prune(hasNumber < 9)(Player) 

  ∧ prune(isInField = RightPart)(Player)  

  ∧ prune(madeBy-1 =  'null')(Player)  

  ∧ abstract3(FootBallFieldArea)) 
 

In query1, the first four clauses are used for pruning all the players PlayerR1, PlayerR5, 
PlayerR6, PlayerR7, PlayerR8, PlayerR9, PlayerR10, PlayerR11, PlayerL1, PlayerL2, PlayerL3, 
PlayerL4, PlayerL5, PlayerL6, PlayerL7 and PlayerL8. The 5th clause permits to prune all the 
players performing actions in the left part of the soccer field, while the 6th one permits to 
prune all the players not kicking (by using the inverse property of madeBy). The last clause 
abstracts all the positions in the filed to level 3 of the FootBallFielArea taxonomy. 
The second example is defined by the following query: 
 

               query2 =    (prune(belongsTo = 'R'(Player)  

  ∧ prune(hasNumber > 5 or hasNumber = 1)(Player)  

  ∧ prune(belongsTo = 'L')(Player)  

  ∧ prune(hasNumber < 9)(Player) 

  ∧ prune(isInField = RightPart)(Player)  

  ∧ prune(madeBy-1 = L1 or madeBy-1 = L2 or madeBy-1 = L3 or 

   madeBy-1 = L4 or madeBy-1 = L5 or madeBy-1 = L6 or 

   madeBy-1 = L7 or madeBy-1 = L8)(Player)  
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  ∧ prune(madeBy-1 = R1 or madeBy-1 =R5 or madeBy-1 = R6 or 

   madeBy-1 = R7 or madeBy-1 =R8 or madeBy-1 = R9 or 

   madeBy-1 = R10 or madeBy-1 = R11)(Player) 

  ∧ abstract3(FootBallFieldArea)). 
Query2 is very similar to query1, but instead of selecting all the kicking players, it retrieves 
only those items in which either PlayerL9, PlayerL10, PlayerL11, PlayerR2, PlayerR3 or 
PlayerR4 performs the kick. 
Step4: Extracting the Behavior Patterns. 
Once that the ontology-based query has gone through all the steps discussed above, we 
obtain a populated rule ontology specifying a set of association rules that describes the 
behavioral patterns of interest.  
As an example, let us focus on defensive strategies by centering our analysis on the behavior 
of the defenders D = {PlayerR1, PlayerR2, PlayerR3, PlayerR4} in the right-side team with 
respect to the forwards F = {PlayerL9, PlayerL10, PlayerL11} of the left team. To study the 
positioning of the players at a sufficient level of detail, we abstract to the bottommost layer 
of the taxonomy in Fig. 9 (see Fig. 11 for a visual representation of the field areas). 
Moreover, to quantize actions to relevant time instants we filter out those transactions where 
the ball is not kicked by any player.  If we are interested in discovering knowledge 
regulating the in-field positioning of the defenders, we can query for relevant association 
rules regarding the players position on the field. An example of high-confidence ontological 
rules produced by this association analysis is: 
a. PlayerL10_RMQ_R, PlayerL9_LMQ_R, PlayerR2_QLLS_R, PlayerR4_RMQ_R  --> 

PlayerR3_LMQ_R; 
b. PlayerL10_RMQ_R, PlayerL11_LMQ_R, PlayerR2_LMQ_R  --> PlayerR4_RMQ_R; 
c. PlayerL11_LPA_R, PlayerL9_LPA_R, PlayerR3_LPA_R PlayerR5_RPA_R,  --> 

PlayerR2_LPA_R; 
d. PlayerL10_RMF_R, PlayerR5_MRLS_R  --> PlayerR4_RMF_R. 
Rule (a), for instance, describes the typical defense scheme where a player, i.e. PlayerL10, is 
controlled by the defender PlayerR4, while a second attacker, i.e. PlayerL9, has to be 
defended by PlayerR3 which, indeed, has to position in the same area of the field of PlayerL9. 
Notice that the rule states that a third defender, i.e. PlayerR2, is  already holding a position 
and should not defend on  PlayerL9. Similarly, rule (b) requires PlayerR4 to defend on 
PlayerL10 while PlayerR2 is on PlayerL11. These kinds of rules can be used by those agents 
implementing the defender players to determine their position on the field in standard 
defense schemes. Rule (c) describes a dangerous situation in which two forwards, i.e. 
PlayerL11 and PlayerL9, are in the left side of the penalty area: PlayerR3 is defending on both 
players while PlayerR4 is on the right side of the penalty. Hence, a smart defense strategy 
requires PlayerR2 to help PlayerR3 on the left side. On the other hand, rule (d) describes a 
typical pattern where PlayerR5 should keep its position, not defending on PlayerL10, while 
PlayerR4 should localize in the same field position as PlayerL10. 
If we are interested in discovering action patterns correlated with the defense schemes, we 
can let action concepts into the itemset together with the players’ positions. An example of 
rules that we obtained from the simulated soccer data is:  
e. PlayerR2_LMQ_R_dash, PlayerR3_LMQ_R_dash  --> PlayerR4_RMQ_R_dash; 
f. PlayerL9_RMQ_R_dash  --> PlayerR4_RMQ_R_dash. 
The former rule describes a typical joint defensive movement, that is: when two defenders 
located in the same field area dash, then neighbor players, i.e. PlayerR4, should follow them. 
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The latter rule, on the other hand, states probably the most typical defensive movement: if a 
forward PlayerL9 dashes in the field area of a defender PlayerR4, then PlayerR4 should 
follow him. 
The same approach that has lead us to discover defensive patterns can be used to extract 
knowledge concerning attack strategies. For instance, let us study first the positioning on the 
field for the forwards F = {PlayerL9, PlayerL10, PlayerL11} of the left team. By querying the 
rule ontology we obtain rules such as: 
g. PlayerL11_QLLS_R, PlayerL9_LMQ_R, PlayerR4_LMQ_R  --> PlayerL10_RMQ_R; 
h. PlayerL10_hasBall, PlayerL9_RMQ_R  --> PlayerL11_LMQ_R;  
i. PlayerL10_RPA_R, PlayerL10_hasBall, PlayerL9_RPA_R, PlayerR4_RPA_R --> 

PlayerL11_LPA_R. 
Rule (g) describes a basic attack strategy where the forward PlayerL11 is off-center on the left 

lateral side while PlayerL9 is  controlled by the defender PlayerR4 on the center-left; 

therefore, the third forward PlayerL10 should chase the space on the center-right area. Rule 

(h) identifies another fundamental, yet very simple, attack strategy that is: if PlayerL10 has 

the ball and is about to kick (notice that we have filtered kick-only timeframes) then the two 

other  forwards, i.e. PlayerL9 and PlayerL11, should position outside the penalty area, 

respectively on the right and on the left, waiting for a pass or a rebound. Rule (i), on the 

other hand, depicts a clear scoring chance where PlayerL10 is holding the ball in the right 

penalty area and PlayerL9 is defended by PlayerR4 on the same position, hence PlayerL11 

should chase the space, and a possible rebound or pass, on the left of the penalty.  

Likewise with defensive strategies we can query for attack action patterns by including 

action concepts in the itemset. Notice that there are two approaches for achieving this: the 

former, that was already shown in rules (e)-(f) considers items as a concatenation of actions 

and positions; the latter considers actions and positions separately. An example of attack 

strategies is: 

j. PlayerL9_LMQ_R_dash  --> PlayerL10_RMQ_R_dash; 
k. PlayerL10_hasBall, PlayerL9_RMQ_R  --> PlayerL10_kick, PlayerL11_LMQ_R; 
l. PlayerL11_hasBall, PlayerL9_LMQ_R, PlayerR3_LMQ_R --> PlayerL10_RMQ_R, 

PlayerL11_kick. 
Rule (j) is, again, an example of the first approach: it simply states that PlayerL10, positioned 

on the right of the penalty area, should follow PlayerL9 when he dashes outside the left of 

the penalty area (i.e. joint attack). Rules (k) and (l), on the other hand, are two examples of 

the second approach. The first rule, for instance, states that, if PlayerL10 has the ball and 

PlayerL9 is positioned outside the right of the penalty area, then PlayerL11 has to chase the 

space on the left and PlayerL10 should shoot or pass. Taking a closer look at the database 

transactions that falls in the support of rule (k) confirms that, actually, PlayerL10 tries to pass 

or shoot the ball whenever this rule is enabled. Similarly, rule (l) states that PlayerL10 should 

occupy the area on the right of the penalty and PlayerL11 should pass or shoot if PlayerL9 is 

defended by PlayerR3 on the left. 

The rules described above are just a small sample of those obtained by the proposed 

ontology-based association analysis on the simulated soccer data. In general, each agent 

implementing a particular role should filter the rules of its interest, that is those containing 

interesting information on the consequent. By exploiting its internally defined ontology, 

each agent can obtain personalized views of the knowledge concealed in the flat data.  
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Typically, an agent could be interested only in association rules whose consequent refers to 
a specific player, e.g. PlayerL10. By using our constraint language, the agent can express 
such a post-processing constraint in the following way: 

 query_post = prune(hasPlayerRef <> PlayerL10)(Consequent). 

Indeed, the value of the retrieved expert knowledge will depend strictly on the quality on 
the world description, i.e. the domain ontology, as well as on the available data, that is to 
say, if we rely solely on the strategies of loser teams, we will most probably obtain also-ran 
agents.  

5. Conclusion  

We have introduced an ontology-based approach for association analysis in the context of 
behavior mining in multi-agent systems. Our proposal is based on the idea of the 
ontological description of the domain as an essential via-point for accessing the expert 
knowledge concealed underneath massive amounts of “flat” data.  The introduction of a 
multi-layered and multi-relational representation of the domain allows approaching the 
information content from several, diverse, viewpoints. Within the multi-agent area, this 
approach offers considerable advantages since it allows the agents to gather personalized 
views of the extracted knowledge, represented by means of rule ontologies. By exploiting 
this “relativistic” representation, an agent can dynamically generate and selectively access, 
at the desired level of abstraction, the knowledge that is of higher relevance for its current 
decision-making activity. Besides presenting the clear advantage of offering personalized 
views of the world, which is totally consistent with the multi-agent model, this approach 
relieves the agents from the burden of acquiring, maintaining and mastering a monolithic, 
and encyclopedic, representation of their knowledge.  
The model presented in this chapter tackles the association analysis task with the standard 
static approach where each transaction is considered in isolation and not as part of a 
spatiotemporal trajectory. Sequence mining, on the other hand, studies how to approach the 
problem of finding frequent patterns for trajectory data. An interesting future development 
for our model would be to extend it to sequence mining (Agrawal & Srikant, 1995): in 
particular, this would be of great interest for behavioral pattern mining, since it can 
naturally tackle the problem of planning medium to long term strategies comprising lengthy 
sequences of inter-dependent actions. However, we would like to point out that our model 
already offers a means for processing multiple transactions in a sort of time trajectory. 
Through the domain ontology is possible, in fact, to describe concepts whose definition 
transcends the single transaction. Consider, for instance, the pass concept in the soccer 
ontology: since it requires to specify source and destination of the action, its instantiation 
needs to process multiple transactions to find all the requested information, e.g. the receiver 
of the pass. 
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