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1. Introduction

Cancer of the pancreas is the tenth most common form of cancer in the United States and the
fourth leading cause of cancer-related death with a stunningly low 5-year survival rate of less
that 6% [1-4]. Although there are genetic links with pancreatic cancer (10-15% of patients
diagnosed will have a family history) [5], chronic pancreatitis [6], cigarette smoking and
smokeless tobacco [7, 8], obesity [9-11], and type 2 diabetes mellitus (T2DM) [12-14] are the
strongest environmental risk factors linked to this malignancy. Recently high fructose corn
syrup (HFCS) consumption which also contributes to obesity, T2DM, and non-alcoholic fatty
liver disease (NAFLD), has also been directly linked to pancreatic cancer [15]. The development
of the industrial age and subsequent loss of the “hunter-gatherer” life-style has resulted in a
world-wide epidemic of obesity and its associated chronic diseases including: atherosclerotic
heart disease, stroke, diabetes, and multiple obesity-associated malignancies including cancer
of the pancreas. Epidemiologic studies have demonstrated that as underdeveloped countries
progress into industrialized economies and life-styles change (especially consumption of high
density fat/carbohydrate diets coupled with decreased physical activity), the prevalence of
obesity and obesity-related chronic diseases increases. The direct link between obesity, chronic
inflammation, and oncogenesis is becoming increasingly more appreciated and the underlying
cellular mechanisms involved this process are currently intensively being investigated and
reviewed [16, 17]. In addition to the direct role of obesity in oncogenesis, obese individuals
also demonstrate worse outcomes and shorter cancer survival compared to persons with
normal body mass indexes (BMIs) [16]. These observations suggest that the abnormal hormo‐
nal and inflammatory milieu of obesity is directly involved in oncogenesis, promotes tumor
growth, spread, and metastasis while possibly also increasing resistance to therapeutic
intervention [16]. This chapter is meant to review the links between obesity, abnormal adipose
tissue function, induction of abnormal hormonal and chronic inflammatory signaling path‐
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ways involved pancreatic cancer origin, growth, spread, and resistance to treatment. Our
research efforts have been focused on the role of pathologic expression of toll like receptors
(TLRs) in this process which links increasing visceral obesity to these processes.

2. Genetic linkage to pancreatic cancer

Family aggregation of pancreatic cancers suggests a genetic linkage and several important
pancreatic cancer susceptibility genes have been identified including high-penetrance genes:
BRCA2, PALB2, PRSS1, SPINK1, STK11 have recently been reviewed [5], and DNA miss-
match repair genes. Genome-wide association studies (GWAS) are also finding single-gene
polymorphisms (snps) that are also associated with increased risk for pancreatic cancer
including: ABO, 1q32.1, 13q22.1, CLPTM1/TERT, CFTR [18, 19].

Chronic pancreatitis is the strongest independent risk factor for cancer of the pancreas and
there are environmentally induced forms as well as rare inherited forms. Autosomal dominant
mutations of the cationic trypsinogen gene PRSS1 causes a hereditary form of chronic
pancreatitis [20] while an autosomal recessive defect in the serine protease inhibitor gene
SPINK1 also causes hereditary pancreatitis [21]. These familial forms of chronic pancreatitis
exhibit the greatest risk for pancreatic cancer (50-fold increase compared to the general
population) and these individuals also experience the longest duration of chronic pancreatitis
as well. As life expectancy from cystic fibrosis (CF) has increased from childhood into adult‐
hood, individuals with the cystic fibrosis transmembrane conductance regulator (CFTR) gene
now exhibit a 5-fold increased risk for pancreatic cancer from their early onset exocrine
pancreatic disease and chronic pancreatitis [22, 23]. These are the major genes associated with
risk for pancreatic cancer to date and most investigators anticipate that gene-gene and gene-
environmental interactions coupled with the chronic inflammation are cooperatively involved
in the pathogenesis of such complex cancers.

3. Environmental causes of chronic pancreatitis

Patients with chronic pancreatitis from any cause are at increased risk for pancreatic cancer
with severity and duration of chronic pancreatitis (>20 years), age of the patient, and concom‐
itant tobacco use being the major associated co-factors. Although alcohol abuse is causally
linked to the development of chronic pancreatitis, interestingly it does not appear to be an
independent risk factor for pancreatic cancer which has been confirmed by multiple recent
epidemiologic met-analysis studies [24, 25]. Cigarette smoke contains numerous carcinogenic
compounds including nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)
[26]. One of the most well-known features of NNK is the ability of its metabolites to bind to
DNA and induce activating point mutations in the RAS gene [26]. Nicotine itself has also been
shown to stimulate Src kinase activity which facilitates the induction of the inhibitor of
differentiation-1 (Id1) transcription factor which promotes pancreatic tumor growth, meta‐
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stasis, and resistance to chemotherapeutics. Cigarette smoking also increases the risk for T2DM
by inducing insulin resistance as well. Finally, as will be reviewed below, increasing BMI and
obesity are also clearly risk factors for the development of hyperlipidemia, T2DM, chronic
pancreatitis, and a 2-fold higher prevalence of pancreatic cancer.

4. Epidemiology of obesity, T2DM, and pancreatic cancer

There are multiple epidemiologic studies in the US and world-wide linking the epidemic of
obesity and higher BMI to increa`sed risk for multiple malignancies including carcinoma of
the pancreas [10, 27]. The American Cancer Society calculates that of the 1.5 million new cancer
cases diagnosed each year, at least 20% are due to obesity [2]. The risk of pancreatic cancer in
both men and women is increased in those who have a BMI > 25 but is most pronounced in
those with a BMI of 35 or greater [11, 28]. The risk has been shown to increase by 10 per cent
for every five-point increase in BMI. The strongest environmental risk factors related to
pancreatic cancer as stated previously are cigarette smoking [8] and obesity [9]; both of which
are also linked to inducing chronic inflammation, insulin resistance and T2DM [14]. As stated
previously, individuals with T2DM are also twice as likely to develop acute pancreatitis and
pancreatic cancer compared to non-diabetics [9, 10]. Studies looking at the components of diet
and pancreatic cancer link increased risk with consumption of high fat diets, processed
and/or organ meats, the glycemic index of food, and recently high-fructose corn syrup (HFCS)
as important factors contributing to obesity, T2DM and risk for carcinoma of the pancreas [15].
As many as 40-50 % of patients with chronic pancreatitis will develop diabetes mellitus (DM)
from the chronic destruction of beta cell function as well (insulin deficiency rather than the
hyperinsulinemia discussed later). Furthermore, 40% of patients with carcinoma of the
pancreas develop insulin deficiency from tumor replacement of beta cells and the DM often
precedes the diagnosis of the cancer.

In contrast, there is a reciprocal relationship between the amount of exercise and risk for
obesity, T2DM, and pancreatic cancer. Exercise alone burns calories and reduces the risk and/
or severity of obesity, reduces insulin resistance, and promotes the production of anti-
inflammatory cytokines which counter all of the proinflammatory and oncogenic processes
which are discussed below [10].

5. Molecular pathways linking obesity, inflammation, diabetes, and
pancreatic cancer

When caloric intake exceeds normal metabolic demand there is a need to store this excess
energy and that is the principle function of the adipocyte. Adipose tissue however, is more
than just a storage depot. Adipose tissue (especially visceral fat) is composed of multiple cell
types (adipocytes, pre-adipocytes, macrophages, fibroblasts, and blood vessels), and is now
recognized as a significant endocrine organ that expresses and secretes multiple hormones
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(leptin, adiponectin, resistin), inflammatory cytokines (TNF-α, IL-6, and IFN-β), components
of complement, plasminogen activator inhibitor-1 (PAI-1), vascular endothelial growth factor
(VEGF) and other proteins such as monocyte chemoattractant protein (MCP-1). These adipose
tissue-derived factors (Figure 1) are now thought to contribute dramatically to the induction
of chronic inflammation which is expressed as insulin resistance [29], hyperinsulinemia,
T2DM, hyperlipidemia, hypertension, and atherosclerosis [30], and also contributing to the
oncogenesis of many solid tumors [11, 16]. Visceral obesity is the fat depot most closely
associated with the production of these substances and the subsequent development of insulin
resistance, T2DM, and pancreatic cancer oncogenesis.

5.1. Dietary contributions

a. High Fat Diets (HFDs) and Excess Free Fatty Acids (FFAs):

Dietary fats (triglycerides, glycerol, and FFAs) are directly absorbed from the small intestine
as chylomicrons into the thoracic duct into the subclavian vein and then into the general
circulation. Chylomicrons are taken up by adipocytes and hepatocytes [31]. However, once
the adipocyte storage capacity is exceeded, excess TG’s and FFA’s stimulate adipogenesis and
are deposited ectopically into the liver where these excess fats accumulate in small vacuoles
within hepatocytes which is the first stage of fatty liver disease (steatosis) [32, 33]. There is also
increased de novo hepatic lipogenesis with consequent endogenous over-production of
triglycerides (TGs) and free fatty acids (FFAs). Excess fats are also deposited in skeletal muscle
and other insulin target tissues (even beta cells of pancreas) where they initiate acute inflam‐
matory processes (lipotoxicity) with the activation of multiple inflammatory cytokines [16].
Inflammatory cytokines in turn, directly contribute to the induction of insulin resistance
through down regulation of the insulin receptor (IR) and post-receptor signaling pathways in
insulin target tissues [33]. In the liver, the ectopic dietary fat also initiates an inflammatory
response (steatohepatitis) which contributes to the development of non-alcoholic fatty liver
disease (NAFLD) [33].

Within visceral fat cells themselves, FFAs (palmitate, etc.) directly induce the release of
inflammatory cytokines [16] and also trigger the pathologic signaling of toll-like receptors
(TLRs); activation of TLR4, in particular, increases additional inflammatory cytokine produc‐
tion, contributing to the initiation of insulin resistance [34] and adipogenesis, further increasing
adipocyte mass, and the chronic inflammatory state now associated with obesity, T2DM, and
oncogenesis.

b. High Fructose Corn Syrup (HFCS):

Fructose is a dietary carbohydrate normally derived from plant sources (tree and vine fruits,
flowers, berries, and most root vegetables) which is much sweeter than glucose or sucrose. It
is commonly used commercially in prepared foods due to its sweetness, effects on prepared
food texture, and browning of baked foods. Commercially it is derived from sugar cane, sugar
beets, and corn. HFCS is a mixture of glucose and fructose as monosaccharaides and as a food
supplement it is now being vilified for its role in the obesity epidemic as well as induction of
insulin resistance, T2DM and non-alcoholic fatty liver disease (NAFLD) [35-38]. NAFLD is
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now the leading cause of cirrhosis of the liver and primary hepatocellular cancer. Diets high
in HFCS have also been linked directly to increased risk for pancreatic cancer [39]. Mechanisms
by which HFCS induces insulin resistance are thought to be due to its unique metabolism in
the liver via pathways identical to alcohol. Fructose binds to only one of the glucose trans‐
porters (GLUT 5) which is present only in enterocytes of the intestine and in the liver. Thus,
although it is selectively concentrated in the liver, fructose cannot be utilized as a carbohydrate
for energy in any other cell or organ of the body. Acutely, fructose ingestion results in the
shunting of fructose-1-phosphate into dihydroxyacetone-phosphate and glyceraldehyde
which enters the TCA cycle from pyruvate and citrate to excessively increase de novo hepatic
lipogenesis and the over-production of TGs and FFAs [40]. Fructose-1-phosphate also directly
induces janus kinase-1 (JNK-1) signaling, increasing serine phosphorylation of insulin receptor
substrate-1 (IRS-1) in the liver and preventing normal insulin-stimulated tyrosine phosphor‐
ylation of IRS-1 [41]. TG and FFAs derived from HFCS intake also induce insulin resistance in
the liver as the FFAs precipitate in hepatocytes (lipid droplet accumulation), also stimulating
excessive TLR4 signaling and further amplification of multiple inflammatory cytokine
pathways. Dihydroxyacetone-phosphate and glyceraldehyde are also both directly hepato‐
toxic while the excessive accumulation of lipid droplets in the liver induces steatosis further
amplifying inflammatory cytokine release. All of these processes are thought to contribute to
progressive development of hepatic fibrosis, cirrhosis, and primary hepatic cancer. Elevated
TGs and FFAs produced by the liver or which cannot be cleared from the portal vein by the
liver accumulate in the peripheral circulation, exerting similar effects on the insulin receptor
signaling in other target tissues such as adipose tissue, skeletal muscle, and the exocrine
pancreas [40].

With regard to pancreatic cancer, there is increasing evidence of a specific dose-dependent
linkage between HFCS intake and its occurrence and this risk is independent of obesity or BMI
[15]. Furthermore, fructose directly stimulates increased nucleic acid synthesis through the
pentose phosphate pathway (catalyzed by transketolase) which is necessary for proliferation
of malignant cells and consumption of HFCS is now linked both to oncogenesis as well as
tumor spread and metastasis [15].

c. Carcinogens in Foods:

High intake of processed meats containing heterocyclic amines and benzo (a) pyrines or have
been prepared at high temperatures (fried or grilled) have been linked to pancreatic cancer [42]
as have other foods containing aflatoxins [43] and other mutagens, however their link to
pancreatic cancer are fairly weak at this time.

5.2. Molecular pathways triggered by dietary constituents

a. Adipocyte-Derived Inflammatory Proteins:

Inflammatory cytokines (adipokines) such as TNF-α, IL-6, IL8, VEGF, and IFN-β have been
shown to be elevated in states of visceral obesity [16], as well as acute and chronic pancreatitis,
and pancreatic cancer [11]. Visceral adipocytes/macrophages are major sources of the obesity-
associated cytokines which are thought to promote insulin resistance [29] (see below) as well
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as directly contribute to oncogenesis via several pathways [16] including other growth factor
receptors, cytokine receptors, or non-receptor tyrosine kinases. Each of these pathways can
increase Janus kinase (JAK)/signal transduction and activator of transcription Signal Trans‐
ducer and Activator of Transcription (STATs) of which STAT3 [44, 45] is directly linked to
cancer of the pancreas. Both of these pathways can stimulate cellular proliferation—transfor‐
mation through (1) up-regulation of genes encoding cell cycle regulators (cyclins D1/D2, c-
Myc), (2) increasing the probability of mutation, (e.g., cellular proto-oncogenes, DNA, and

Figure 1. The role of dysfunctional adipose tissue in obesity. Dysfunctional adipose tissue is a critical source of mole‐
cules that mediate inflammation, cancer, insulin resistance and angiogenesis. PAI-1 (plasminogen activator inhibi‐
tor-1); FFAs (free fatty acids); IGF-1 (insulin-like growth factor 1); VEGF (vascular endothelial growth factor); IL-6
(interleukin 6); TNF-α (tumor necrosis factor alpha); TLR4 (toll-like receptor 4).
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cellular repair mechanisms), (3) inhibition of apoptosis (Bcl-xL, Mcl-1), (4) decreased cellular
adhesion, and/or (5) stimulation of angiogenesis (VEGF) [46].

Leptin is also secreted by adipocytes and plays a key role in regulating metabolism and
appetite. Leptin is known as the satiety hormone however serum leptin levels are elevated in
obesity due to central leptin receptor resistance (by mechanisms similar to insulin discussed
below). Leptin has mitogenic actions in many cancer cell lines which appear to be via mitogen-
activated-protein-kinase (MAPK) mediated pathways; however in certain pancreatic cancer
cell lines it inhibits growth [47] so its role in this cancer is unclear at present [48, 49].

Adiponectin is exclusively secreted by adipocytes and has both anti-inflammatory and
insulin-sensitizing effects. Known as the “good adipokine” serum levels of leptin are inversely
related to BMI and levels are reduced obese patients and in many cancers. High levels of
adiponectin are inversely related to the incidence of pancreatic cancer [49].

PAI-1 is a serine protease inhibitor produced by adipocytes and stromal cells in visceral fat, is
associated with tumor cell invasion, metastasis, and angiogenesis of many malignancies, and
over-expression of PAI-1 has been demonstrated in many obesity-related tumors suggesting
it contributes to the spread of malignancies [50]. Interestingly, high expression of the plasmi‐
nogen activator inhibitor-2 (PAI-2) was a predictor of improved survival in patients with
pancreatic adenocarcinoma [51].

VEGF is another adipocyte-derived polypeptide that has been implicated in cancer growth,
shown to be over-expressed in many pancreatic cancers, and its expression in these tumors is
linked to poorer survival [52, 53].

b. Insulin Resistance, Hyperinsulinemia, and Increased Insulin/IGF-1 Receptor Signaling
Pathways

The FFA’s and inflammatory cytokines produced by visceral obesity discussed earlier directly
induce insulin resistance at the insulin receptor (IR) level [34, 54] resulting in compensatory
beta cell insulin secretion (hyperinsulinemia) in an attempt to maintain euglycemia. The
hyperinsulinemia becomes a self-perpetuating vicious cycle, in turn, as it directly contributes
to insulin resistance by down-regulating its own receptor. Insulin resistance can originate
anywhere in the insulin-action cascade; from a direct reduction in IR number or affinity, to
reduced phosphorylation/activation of the insulin receptor itself, to down-regulation of the
intracellular protein-kinase cascade normally triggered by insulin action following interaction
with the IR (post-receptor signaling) [55]. Over-stimulation of the IR by hyperinsulinemia itself
results in high levels of STAT3 activation, which then up-regulates suppressors of cytokine
signaling-3 (socs-3); which in turn, inhibits post-receptor insulin signaling as a negative
“feedback” inhibitory mechanism, thereby down-regulating its own receptor system [56]. We
have shown that excessive TLR4 signaling and inflammatory cytokine release up-regulates
socs-3 which contributes to insulin resistance [34]. Overall decreased insulin signaling then
leads to decreased activation of GLUT4 transporters and decreased insulin-stimulated
suppression of hepatic gluconeogenesis and glucose uptake into peripheral target tissues such
as adipocytes and skeletal muscle which leads to the development of T2DM. Although IR-
mediated pathways associated with carbohydrate and fat metabolism are down-regulated,
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other signaling pathways are not suppressed but rather continuously stimulated by insulin
resulting in activation of the Ras/Raf/mitogen-activated-protein-kinase (MAPK) system and
mTOR pathways which are known to promote abnormal cell growth and proliferation [57,
58]. Thus, in states of obesity and FFA/TLR4/cytokine-mediated insulin resistance, the
principle functions of insulin action via the IR (glucose transport and suppression of gluco‐
neogenesis) are impaired while insulin-stimulated abnormal cell growth and proliferation in
target tissues continues [58]. Secondly, hyperinsulinemia induces the synthesis of insulin-like
growth factor-1 (IGF-1) in liver and the high serum levels of free IGF-1 also results in over-
stimulation of its own receptor (IGF-1R). Excess IGF-1R signaling also stimulates abnormal
cell proliferation through the same downstream signaling networks which are being chroni‐
cally stimulated by insulin; including the phosphatidylinositol 3-kinase (PI3-K)-AKT system
[58]. Thus obesity induced insulin resistance results in excess insulin and IGF-1 promotion of
abnormal cell growth and proliferation in multiple organ systems. Expression of IGF-1
receptors has also been demonstrated in multiple malignant tumors including pancreatic
cancer, and IGF-1 contributes to cell migration and invasion in some human pancreatic
carcinomas.

c. Hyperglycemia Induces Pancreatic Cancer Epidermal Growth Factor Expression

As we have previously discussed in this chapter, diabetes is associated with an increased risk
of pancreatic cancer by a variety of cytokine and hormone receptor signaling pathways and
that large numbers of patients with pancreatic cancer develop diabetes and elevated glucoses.
The direct effect of hyperglycemia on oncogenesis, pancreatic cancer growth and spread is of
interest as well. Epidemiologic studies have demonstrated that glucose control in patients with
pancreatic cancer results in improved survival, suggesting that high glucose levels might
directly promote tumor growth and progression [59]. Recent in vitro cell culture studies have
demonstrated that glucose in a dose-dependent manner promotes different pancreatic cancer
cell line growth and perineural invasion through the regulation of expression of glial cell line-
derived neurotropic factor (GDNF) and epidermal growth factor (EGF) via increased epider‐
mal growth factor receptor (EGFR) transactivation [60]. These observations support intensive
glucose control as a potential target for improving patient survival in pancreatic cancer.

6. Obesity, toll-like receptors, and pancreatic oncogenesis

Toll-Like Receptors (TLRs) are pathogen recognition receptors (PRRs) critical for the activation
of the innate and adaptive immune responses to foreign pathogens. Functional TLRs are not
only expressed in immune cells but also in many non-immune cells [61]. Their activation,
signaling, and proinflammatory responses have been shown to be mediators of multiple
inflammatory and autoimmune diseases, as well as, contribute to oncogenesis, tumor growth
and metastasis. Pathologic signaling of multiple TLRs have been implicated in many cancers
including; melanoma, breast, prostate cancer, colorectal, lung, cervical, liver, and pancreatic
cancer [62-64]. Obesity and T2DM are associated with an increased risk for many of these same
malignancies; especially pancreatic cancer. FFA’s are capable of activating TLR4 signaling in
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adipocytes which stimulates adipocyte differentiation, high fat diet (HFD)-mediated induction
of visceral obesity, TLR4-mediated cytokine signaling, insulin resistance, and glucose intoler‐
ance [34, 65]. This in turn stimulates insulin/IGF-1 signaling pathways which also promote
tumor growth. Fructose also stimulates abnormal TLR4 signaling [36] and as mentioned
earlier, HFCS diets are associated with induction of visceral obesity, T2DM, chronic pancrea‐
titis, and cancer of the pancreas as well. Since both FFA’s and fructose are potent ligands for
TLR4 and both are present in high concentrations in the diets of developed countries it is logical
that they could promote pancreatic oncogenesis via TLR mediated pathways to be described.
Finally, as just mentioned hyperglycemia in the form of glucose intolerance and overt T2DM
also stimulates abnormal TLR4 signaling [66] as well as EGFR transactivation in pancreatic
tissue in a glucose dependent manner thus also serving as a ligand to promote tumor growth
and spread.

Chronic inflammation has been shown to be an important risk factor for the onset and
progression of multiple cancers, including pancreatic cancer [67-72] [72-75]. Chronic inflam‐
mation is thought to induce malignant transformation via activation of oncogenes, induction
of immunosuppression, and inhibition of tumor suppressor genes and lymphocytes. Patho‐
logic activation of TLRs play a critical role in the inflammatory response induced by high fat
diets and HFCS by inducing the production of multiple pro-inflammatory cytokines and they
have been shown to be important for the induction, proliferation, survival, metastasis, and
escape from immune surveillance of many of these cancers as well [70, 76]. Some of the most
important TLR-induced cytokines implicated in cancer include TNF-α, IL-1, IL-6, IL-8, IL-10
and IL-23. Proinflammatory cytokine production then leads to the activation of many tumor
promoting transcription factors and anti-apoptotic genes. Nuclear factor kappa beta (NF-κB)
and signal transducer and activator of transcription 3 (STAT3) are two of the most well studied
oncogenic transcription factors.

7. Pathologic toll-like receptor signaling, pancreatic cancer growth, and
resistance to therapy

We have previously described the relationship between obesity and pancreatic cancer risk as
well as the direct correlation between increasing BMI and hyperglycemia to lower responses
to treatment and over-all worse outcomes in this all too common disease. Obesity-induced
TLR activation of NF-κB and STAT3 signaling pathways are major mediators of this process
in multiple cancers including pancreatic cancer. NF-κB and STAT3 are activated by a variety
of similar stimuli (stressors, cytokines, etc.) and both control expression of proliferation-
enhancing, anti-apoptotic, angiogenic, and immune-modulating genes; however they are
regulated by entirely different signaling mechanisms. NF-κB’s pro-inflammatory cytokine
receptors such as; TNF-α and IL-1 [77-80] promote not only tumor transformation, but also
proliferation, angiogenesis, invasion, metastasis, and chemo/radio resistance [81-89]. STAT3
activation by TLR-mediated cytokines also activates the IL-6 family (IL-6, IL-11, IL-27, etc.),
IL-10 family (IL-10, IL-22, IL-19, IL-20), and the epidermal growth factor (EGF) family (VEGF,
IL-21, IL-23, HGF) of growth factors which also stimulate tumor transformation, growth and
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resistance to therapy. NF-κB and STAT3 activate anti-apoptotic genes such as Bcl-xL, Bcl-2,
and c-IAP2 [90-92] and also interact and mediate crosstalk between tumor cells and inflam‐
matory cells within the tumor microenvironment to promote the development and progression
of multiple types of human cancers including but not limited to pancreatic, colon, gastric, skin,
head and neck, and liver cancers [44, 90, 93-96]. Finally, Wnt5a a member of the Wnt family
has also been implicated in carcinogenesis and inflammation. Non-canonical Wnt5a activates
β-catenin-independent pathways important for cell migration and polarity. Wnt5a has been
found in tissue samples of pancreatic adenocarcinomas [97] and is highly expressed in
advanced pancreatic cancer [98]. Recently, a TLR / IL-6 / STAT3 / Wnt5a signaling loop was
described [62, 99].

8. TLRs as a potential therapeutic target

Several recent studies have evaluated the potential therapeutic use of TLR activators and
inhibitors in multiple cancer models. The theory for activation of TLR signaling pathways in
a tumor environment is that it would possibly induce tumor cell apoptosis or inhibit the
production of various factors described in this review that control tumor growth. In addition,
it induction of TLR signaling could elicit an antitumor immune response that could lead to
tumor cell destruction by the host’s immune system. Treatment with TLR agonists have shown
to induce an antitumor response by enhancing dendritic cell (DC) vaccination or T cell adoptive
therapies. A recent study reported that the use of TLR agonists such as poly(I:C) or CpG
combined with adoptive transfer immunotherapy directly to a B16F10 melanoma model
inhibited tumor growth [100]. Also, in a mouse breast xenograft model, the antitumor effect
of the TLR3 activator was shown to be dependent on the expression of TLR3 expression in
tumor cells. This was further validated in humans where treatment with dsRNA improved
outcomes in patients harboring TLR3-positive breast tumors [101]. Similarly, CpG treatment
via TLR9 activation induced tumor cell death in human neuroblastoma cells, and tumor-
targeted delivery of this TLR9 agonist increased survival in a xenograft model of neuroblas‐
toma [102].

In contrast, it has also been shown that TLR agonists can promote cancer cell survival and
migration, and tumor progression. For example, TLR agonists have been shown to increase
tumor viability and metastasis of human lung cancer (TLR7/8) [103] ; proliferation of human
myeloma (TLR3) [104] ; adhesion and metastasis of human colorectal cancer (TLR4) [105] ; and
migration of human glioblastoma (TLR4) or human breast cancer (TLR2) [106]. In regards to
pancreatic cancer, TLR7 was recently reported not only be highly expressed in mouse and
human pancreatic cancers, but ligation of TLR7 led to accelerated tumor progression through
the STAT3 growth pathways previously discussed. Thus, there appears to be a double edged
sword between reducing or promoting tumor growth using agonists based therapies for
different TLRs.

On the other hand, the use of TLR antagonists has shown to be beneficial at inhibiting tumor
growth in animal models in which the tumor microenvironment promotes survival and
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metastasis via TLR signaling. TLR antagonists might also decrease the level of activation of
stromal cells such as tumor-associated macrophages. Macrophages express an array of TLRs
and are able to produce several growth factors via TLR signaling [107]. Moreover, abrogation
of TLR-4 signaling in tumor-associated macrophages decrease tumor growth in vivo [108].

Our group demonstrated that in papillary thyroid carcinoma cells, IL-6, a TLR3 signaling
product, activates STAT3, results in overexpression of Wnt5a which mediates tumor growth
and spread [62]. Further, we demonstrated that phenylmethimazole (C10), a small molecule
derivative of methimazole, blocked TLR3 signaling, and subsequent IL-6 production, STAT3
activation, Wnt5a overexpression, and subsequent growth and migration of papillary thyroid
carcinoma cells [62]. Toll-like receptors were first implicated in the pathogenesis of pancreatic
cancer in 2009. Our laboratory demonstrated that TLR3 and Wnt5a were coordinately consti‐
tutively expressed in a human pancreatic cell line (PANC-1), activation of signaling also played
a key role in the regulation of pancreatic cancer growth and migration and that C10, inhibited
its growth and migration both in vitro and in vivo [63]. Another study reported that activation
of the TLR4 signaling pathway-increased invasiveness of pancreatic cancer cells while
blockade of TLR4 signaling decreased invasive ability [109]. These studies were the first to
implicate both TLR3 or TLR4 expression and signaling as playing a role in pancreatic tumor
growth and migration and demonstrated that inhibition of TLR signaling pathways were
potential therapeutic targets. Gemcitabine is currently the standard of care chemotherapeutic
for pancreatic cancer; however, its efficacy is diminished due to toxicity and the chemoresist‐
ance of the tumors. Recently, another group combined TLR4/NF-κB antagonist with gemcita‐
bine in an orthotopic model of pancreatic cancer and the combination therapy significantly
delayed tumor growth and decreased tumor size compared to gemcitabine alone or the control
groups. Thus, TLR antagonists, when combined with other chemotherapeutic agents may
prove to be effective adjunctive therapies to suppress the inflammatory cytokine/growth factor
microenvironment which contributes to the induction and/or support of tumor growth and
progression and reduce the dose/toxicity of established agents.

9. Prevention of obesity associated pancreatic cancer

There is now compelling evidence that obesity, chronic inflammation, and the associated
secretion of numerous inflammatory cytokines, hormones and growth factors described herein
contribute both directly and indirectly to the increased risk for pancreatic cancer, more
aggressive tumor growth, as well as poor response to therapeutic intervention. Thus, in
addition to smoking cessation and moderation in alcohol consumption, life-style modification
with exercise, maintenance of normal BMI’s, consumption of higher amounts of fresh fruits
and vegetables, less animal fat and processed foods; especially those fortified with HFCS are
obvious recommendations. In addition, there is increasing evidence that other anti-inflamma‐
tory agents such as the non-steroidal anti-inflammatory drugs (NSAIDS) [110], the Statin lipid-
lowering medications, and T2DM medications such as the thiazolidinediones (TZD’s) [111]
and metformin [112, 113] have specific protective effects against oncogenesis as well as tumor
growth and response to treatment.
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10. Conclusion

Obesity contributes to increased risk for multiple solid cancers including pancreatic cancer.
For pancreatic cancer in particular, obesity promotes a proinflammatory environment which
promotes oncogenesis, tumor growth, metastatic spread as well as resistance to therapy
through a variety of molecular pathways. The principle obesity-linked pathways include
increases in TNF-α, IL-1, IL-6, IL-8, IL-10 and IL-23 as well as activation of NF-κB and STAT3.
The current diets of industrialized nations which contain too much low glycemic-index
carbohydrates, saturated fats, and HFCS are major environmental triggers of pathologic TLR3
and TLR4 signaling pathways in adipocytes which then contribute to the development of
insulin resistance, ectopic fat deposition in multiple tissues including the pancreas which in
turn amplify the growth and signaling pathways described herein which lead to oncogenesis
and tumor spread.
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