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1. Introduction     

This chapter focuses on the estimation of car dynamic variables for the improvement of 
vehicle safety, handling characteristics and comfort. More specifically, a new estimation 
process is proposed to estimate longitudinal/lateral tire-road forces, velocity, sideslip angle 
and wheel cornering stiffness. One main contribution of the process is that it uses 
measurements from currently available standard sensors (yaw rate, longitudinal/lateral 
accelerations, steering angle and angular wheel velocities).  Another contribution is that the 
process provides robust sideslip angle estimations with respect to cornering stiffness 
changes (or tire-road friction variations). Finally, the estimation process is applied and 
compared to real experimental data, notably sideslip and wheel force measurements.  
The last few years have seen the emergence in cars of active security systems to reduce 
dangerous situations for drivers. Among these active security systems, Anti-lock Braking 
Systems (ABS) and Electronic Stability Programs (ESP) significantly reduce the number of 
road accidents. However, these systems may be improved if the dynamic potential of a car is 
well known. For example, information on tire-road friction means a better definition of 
potential trajectories, and therefore a better management of vehicle controls. Nowadays, 
certain fundamental data relating to vehicle-dynamics are not measurable in a standard car 
for both technical and economic reasons. As a consequence, dynamic variables such as tire 
forces and sideslip angle must be observed or estimated. 
Vehicle-dynamic estimation has been widely discussed in the literature, e.g. (Kiencke & 
Nielsen, 2000), (Ungoren et al., 2004), (Lechner, 2002), (Stephant et al., 2006), (Baffet et al, 
2006a). The vehicle-road system is usually modeled by combining a vehicle model with a 
tire-force model in one block. One particularity of this study is that it separates the 
estimation modeling into two blocks (shown in Figure 1), where the first block concerns the 
car body dynamic while the second is devoted to the tire-road interface dynamic. 
The first block contains an Extended Kalman Filter (denoted as O1,4w) constructed with a 
four-wheel vehicle model and a random walk force model. The first observer O1,4w 
estimates longitudinal/lateral tire forces, velocity and yaw rate, which are inputs to the 
observer in the second block (denoted as O2,LAM). This second observer is developed from 
a sideslip angle model and a linear adaptive force model.  O
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Figure 1. Estimation process. Observers O1,4w and O2,LAM 

Some studies have described observers which take road friction variations into account 
(Lakehal-ayat et al, 2006), (Rabhi et al, 2005), (Ray, 1997). In the works of (Lakehal-ayat et al, 
2006) road friction is considered as a disturbance. Alternatively, as in  (Rabhi et al, 2005), the 
tire-force parameters are identified with an observer, while in (Ray, 1997) tire forces are 
modeled with an random walk model. In this study a linear adaptive tire force model is 
proposed (in block 2) with an eye to studying road friction variations. 
The rest of the paper is organized as follows. The second section describes the vehicle model 
and the observer O1,4w (block 1). The third section presents the sideslip angle and cornering 
stiffness observer (O2,LAM in block 2). In the fourth section an observability analysis is 
performed. The fifth section provides experimental results: the two observers are evaluated 
with respect to sideslip angle and tire-force measurements. Finally, concluding remarks are 
given in section 6. 

2. Block 1: observer for tire-road force 

This section describes the first observer O1,4w constructed from a four-wheel vehicle model 

(see Figure 2), where ψ is the yaw angle, β the center of gravity sideslip angle, Vg the center 
of gravity velocity, and L1 and L2 the distance from the vehicle center of gravity to the front 

and rear axles respectively. Fx,y,i,j are the longitudinal and lateral tire-road forces, δ1,2 are 
the front left and right steering angles respectively, and E is the vehicle track (lateral 
distance from wheel to wheel). 
In order to develop an observable system (notably in the case of null steering angles), rear 
longitudinal forces are neglected relative to the front longitudinal forces. The simplified 
equation for yaw acceleration (four-wheel vehicle model) can be formulated as the following 
dynamic relationship (O1,4w model): 
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where m the vehicle mass and Iz the yaw moment of inertia. The different force evolutions 
are modeled with a random walk model: 

 2,1,2,1],0,0[,
..

=== jiFF yijxij  (2) 

 

 

Figure 2. Four-wheel vehicle model 

The measurement vector Y and the measurement model are: 
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where γx and γy are the longitudinal and lateral accelerations respectively. 
The O1,4w system (association between equations (1), random walk force equation (2), and 
the measurement equations (3)) is not observable in the case where Fy21 and Fy22 are state 
vector components. For example, in equation (1, 2, 3) there is no relation allowing the rear 
lateral forces Fy21 and Fy22 to be differentiated in the sum (Fy21+Fy22): as a consequence 
only the sum (Fy2=Fy21+Fy22) is observable. Moreover, when driving in a straight line, yaw 

rate is small, δ1 and δ2 are approximately null, and hence there is no significant knowledge 
in equation (1, 2, 3) differentiating Fy11 and Fy12 in the sum (Fy11+Fy12), so only the sum 
(Fy1=Fy11+Fy12) is observable. These observations lead us to develop the O1,4w system 
with a state vector composed of force sums: 
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 ],,,[ 121

.

xyy FFFX ψ=  (4) 

where Fx1 is the sum of front longitudinal forces (Fx1=Fx11+Fx12). Tire forces and force 
sums are associated according to the dispersion of vertical forces: 
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where Fzij are the vertical forces. These are calculated, neglecting roll and suspension 
movements, with the following load transfer model: 
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hcog being the center of gravity height and g the gravitational constant. The superposition 
principle means that the load transfer model assumes the assumption of independent 
longitudinal and lateral acceleration contributions (Lechner, 2002). The input vectors U of 
the O1,4w observer corresponds to: 

 ],,,,,[ 2221121121 zzzz FFFFU δδ=  (7) 

As regards the vertical force inputs, these are calculated from lateral and longitudinal 
accelerations with the load transfer model. 

3. Block 2: observer for sideslip angle and cornering stiffness 

This section presents the observer O2,LAM constructed from a sideslip angle model and a 
tire-force model. The sideslip angle model is based on the single-track model (Segel, 1956), 
with neglected rear longitudinal force: 
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Rear and front sideslip angles are calculated as: 
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where δ is the mean of front steering angles. 
The dynamic of the tire-road contact is usually formulated by modeling the tire-force as a 
function of the slip between tire and road (Pacejka & Bakker, 1991), (Kiencke & Nielsen, 
2000), (Canudas-De-Wit et al 2003). Figure 3 illustrates different lateral tire-force models 
(linear, linear adaptive and Burckhardt for various road surfaces (Kiencke & Nielsen, 2000). 
In this study lateral wheel slips are assumed to be equal to the wheel sideslip angles. 
 

 

Figure 3. Lateral tire force models: linear, linear adaptive, Burckhardt for various road 
surfaces 

In current driving situations, lateral tire forces may be considered linear with respect to 
sideslip angle (linear model): 

 ,2,1,)( == iCF iiiyi ββ  (10) 

where Ci is the wheel cornering stiffness, a parameter closely related to tire-road friction. 
When road friction changes or when the nonlinear tire domain is reached, "real" wheel 
cornering stiffness varies. In order a take the wheel cornering stiffness variations into 
account, we propose an adaptive tire-force model (known as the linear adaptive tire-force 
model, illustrated in Figure 3. This model is based on the linear model at which a 

readjustment variable ΔCai is added to correct wheel cornering stiffness errors:  

 ,2,1,)()( =Δ+= iCCF iaiiiyi ββ  (11) 
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The variable ΔCai is included in the state vector of the O2,LAM observer and it evolution 
equation is formulated according to a random walk model. Input U', state X’ and 
measurement Y' are chosen as:  
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The measurement model is 
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where 
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Given the state estimation denoted as 

 ]',','[' 321 xxxX =  (15) 

the state evolution model of O2,LAM is: 
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where the auxiliary variables Fyw1,aux and Fyw2,aux are calculated as: 
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4. Estimation method 

The different observers (O1,4w, O2,LAM) were developed according to an extended Kalman 
filter method. In 1960 R. E. Kalman published a paper describing a recursive solution to the 
discrete-data linear filtering problem (Kalman, 1960). Since this publication, Kalman's 
method, usually known as the "Extended Kalman Filter", has been the object of extensive 
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search and numerous applications. For example, in (Mohinder & Angus, 1993), Mohinder 
and Angus present a broad overview of Kalman filtering. 
This paragraph describes an EKF algorithm. bs,k, be,k and bm,k represent measurement noise 
at time tk for the measurements, inputs and state evolution model respectively. This noise is 
assumed to be Gaussian, white and centered. Qs, Qe and Qm are the noise variance-
covariance matrices for bs,k, be,k and bm,k, respectively. The discrete form of models is: 
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where f and h are the evolution and measurement functions. −
kX  and +

kX  are state 

prediction and estimation vectors, respectively, at time tk.  The first step of the EKF is to 
linearize the evolution equation around the estimated state and input: 
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The second step is the prediction of the next state, from the previous state and measured input: 
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1 , kkk UXFX +−
+ =  (20) 

The covariance matrix of state estimation uncertainty is then: 

 mkekkkkk QBQBAPAP ++= ⊥⊥+−
+1  (21) 

The third step is to calculate the Kalman gain matrix from the linearization of the 
measurement matrix: 
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The following intermediate variables are used: 
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and the Kalman gain matrix is: 

 1)( −⊥⊥+++= kkkkskkk CSSCQRTK  (24) 

The estimation step is to correct the state vector in line with measurement errors: 
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Finally, the covariance matrix of state estimation uncertainty becomes:  
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5. Observability 

From the two vehicle-road systems (O1,4w, O2,LAM), two observability functions were 
calculated. The two systems are nonlinear, so the observability definition is local and uses 
the Lie derivative (Nijmeijer & Van der Schaft 1990). 
The Lie derivative of hi function, at p+1 order, is defined as: 
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The observability function oi corresponding to the measurement function hi is defined as: 
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where n is the dimension of X vector and d is the operator: 
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The observability function of the system is calculated as: 

 ( )⊥= pooO ,...,1  (31) 

where p is the dimension of the Y vector.  Figure 4 illustrates observability analysis of the 
two systems for an experimental test, presented in section 6. Ranks of the two observability 
functions were 4 (for O1,4w) and 3 (for O2,LAM) (state dimensions) throughout the test, and 
consequently the state of the two systems were locally observable. 
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Figure 4. Ranks of the two observability functions for systems O1,4w and O2,LAM, during 
an experimental test (slalom) 

6. Experimental results 

The experimental vehicle (see Figure 5) is a Peugeot 307 equipped with a number of sensors 

including GPS, accelerometer, odometer, gyrometer, steering angle, correvit and 

dynamometric hubs. Among these sensors, the correvit (a non-contact optical sensor) gives 

measurements of rear sideslip angle and vehicle velocity, while the dynamometric hubs are 

wheel-force transducers. 
 

 

Figure 5. Laboratory's experimental vehicle 

This study uses an experimental test representative of both longitudinal and lateral dynamic 

behaviors. The vehicle trajectory and the acceleration diagram are shown in Figure 6. 

During the test, the vehicle first accelerated up to γx ≈ 0.3g, then negotiated a slalom at an 

approximate velocity of 12 m/s (-0.6g < γy < 0.6g), before finally decelerating to γx ≈ 0.7g. 
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Figure 6. Experimental test, vehicle positions, acceleration diagram 

The results are presented in two forms: figures of estimations/measurements and tables of 

normalized errors. The normalized error εz for an estimation z is defined in (Stephant et al, 
2006) as  

 
)max(

100
tmeasuremen

tmeasuremen
z

z

zz −
=ε  (32) 

6.1 Block 1: observer O1,4w results 

Figure 7 and table 1 present O1,4w observer results. 
  

Estimates Max Mean Std 

.

ψ  
 

24.6°/s 
 

0.4 % 
 

2.6 % 

Fy1 5816 N 3.1 % 4.0 % 

Fy2 3782 N 2.9 % 5.4 % 

Fx1 9305 N 3.1 % 4.1 % 

Table 1. Maximum absolute values, O1,4w normalized mean errors and normalized 
standard deviation (Std) 

The state estimations were initialized using the maximum values for the measurements 
during the test (for instance, the estimation of the front lateral force Fy1 was set to 5155 N). 
In spite of these false initializations the estimations converge quickly to the measured 
values, showing the good convergence properties of the observer. Moreover, the O1,4w 
observer produces satisfactory estimations close to measurements (normalized mean and 
standard deviations errors are less than 7 %). These good experimental results confirm that 
the observer approach may be appropriate for the estimation of tire-forces. 

6.2 Block 2: observer O2,LAM results 

During the test, (Fx1, Fy1, Fy2, Vg) inputs of O2,LAM were originally those from the O1,4w 

observer. In order to demonstrate the improvement provided by the observer using the 

linear adaptive force model (O2,LAM, equation 11), another observer constructed with a linear 

fixed force model is used in comparison (denoted Orl, equation 10, described in (Baffet et al, 

2006b). The robustness of the two observers is tested with respect to tire-road friction 

variations by performing the tests with different cornering stiffness parameters ([C1, C2]*0.5, 

1, 1.5). The observers were evaluated for the same test presented in section 6. 
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Figure 7. Experimental test. O1,4w results in comparison with measurements.Figure 8 
shows the estimation results of observer Orl for rear sideslip angle. Observer Orl gives good 
results when cornering stiffnesses are approximately known ([C_1, C_2]*1). However, this 
observer is not robust when cornering stiffnesses change ([C_1, C_2]*0.5, 2). 
 

 

Figure 8. Observer Orl using a fixed linear force model, rear sideslip angle estimations with 
different cornering stiffness settings. 

www.intechopen.com



 Advances in Robotics, Automation and Control 

 

148 

Figure 9 and table 2 show estimation results for the adaptive observer O2,LAM. The performance 
robustness of O2,LAM is very good, since sideslip angle is well estimated irrespective of 
cornering stiffness settings. This result is confirmed by the normalized mean errors (Table 2) 
which are approximately constant (about 7 %). The front and rear cornering stiffness estimations 
(Ci + ΔCi) converge quickly to the same values after the beginning of the slalom at 12 s. 
 

O2,LAM 0.5(C1,C2) (C1,C2) 1.5(C1,C2) 

Max 3.0° 3.0° 3.0° 

Mean 7.4 % 7.0 % 7.2 % 

Table 2. Observer O2,LAM, rear sideslip angle estimation results, maximum absolute value, 
normalized mean errors. 

 

Figure 9. O2,LAM adaptive observer, Sideslip angle estimation results, Front and rear 

cornering stiffness estimations Ci+ ΔCi, with different cornering stiffness settings 
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6. Conclusions  

This study deals with two vehicle-dynamic observers constructed for use in a two-block 
estimation process. Block 1 mainly estimates tire-forces (without an explicit tire-force 
model), while block 2 calculates sideslip angle and corrects cornering stiffnesses (with an 
adaptive tire-force model). 
The first observer O1,4w (block 1), an extended Kalman Filter, is constructed with a random 
walk force model. The experimental evaluations of O1,4w are satisfactory, showing excellent 
estimations close to the measurements and good convergence properties. 
The second observer O2,LAM (block 2), developed with an adaptive tire-force model, was 
evaluated for different cornering stiffness settings and was compared with an observer 
constructed with a fixed tire-force model (Orl). Results show that Orl is not robust when 
cornering stiffness parameters change, whereas O2,LAM gives excellent estimations of the 
sideslip angle. This result justifies the use of an adaptive tire-force model to take into 
account road friction changes. 
The different results show the potential of the two-block estimation process. The first block 
has the advantage of providing satisfactory force estimations without a tire-force model, 
whereas the second block provides robust sideslip angle estimations with respect to 
cornering stiffness changes (or tire-road friction variations). 
Future studies will improve vehicle-road models, notably for the calculation of the 
front/rear sideslip angles, in order to widen validity domains for observers. Subsequent 
vehicle-road models will take into account roll, vertical dynamics and vehicle-tire elasto-
kinematics. Moreover, experimental tests will be performed, notably on different road 
surfaces and in critical driving situations (strong understeering and oversteering). 
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