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1. Introduction

An important subject in mathematical science that causes new improvements in data analysis
is sequential analysis. In this type of analysis, the number of required observations is not fixed
in advance, but is a variable and depends upon the values of the gathered observation. In
sequential analysis, at any stage of data gathering process, to determine the number of required
observations at the next stage, we analyze the data at hand and with respect to the obtained
results, we determine how many more observations are necessary. In this way, the process of
data gathering is cheaper and the information is used more effectively. In other words, the
data gathering process in sequential analysis, in contrast to frequency analysis, is on-line. This
idea caused some researches to conduct researches in various statistical aspects (Basseville and
Nikiforov[1]).

In this chapter, using the concept of the sequential analysis approach, we develop an innova‐
tive Bayesian method designed specifically for the best solution in selection problem. The
proposed method adopts the optimization concept of Bayesian inference and the uncertainty
of the decision-making method in dynamic programming environment. The proposed
algorithm is capable of taking into consideration the quality attributes of uncertain values in
determining the optimal solution. Some authors have applied sequential analysis inference in
combination with optimal stopping problem to maximize the probability of making correct
decision. One of these researches is a new approach in probability distribution fitting of a given
statistical data that Eshragh and Modarres [2] named it Decision on Belief (DOB). In this
decision-making method, a sequential analysis approach is employed to find the best under‐
lying probability distribution of the observed data. Moreover, Monfared and Ranaeifar [3] and
Eshragh and Niaki [4] applied the DOB concept as a decision-making tool in some problems.

© 2014 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Since the idea behind the sequential analysis modeling is completely similar to the decision-
making process of a human being in his life, it may perform better than available methods in
decision-making problems. In these problems, when we want to make a decision, first we
divide all of the probable solution space into smaller subspaces (the solution is one of the
subspaces). Then based on our experiences, we assign a probability measure (belief) to each
subspace, and finally we update the beliefs and make the decision.

2. An application to determine the best binomial distribution

In the best population selection problem, a similar decision-making process exits. First, the
decision space can be divided into several subspaces (one for each population); second, the
solution of the problem is one of the subspaces (the best population). Finally, we can assign a
belief to each subspace where the belief denotes the performance of the population in term of
its parameter. Based upon the updated beliefs in iterations of the data gathering process, we
may decide which population possesses the best parameter value.

Consider n independent populations P1, P2, ..., Pn, where for each index i =1, 2, ..., n, popu‐
lation Pi is characterized by the value of its parameter of interest pi. Let p

1
≤ ...≤ p

n
 denote

the ordered value of the parameters p1, ..., pn. If we assume that the exact pairing between the
ordered and the unordered parameter is unknown, then, a population Pi with pi = p

n
 is called

the best population.

There are many applications for the best population selection problem. As one application in
supply chain environments, one needs to select the supplier among candidates that performs
the best in terms of the quality of its products. As another example, in statistical analysis, we
need to select a distribution among candidates that fits the collected observations the most.
Selecting a production process that is in out-of-control state, selecting the stochastically
optimum point of a multi-response problem, etc. are just a few of these applications.

The problem of selecting the best population was studied in papers by Bechhofer and Kulkarni
[5] using the indifference zone approach and by Gupta and Panchapakesan [6] employing the
best subset selection approach.

2.1. Belief and the approach of its improvement

Assume that there are n available Binomial populations and we intend to select the one with
the highest probability of success. Furthermore, in each stage of the data gathering process
and for each population, we take an independent sample of size m. Let us define αi ,t

'  and βi ,t
'

to be the observed number of successes and failures of the ith Binomial population in the tth stage
(sample) and αi ,k  and βi ,k  to be the cumulative observed number of successes and failures of
the ith Binomial population up to the kth stage (sample) respectively. In other words,

αi ,k =∑
t=1

k
αi ,t

' and βi ,k =∑
t=1

k
βi ,t

' . Then, in the kth stage defining pi ,k̄  to be the estimated probability
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of success of the ith population obtained by 
αi ,k

km , referring to Jeffrey’s prior (Nair et al.[7]), for

pi ,k̄ , we take a Beta prior distribution with parameters αi,0=0.5 and βi,0=0.5. Then, using Bayesian

inference, we can easily show that the posterior probability density function of pi ,k̄  is

, ,
0.5 0.5, ,

, , ,
, ,

( 1)
( ) (1 )

( 0.5) ( 0.5)
i k i ki k i k

i k i k i k
i k i k

f p p p
a ba b

a b
- -G + +

= -
G + G + (1)

At stage k of the data gathering process, after taking a sample and observing the numbers of
failures and successes, we update the probability distribution function of pi ,k̄  for each popu‐

lation. To do this, define B(αi ,k , βi ,k ) as a probability measure (called belief) of the ith population

to be the best one given αi ,k  and βi ,k  as

( ) { }th
, , , ,, Pr population is the best ,i k i k i k i kB ia b a b= (2)

We then update the beliefs based on the values of (αi ,k , βi ,k ) for each population in iteration k.

If we define B(αi ,k−1, βi ,k−1) as the prior belief for each population, in order to update the

posterior belief B(αi ,k , βi ,k ), since we may assume that the data are taken independently in each

stage, we will have

( )
( ){ } ( ){ }
( ){ } ( ){ }

( )

, ,

, 1 , 1 , ,

, 1 , 1 , ,
1

, 1 , 1 ,

,

Pr  Population is the best , Pr ,  Population is the best

Pr  Population is the best , Pr ,  Population is the best

, Pr ,

i k i k

th th
i k i k i k i k

n
th th

j k j k j k j k
j

i k i k i k

B

i i

j j

B

a b

a b a b

a b a b

a b a

- -

- -
=

- -

=

é ù
ê úë û

=

å

( ){ }
( ) ( ){ }

,

, 1 , 1 , ,
1

 Population is the best

, Pr ,  Population is the best

th
i k

n
th

j k j k j k j k
j

i

B j

b

a b a b- -
=

é ù
ê úë ûå

(3)

From equation (3) we see that to update the beliefs, we need to evaluate

Pr{(αi ,k , βi ,k )| i th Population is the best} ; i =1, 2, ..., n in each decision-making stage. One

way to do this is to use

( ){ } ,
, ,

,
1

Pr ,  Population is the best i kth
i k i k n

j k
j

p
i

p
a b

=

=

å (4)
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Then, the probability given in equation (3) will increase when a better population is selected.
In the next theorem, we will prove that when the number of decision-making stages goes to
infinity this probability converges to one for the best population.

Theorem 1

If the ith population is the best, then Lim
k→∞

B(αi ,k , βi ,k )= Bi =1.

In order to prove the theorem first we prove the following two lemmas.

Lemma 1:

Define a recursive sequence {Rk , j; j =1, 2, ..., l} as

1,

1,,
1

for 1,2,3,...

for             0

j k j
l

i k ik j
i

j

c R
k

c RR

P k

-

-
=

ì
=ï

ï= í
ï
ï =î

å (5)

where c1, c2, ..., and cl  are different positive constants, ∑
j=1

l
Pj =1 , and Pj >0 Then, if

lj = Lim
k→∞

(Rk , j), there exist at most one non-zero lj.

Proof:

Suppose there are two nonzero ls >0 and lt >0. Taking the limit on Rk , j as k goes to infinity we
have

1,
,

1,
1 1

 ( )  j k j j j
k j j l lk k

i k i i i
i i

c R c l
Lim R l Lim

c R c l

-

®¥ ®¥

-
= =

æ ö
ç ÷
ç ÷= = =ç ÷
ç ÷ç ÷
è ø
å å

(6)

Now since ls >0 and lt >0, then by equation (6) we have

1 1

1 1

       and         
l l

s s t t
s s i i t t i il l

i i
i i i i

i i

c l c l
l c c l l c c l

c l c l= =

= =

= Þ = = Þ =å å
å å (7)

In other words, we conclude cs =ct , which is a contradiction.
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Lemma 2:

Sequence Rk , j converges to one for j = g  and converges to zero for j ≠ g , where g is an index for
the maximum value of cj.

Proof

From equation (6), we know that ∑
j=1

l
lj =1. Then by lemma 1, we have li =1 for only one i. Now

suppose that cg = max
j∈{1...m}

{cj} and g ≠ i. We will show that this is a contradiction. Consider

Hk ,i =
Rk ,g
Rk ,i

. By equation (5), we have Hk ,i =
cg
ci

Hk−1,i. Since Ho,i >0 we will have

( ), 1, 0, ,      
k

g g
k i k i i k iki i

c c
H H H Lim H

c c- ®¥

æ ö
ç ÷= = Þ = ¥ç ÷
è ø

(8)

That is a contradiction because Lim
k→∞

(Hk ,i)=
Lim
k→∞

(Rk ,g)

Lim
k→∞

(Rk ,i)
=

lg
li

=0. So lg =1

Now we are ready to prove the convergence property of the proposed method. Taking limit
on both sides of equation (3), we will have

( )
( ) ( ){ }
( ) ( ){ }

, 1 , 1 , ,
, ,

, 1 , 1 , ,
1

, Pr ,  Population is the best
,    

, Pr ,  Population is the best

th
i k i k i k i k

i k i k i nk k th
j k j k j k j k

j

B i
LimB B Lim

B j

a b a b
a b

a b a b

- -

®¥ ®¥

- -
=

é ù
ê ú
ê ú= = ê ú

é ùê ú
ê úë ûê úë û

å
(9)

From the law of large numbers, we know that Lim
k→∞

p j ,k̄ = pj, where pj is the probability of success

of the jth population. Hence, using equation (7) we have  Bi =
Bi pi

∑
j=1

n
Bj pj

. Then assuming population

i is the best, i.e., it possesses the largest value of pj ’s, by lemma 1 and 2 we conclude that Bi =1
and Bj

j≠i
=0. This concludes the convergence property of the proposed method.

In real-world applications, since there is a cost associated with the data gathering process we
need to select the best population in a finite number of decision-making stages. In the next
section, we present the proposed decision-making method in the form of a stochastic dynamic
programming model in which there is a limited number of decision-making stages available
to select the best population.
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2.2. A dynamic programming approach

The proposed dynamic programming approach to model the decision-making problem of
selecting the best Binomial population is similar to an optimal stopping problem.

Let us assume that to find the best population there is a limited number of stages (s) available.
Then, the general framework of the decision-making process in each stage is proposed as:

1. Take an independent sample of size m from each population.

2. Calculate the posterior beliefs in terms of the prior beliefs using Bayesian approach.

3. Select the two biggest beliefs.

4. Based upon the values of the two biggest beliefs calculate the minimum acceptable belief.

5. If the maximum belief is more than the minimum acceptable belief, then we can conclude
that the corresponding subspace is the optimal one. Otherwise, go to step 1.

In step 3 of the above framework, let populations i and j be the two candidates of being the
best populations (it means that the beliefs of populations i and j are the two biggest beliefs)
and we have s decision-making stages. If the biggest belief is more than a threshold (minimum
acceptable belief)di , j(s),  (0≤di , j(s)≤1), we select the corresponding subspace of that belief as
the solution. Otherwise, the decision-making process continues by taking more observations.
We determine the value of di , j(s) such that the belief of making the correct decision is maxi‐
mized. To do this suppose that for each population a new observation, (α j ,k , β j ,k ), is available
at a given stage k. At this stage, we define V (s, di , j(s)) to be the expected belief of making the
correct decision in s stages when two populations i and j are the candidates for the optimal
population. In other words, if we let CS denote the event of making the correct decision, we
define V i , j(s, di , j(s))= E Bi , j{CS} , where Bi , j{CS } is the belief of making the correct decision.
Furthermore, assume that the maximum of V i , j(s, di , j(s)) occurs at di , j*(s). Then, we will have

( ) ( ){ } { }{ }
,

*
, , , , ,( )

, ( ) , ( )
i j

i j i j i j i j i jd s
V s d s Max V s d s Max E B CSé ù= = ë û (10)

We denote this optimal point by V i , j*(s). In other words, V i , j*(s)=V i , j(s, di , j*(s)). Moreover, let
us define Si and Sj to be the state of selecting population i and j as the candidates for the optimal
population, respectively, and N Si , j as the state of choosing neither of these population. Then,
by conditioning on the above states, we have

( ) { }{ }
{ } { } { } { } { } { }{ }

*
, ,

, , , , , , , ,

i j i j

i j i i j i i j j i j j i j i j i j i j

V s Max E B CS

Max E B CS S B S B CS S B S B CS NS B NS

é ù= =ë û
é ù+ +ë û

(11)

In order to evaluateV i , j*(s), in what follows we will find the belief terms of equation (11).
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a. Bi , j{CS |Si} and Bi , j{CS |Sj}

These are the beliefs of making the correct decision if population i or j is selected as the optimal
population, respectively. To make the evaluation easier, we denote these beliefs by Bi , j(i) and

Bi , j( j). Then, using equation (2) we have

{ } ( )
( ) ( )

, 1 , 1 ,
, ,

, 1 , 1 , , 1 , 1 ,

,
( )   

, ,
i k i k k i

i j i i j
i k i k k i j k j k k j

B p
B CS S B i

B p B p

a b

a b a b
- -

- - - -

= =
+

(12)

Similarly,

{ } ( )
( ) ( )

, 1 , 1 ,
, ,

, 1 , 1 , , 1 , 1 ,

,
( )   

, ,
j k j k k j

i j j i j
j k j k k j i k i k k i

B p
B CS S B j

B p B p

a b

a b a b

- -

- - - -

= =
+

(13)

b. Bi , j{Si} and Bi , j{Sj}

These are the beliefs of selecting population i or j as the optimal population, respectively.
Regarding the decision-making strategy, we have:

( ) ( ) ( )( ) ( ) ( )*
, , , , ,max ,  and i j i j i j i j i jB i B i B j B i d s= ³ (14)

Hence, we define event Si as

( ) ( ) ( ){ } ( ) ( ){ }*
, , , , ,max , ,i i j i j i j i j i jS B i B i B j B i d sº = ³ (15)

Since Bi , j(i) + Bi , j( j)=1 and that the beliefs are not negative we conclude

max{Bi , j(i), Bi , j( j)}≥0.5. Furthermore, since the decision making is performed based upon the

maximum value of the beliefs, without interruption of assumptions, we can change the

variation interval of di , j
* (s) from [0,1] to [0.5,1]. Now by considering di , j

* (s)≥0.5 implicitly, we

have Si ≡ {Bi , j(i)≥di , j
* (s)}. By similar reasoning Sj ≡ {Bi , j( j)≥di , j

* (s)}. Hence

{ } ( ) ( ){ }
( )

( ) ( ) ( ) ( )( ){ } ( )( )

*
, , ,

, 1 , 1 , ,* * *
, , , , ,

,, 1 , 1 , , 1 , 1 ,

Pr

,
Pr Pr Pr

, ,

i j j i j i j

j k j k j k j k
i j j k i j i k i j

i ki k i k i k j k j k j k

B S B j d s

B p p
d s p h d s p h d s

pB p B p

a b

a b a b

- -

- - - -

= ³ =

ì ü ì üï ï ï ï³ = ³ = ³í ý í ý
+ï ï ï ïî þî þ

(16)
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In which, h (di , j
* (s))=

di , j
* (s)B(αi ,k −1, βi ,k −1)

(1 − di , j
* (s))B(α j ,k −1, β j ,k −1)

.

To evaluate Pr{ p j ,k̄
pi ,k̄

≥h (di , j
* (s))} in equation (16), let f 1(p j ,k̄ ) and f 2(pi ,k̄ ) to be the probability

distributions of p j ,k̄  and pi ,k̄ , respectively. Then,

, ,

, ,

0.5 0.5, ,
2 , , ,

, ,

0.5 0.5, ,
1 , , ,

, ,

( 1)
( ) (1 )  

( 0.5) ( 0.5)
( 1)

( ) (1 )
( 0.5) ( 0.5)

i k i k

j k j k

i k i k
i k i k i k

i k i k

j k j k
j k j k j k

j k j k

f p p p

f p p p

a b

a b

a b
a b

a b

a b

- -

- -

G + +
= -
G + G +

G + +
= -
G + G +

(17)

Hence,

( )( ){ } ( ) ( )( )( )

( )( )

*
, ,

, , ,,
*
, ,

1 1*
, , , 1 , 2 , , ,0

0.5 0.51 1 0.50.5
, , , , , ,0

Pr

(1 ) (1 )

i j i k

i k j k j ki k

i j i k

j k i j i k j k i k j k i kh d s p

i i k i k j j k j k j k i kh d s p

p h d s p f p f p dp dp

A p p A p p dp dp
a a bb- - --

³ = =

- -

ò ò

ò ò
(18)

where

, ,, ,

, , , ,

( 1)( 1)
, .

( 0.5) ( 0.5) ( 0.5) ( 0.5)
j k j ki k i k

i j
i k i k j k j k

A A
a ba b

a b a b

G + +G + +
= =
G + G + G + G + (19)

By change of variables technique, we have:

( ) ( ) ( )

( )( ) ( )( )( ) ( )( )( )

, ,, ,,

*
,

,
,

,
1 1 0.50.5
0

, * *
, ,0

,
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1 1

Pr 1 1

i k j ki k j ki k

i j

j k
i k

i k

i j

h d sj k
i j i j

i k

p
U V p

p

f U A A U V V UV dV

p
h d s f U dU F h d s

p

b ba aa - -+-

= =

= - -

ì üï ï³ = - = -í ý
ï ïî þ

ò

ò

(20)

For Bi , j{Si} we have

{ } ( ) ( ){ }
( ){ } ( ){ } ( )( )( )

*
, , ,

* * *
, , , , ,

Pr

Pr 1 ( ) Pr ( ) 1 1

i j i i j i j

i j i j i j i j i j

B S B i d s

B j d s B j d s F h d s

= ³ =

- ³ = £ - = -
(21)

Dynamic Programming and Bayesian Inference, Concepts and Applications132



c. Bi , j{CS | N Si , j}

Bi , j{CS | N Si , j}is the belief of making the correct decision when none of the subspaces i and j
has been chosen as the optimal one. In other words, the maximum beliefs has been less than
di , j

* (s) and the process of decision-making continues to the next stage. In terms of stochastic
dynamic programming approach, the belief of this event is equal to the maximum belief of
making the correct decision in (s-1) stages. Since the value of this belief is discounted in the
current stage, using discount factor α,

{ } *
, , , ( 1)i j i j i jB CS NS V sa= - (22)

Having all the belief terms of equation (11) evaluated in equations (12), (13), (14), (15), and (16),
and knowing that by partitioning the state space we have Bi , j{N Si , j}=1− (Bi , j{Si} + Bi , j{Sj}),
equation (11) can now be evaluated by substituting.

( ) ( ) ( ){ } ( ) ( ) ( ){ }
{ } ( ){ } ( ){ }( )}

( ) ( ) ( ){ }{ ( ) ( ) ( ){ }
( ) ( ) ( ){ } ( )

,

,

*
, , , , , , ,0.5 ( ) 1

, , , , , ,

, , , , , ,0.5 ( ) 1

*
, , , , ,

( ) max { Pr Pr

1 Pr ( ) Pr ( )

max Pr Pr

1 1 Pr Pr

i j

i j

i j i j i j i j i j i j i jd s

i j i j i j i j i j i j

i j i j i j i j i j i jd s

i j i j i j i j i j

V s B i B i d s B j B j d s

B NS CS B i d s B j d s

B i B i d s B j B j d s

V s B i d s B j da

£ £

£ £

= ³ + ³

+ - ³ - ³

= ³ + ³ +

- - ³ - ³ ( ){ }( )}s

(23)

2.2.1. Making the decision

Assuming that for the two biggest beliefs we have Bi , j(i)≥Bi , j( j), equation (23) can be written
as

( ) ( )( ) ( ) ( ){ }
( ) ( )( ) ( ) ( ){ } ( )

* * *
, , , , ,

* * *
, , , , ,

( ) 1 Pr

1 Pr 1

i j i j i j i j i j

i j i j i j i j i j

V s B i V s B i d s

B j V s B j d s V s

a

a a

= - - ³ +

- - ³ + -
(24)

For the decision-making problem at hand, three cases may happen

1. Bi , j(i)<αV i , j
* (s −1) :

In this case, both (Bi , j(i)−αV i , j
* (s −1)) and (Bi , j( j)−αV i , j

* (s −1)) are negative. Since we are
maximizing V i , j(s, di , j(s)), then the two probability terms in equation (24) must be minimized.

This only happens when we let di , j
* (s)=1, making the probability terms equal to zero. Now

since Bi , j(i)<di , j
* (s)=1, we continue to the next stage.
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2. Bi , j( j)>αV i , j
* (s −1) :

In this case, (Bi , j(i)−αV i , j
* (s −1)) and (Bi , j( j)−αV i , j

* (s −1)) are both positive and to maximize
V i , j(s, di , j(s)) we need the two probability terms in equation (24) to be maximized. This only

happens when we let di , j
* (s)=0.5. Since Bi , j(i)>di , j

* (s)=0.5, we select population i as the optimal
subspace.

3. Bi , j( j)≤αV i , j
* (s −1)≤Bi , j(i) :

In this case, one of the probability terms in equation (24) has positive coefficient and the other
has negative coefficient. In this case, in order to maximize V i , j(s, di , j(s)) we take the derivative
as follows.

Substituting equations (20) and (21) in equation (24) we have

( )( ) ( ) ( )( ) ( )( )( ){ }
( ) ( )( ) ( )( )( ){ } ( )

*
, , , , ,

* *
, , , ,

, 1 1

1 1 1

i j i j i j i j i j

i j i j i j i j
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B j V s F h d s V s

a

a a

= - - - +

- - - + -
(25)

Thus following is obtained,

( ) ( )( ) ( )( )

( ) ( )( ) ( )( ) ( )

,* * *
, , , ,

,

,* * *
, , , ,

,

( ) 1 Pr 1

1 Pr 1

j k
i j i j i j i j

i k

j k
i j i j i j i j

i k

p
V s B i V s h d s

p

p
B j V s h d s V s

p

a

a a

ì üï ï= - - £ - +í ý
ï ïî þ

ì üï ï- - ³ + -í ý
ï ïî þ

(26)

For determining Pr{ p j ,k̄
pi ,k̄

≤h (1−di , j
* (s))}, first using an approximation, we assume that pi ,k̄  is a

constant number equal to its mean, then we have:
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Also Pr{ p j ,k̄
pi ,k̄

≥h (di , j
* (s))} is obtained as follows,
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Now following can be resulted,

( )( )
( )

( ) ( )( ) ( )
( )( ) ( )

( )( )( )

( ) ( )( ) ( )
( )( ) ( )

( )( )( )

( ) ( )( )
( ) ( )( )

( )

, ,

,

, 1 , 1* *
, , 1 , ,2*

, , 1 , 1 1

, 1 , 1* *
, , 1 , ,2*

, , 1 , 1

* *
, , ,

*
,, ,

,
0

,
1 1  =

1 ,

,
1

,

1 1

1

i j i j

i j

i k i k
i j i j i k i j

i j j k j k

i k i k
i j i j i k i j

i j j k j k

i j i j i j

i ji j i j

V s d s

d s

B
B i V s f p h d s

d s B

B
B j V s f p h d s

d s B

B i V s d s

dB j V s

a b
a

a b

a b
a

a b

a

a

- -

- -

- -

- -

¶
= Þ

¶

- - -
-

- - - Þ

- - -
=

- - - ( )

( )

( )
( ) ( )( )
( ) ( )( )

( )

, 1 , 1

, 1 , 1

2

*

1
, 1

* 2
, ,

*
, ,

1

1
1

1

i k i k

i k i k

i j

i j i j

i j i j

s

d s

B i V s

B j V s

a b

a ba

a

- -

- -

+

+

æ ö
ç ÷ Þ
ç ÷
è ø

=

æ ö- -ç ÷ +ç ÷ç ÷- - -
è ø

(29)

Now the approximate value of di , j(s) say d 1
i , j

(s) is determined.

Second using another approximation, we assume that p j ,k̄  is a constant number equal to its

mean thus with similar reasoning, following is obtained:
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Therefore the approximate optimal value of di , j
* (s) can be determined from following equation,

( ) ( ) ( ){ }* 1 2
, , ,,i j i j i jd s Max d s d s= (31)

3. An application for fault detection and diagnosis in multivariate
statistical quality control environments

3.1. Introduction

In this section, a heuristic threshold policy is applied in phase II of a control charting procedure
to not only detect the states of a multivariate quality control system, but also to diagnose the
quality characteristic(s) responsible for an out-of-control signal. It is assumed that the in-
control mean vector and in-control covariance matrix of the process have been obtained in
phase I.

3.2. Background

In a multivariate quality control environment, suppose there are m correlated quality charac‐
teristics whose means are being monitored simultaneously. Further, assume there is only one
observation on the quality characteristics at each iteration of the data gathering process, where
the goal is to detect the variable with the maximum mean shift. Let xki be the observation of
the ith quality characteristic, i =1, 2, ..., m, at iteration k , k =1, 2, ..., and define the observation
vector xk = xk 1, xk 2...., xkm

T  and observation matrix Ok =(x1, x2, ..., xk ). After taking a new
observation, xk , define Bi(xk , Ok -1), the probability of variable i to be in an out-of-control state,
as

( , ) Pr{ , },i iB OOC=k k-1 k k-1x O x O (32)

where OOC  stands for out-of-control. This probability has been called the belief of variable i
to be in out-of-control condition given the observation matrix up to iteration k −1 and the
observation vector obtained at iteration k .

Assuming the observations are taken independently at each iteration, to improve the belief of
the process being in an out-of-control state at the kth iteration, based on the observation matrix
Ok -1 and the new observation vector xk , we have

Pr{ , } Pr{ }i iOOC OOC=k k-1 kx O x (33)
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Then, using the Bayesian rule the posterior belief is:

1 1
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(34)

Since the goal is to detect the variable with the maximum mean shift, only one quality
characteristic can be considered out-of-control at each iteration. In this way, there are m−1
remaining candidates for which m−1 quality characteristics are in-control. Hence, one can say
that the candidates are mutually exclusive and collectively exhaustive. Therefore, using the
Bayes' theorem, one can write equation (34) as

1 1

Pr{ }Pr{ } ( , )Pr{ }
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O x x O x
x O

O x x O x (35)

When the system is in-control, we assume the m characteristics follow a multinormal distri‐
bution with mean vector μ = μ1, μ2, ..., μm

T  and covariance matrix

2
1 12 1

2
21 2 2

2
1 2

.

.
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.

m

m

m m m

s s s

s s s

s s s

é ù
ê ú
ê ú

= ê ú
ê ú
ê ú
ë û

Σ (36)

In out-of-control situations, only the mean vector changes and the probability distribution
along with the covariance matrix remain unchanged. In latter case, equation (35) is used to
calculate the probability of shifts in the process mean μ at different iterations. Moreover, in
order to update the beliefs at iteration k  one needs to evaluate Pr{xk |OOCi}.

The term Pr{xk |OOCi} is the probability of observing xk  if only the ith quality characteristic is
out-of-control. The exact value of this probability can be determined using the multivariate

normal density, A exp(− 1
2(xk −μ1i)TΣ -1(xk −μ1i)), where μ1i denotes the mean vector in which

only the ith characteristic has shifted to an out-of-control condition and A  is a known constant.
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Since the exact value of the out-of-control mean vector μ1i is not known a priori, two approx‐
imations are used in this research to determine Pr{xk |OOCi}. Note that we do not want to
determine the exact probability. Instead, the aim is to have an approximate probability (a belief)
on each characteristic being out-of-control. In the first approximation method, define I Ci to be
the event that all characteristics are in-control, and let Pr{xk | I Ci} be the conditional probability
of observing xk  given all characteristics are in-control. Further, let

xk
' = μ01, ..., xki, μ0i+1, ..., μ0m

T  in the aforementioned multivariate normal density, so that
Pr{xk | I Ci} can be approximately evaluated using Pr{xk | I Ci}=Pr{x'k | I Ci}, where

Pr{x'k | I Ci}= A exp(−1
2(xk' −μ0)TΣ -1(xk' −μ0)). Note that this evaluation is proportional to

exp(− 1
2
( xki −μ0i

σi
)2), and since it is assumed that characteristic i is under control, no matter the

condition of the other characteristics, this approximation is justifiable.

In the second approximation method, we assume Pr{xk |OOCi}∝ 1
Pr{xk | I Ci} . Although it is

obvious that Pr{xk |OOCi} is not equal to 1
Pr{xk | I Ci} , since we only need a belief function to

evaluate Pr{xk |OOCi} and also we do not know the exact value of out-of-control mean vector,
this approximation is just used to determinePr{xk |OOCi}. Moreover, it can be easily seen that
the closer the value of the ith characteristic is to its in-control mean the smaller is Pr{xk |OOCi}
as expected. We thus let

2
01 1Pr{ } exp ; 1,2,..., ,2Pr{ }

ki i
i

ii

x
OOC R i m

IC
m

s

æ öæ ö-ç ÷µ = =ç ÷ç ÷ç ÷è øè ø
k

k
x

x (37)

where R is a sufficiently big constant number to ensure the above definition is less than one.

The approximation to Pr{xk |OOCi} in equation (37) has the following two properties:

• It does not require the value of out-of-control means to be known.

• The determination of a threshold for the decision-making process (derived later) will be
easier.

Niaki and Fallahnezhad [8] defined another equation for the above conditional probability and
showed that if a shift occurs in the mean of variable i, thenLim

k→∞
Bi(xk , Ok−1)= Bi =1. They

proposed a novel method of detection and classification and used simulation to compare its
performances with that of existing methods in terms of the average run length for different
mean shifts. The results of the simulation study were in favor of their proposed method in
almost all shift scenarios. Besides using a different equation, the main difference between the
current research and Niaki and Fallahnezhad [8] is that the current work develops a novel
heuristic threshold policy, in which to save sampling cost and time or when these factors are
constrained, the number of the data gathering stages is limited.

Dynamic Programming and Bayesian Inference, Concepts and Applications138



3.3. The proposed procedure

Assuming a limited number of the data gathering stages, N , to detect and diagnose charac‐
teristic(s), a heuristic threshold policy-based model is developed in this Section. The frame‐
work of the proposed decision-making process follows.

Step I

Define i =1, 2, ..., m as the set of indices for the characteristics, all of which having the potential
of being out-of-control.

Step II

Using the maximum entropy principle, initialize Bi(O0)=1 / m as the prior belief of the ith

variable to be out-of-control. In other words, at the start of the decision-making process all
variables have an equal chance of being out-of-control. Set the discount rateα, the maximum
probability of correct selection when N  decision making stages remainsV (N ), and the
maximum number of decision making stagesN .

Step III

Set k =0

Step IV

Obtain an observation of the process.

Step V

Estimate the posterior beliefs, Bi(Ok ) (fori =1, 2, ..., m), using equation (35).

Step VI

Obtain the order statistics on the posterior beliefs Bi(Ok ) such that

B(1)(Ok )< B(2)(Ok )< ... < B(m)(Ok ).

Furthermore, let Bgr(Ok )= B(m)(Ok ) and Bsm(Ok )= B(m−1)(Ok ).

Step VII

Assume the variables with the indices i = gr  and j = sm are the candidates of being out-of-
control, where N  decision-making steps are available. Define V (N , di , j(k )) the probability of
correct choice between the variables i and j, where di , j(k ) is the acceptable belief. Also, define
CS  the event of correct selection and event Ei , j the existence of two out-of-control candidate
variables i and j. Then, we have:

( ), , ,, ( ) Pr{ } Pr { }i j i j i jV N d k CS E CS= @ (38)

where " ≜  " means "defined as."
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Assuming di , j
* (k ) the maximum point of V (N , di , j(k )), called the minimum acceptable belief,

we have

( ) ( ){ } { }{ }
,

* *
, , , ,( )

, ( ) ( ) , ( ) Pr
i j

i j i j i j i jd k
V N d k V N Max V N d k Max CS=@ @ (39)

Let Si and Sj be the event of selecting i and j as the out-of-control variables, respectively, and

N Si , j be the event of not selecting any. Then, by conditioning on the probability, we have:

( ) { }{ }
{ } { } { } { } { } { }{ }
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x Pr

Pr Pr Pr Pr Pr Pr

i j i j
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+ +
(40)

At the kth iteration, the conditional bi-variate distribution of the sample means for variables gr
and sm, i.e, X k , j=gr ,sm | X k , j≠gr ,sm, is determined using the conditional property of multivariate

normal distribution given in appendix 1. Moreover, knowing E (xk , j)=μj and evaluating the

conditional mean and standard deviation (see appendix 1) results in
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E X X X
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m r m
s
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Based on the decomposition method of Mason et al. [9], define statistics Tk , j and Tk ,i| j as
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Thus, when the process is in-control, the statistics Tk , j and Tk ,i| j follow a standard normal

distribution [9].
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Now, let Bi , j(i; xk , Ok−1) denote the probability of correct selection conditioned on selecting i
as the out-of-control variable. Hence,
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(45)

Then, the probability measure Pri , j{CS |Si} is calculated using the following equation,

, , 1Pr { } ( ; , )i j i i j k kCS S B i x O -= (46)

The probability measure Pri , j{Si} is defined as the probability of selecting variable i to be out-
of-control. Regarding to the explained strategy, we have:
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(47)

Since Bi , j(i; xk , Ok−1) + Bi , j( j; xk , Ok−1)=1 and the value of beliefs are not negative, we conclude

( ) ( ){ }, 1 , 1max ; , , ; , 0.5i j k k i j k kB i x O B j x O- - ³ (48)

Without interruption of assumptions, we can change the variation interval of di , j(k ) from [0,1]
to [0.5,1]. Hence,

( ){ }, 1 ,; , ( )i i j k k i jS B i x O d k-º ³ (49)

By similar reasoning, we have:

( ){ }, 1 ,; , ( )j i j k k i jS B j x O d k-º ³ (50)

The term Pri , j{CS | N Si , j} denotes the probability of correct selection conditioned on excluding
the candidates i and j as the solution. In other words, the maximum belief has been less than
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the threshold (minimum acceptable belief) di , j
* (k ) and the decision making process continues

to the next stage. In terms of stochastic dynamic programming approach, the probability of
this event is equal to the maximum probability of correct selection when there are N −1 stages
remaining. The discounted value of this probability in the current stage using the discount
factor α equals to α V i , j(N −1). Further, since we partitioned the decision space into events
{N Si , j;Si;Sj}, we have:

{ } { } { }( ), , , ,Pr 1 Pr Pri j i j i j i i j jNS S S= - + (51)

Now we evaluate V i , j
* (N ) as follows,
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(52)

In other words,
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(53)

The method of evaluating the minimum acceptable belief dgr ,sm
* (k ) is given in Appendix 2.
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Step VIII: The Decision Step

If the belief Bgr ,sm(gr ; xk , Ok−1) in the candidate set (sm, gr) is equal to or greater than dgr ,sm
* (k )

then choose the variable with index gr  to be out-of-control. In this case, the decision-making
process ends. Otherwise, without having any selection at this stage, obtain another observa‐
tion, lower the number of remaining decision-stages to N −1, set k =k + 1, and return to step V
above. The process will continue until either the stopping condition is reached or the number
of stages is finished. The optimal strategy with N  decision-making stages that maximizes the
probability of correct selection would be resulted from this process.

In what follows, the procedure to evaluate V i , j
* (N ) of equation (53) is given in detail.

3.4. Method of evaluating V i , j
* (N )

Using di , j
* (k ) as the minimum acceptable belief, from equation (53) we have

( )( ) ( ) ( ){ }
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V N B i O V N B i O d k

B j O V N B j O d k V N

a

a a

= - - ³ +

- - ³ + -
(54)

Then, for the decision-making problem at hand, three cases may occur

1. Bi , j(i;Ok )<αV i , j
* (N −1)

In this case, both (Bi , j(i;Ok )−αV i , j
* (N −1)) and (Bi , j(i;Ok )−αV i , j

* (N −1)) are negative. Since we
are maximizing V i , j(N , di , j(k )), the two probability terms in equation (54) must be minimized.

This only happens when di , j
* (k )=1, making the probability terms equal to zero. In other words,

since Bi , j(i;Ok )<di , j
* (k )=1, we continue to the next stage.

2. Bi , j( j;Ok )>αV i , j
* (s −1)

In this case, (Bi , j(i;Ok )−αV i , j
* (N −1)) and (Bi , j(i;Ok )−αV i , j

* (N −1)) are both positive and to
maximize V i , j(N , di , j(k )) we need the two probability terms in equation (54) to be maximized.

This only happens when di , j
* (k )=0.5. In other words, since Bi , j(i;Ok )>di , j

* (k )=0.5, the variable
with the index i is selected.

3. Bi , j( j;Ok )<αV i , j
* (N −1)< Bi , j(i;Ok )

In this case, one of the probability terms in equation (54) has a positive and the other a negative
coefficient. Then, in order to maximize V i , j(N , di , j(k )), the first derivative on di , j(k ) must be
equated to zero. To do this, define h (dgr ,sm(k )) and r(dgr ,sm(k)) as follows:
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We first present the method of evaluating Pr{Bgr ,sm(sm;Ok )≥dgr ,sm(k)} as follows.
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Then, the method of evaluating probability terms in equation (57) is given in appendix 2.

With similar reasoning, we have,

( ){ } ( )( )
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(58)

The method of determining the minimum acceptable belief is given in appendix 2.

4. An application for fault detection in uni-variate statistical quality control
environments

In a uni-variate quality control environment, if we limit ourselves to apply a control charting
method, most of the information obtained from data behavior will be ignored. The main aim
of a control charting method is to detect quickly undesired faults in the process. However, we
may calculate the belief for the process being out-of-control applying Bayesian rule at any
iteration in which some observations on the quality characteristic are gathered. Regarding
these beliefs and a stopping rule, we may find and specify a control threshold for these beliefs
and when the updated belief in any iteration is more than this threshold, an out-of-control
signal is observed.

In Decision on Beliefs, first, all probable solution spaces will be divided into several candidates
(the solution is one of the candidates), then a belief will be assigned to each candidate consid‐
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ering our experiences and finally, the beliefs are updated and the optimal decision is selected
based on the current situation. In a SPC problem, a similar decision-making process exits. First,
the decision space can be divided into two candidates; an in-control or out-of-control produc‐
tion process. Second, the problem solution is one of the candidates (in-control or out-of-control
process). Finally, a belief is assigned to each candidate so that the belief shows the probability
of being a fault in the process. Based upon the updated belief, we may decide about states of
the process (in-control or out-of-control process).

4.1. Learning — The beliefs and approach for its improvement

For simplicity, individual observation on the quality characteristic of interest in any iteration
of data gathering process was gathered. At iteration k of data gathering process,
Ok =(x1, x2, ......, xk )was defined as the observation vector where resemble observations for
previous iterations 1, 2, …, k. After taking a new observation, Ok-1 the belief of being in an out-
of-control state is defined as B(xk , Ok−1)=Pr{Out −of −control | xk , Ok−1}. At this iteration, we
want to update the belief of being in out-of-control state based on observation vector Ok−1 and
new observation xk . If we define B(Ok−1)= B(xk−1, Ok−2) as the prior belief of an out-of-control
state, in order to update the posterior belief B(xk , Ok−1), since we may assume that the
observations are taken independently in any iteration, then we will have

{ } { }1Pr , Prk k kx Out of control O x Out of control-- - = - - (59)

With this feature, the updated belief is obtained using Bayesian rule:
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(60)

Since in-control or out-of-control state partition the decision space, we can write equation
(60) as
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(61)

Assuming the quality characteristic of interest follows a normal distribution with mean μ and
variance σ2, we use equation (61) to calculate both beliefs for occurring positive or negative
shifts in the process mean μ.
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• Positive shifts in the process mean

The values of B +(Ok ), showing the probability of occurring a positive shift in the process mean,
will be calculated applying equation (61) recursively. Pr{xk | In −control} is defined by the
following equation,

{ }Pr 0.5kx In control- = (62)

For positive shift, the probability of being a positive shift in the process at iteration k,
Pr{xk |Out −of −control}, is calculated using equation (63).

( )Pr{ }k kx Out of control xj- - = (63)

where φ(xk ) is the cumulative probability distribution function for the normal distribution
with mean μ and variance σ2. Above probabilities are not exact probabilities and they are a
kind of belief function to ascertain good properties for B +(Ok )

Therefore B +(Ok ) is determined by the following equation,
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(64)

• Negative shifts in the process mean

The values of B −(Ok ) denotes the probability of being a negative shift in the process mean that
is calculated using equation (61) recursively. In this case, Pr{xk | In −control} is defined by the
following equation,

{ }Pr 0.5kx In control- = (65)

Also is Pr{xk |Out −of −control} calculated using equation (66).

( )Pr{ } 1k kx Out of control xj- - = - (66)

Thus B −(Ok ) is determined by the following equation,
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(67)
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4.2. A decision on beliefs approach

We present a decision making approach in terms of Stochastic Dynamic Programming
approach. Presented approach is like an optimal stopping problem.

Suppose n stages for decision making is remained and two decisions are available.

• A positive shift is occurred in the process mean

• No positive shift is occurred in the process mean

Decision making framework is as follows:

• Gather a new observation.

• Calculate the posterior Beliefs in terms of prior Beliefs.

• Order the current Beliefs as an ascending form and choose the maximum.

• Determine the value of the minimum acceptable belief (d +(n) is the minimum acceptable
belief for detecting the positive shift and d −(n) is the least acceptable belief for detecting the
negative shift)

• If the maximum Belief was more than the minimum acceptable belief, d +(n), select the belief
candidate with maximum value as a solution else go to step 1.

• In terms of above algorithm, the belief with maximum value is chosen and if this belief was
more than a control threshold like d +(n), the candidate of that Belief will be selected as
optimal candidate else the sampling process is continued. The objective of this model is to
determine the optimal values of d +(n). The result of this process is the optimal strategy with
n decision making stages that maximize the probability of correct selection.

Suppose new observation xk  is gathered. (k is the number of gathered observations so far).

V (n, d +(n)) is defined as the probability of correct selection when n decision making stages
are remained and we follow d +(n) strategy explained above also V (n) denotes the maximum
value of V (n, d +(n)) thus,

( )
( )

( )( ){ },
d n

V n Max V n d n
+

+= (68)

CS is defined as the event of correct selection. S1 is defined as selecting the out-of-control
condition (positive shift) as an optimal solution and S2 is defined as selecting the in-control
condition as an optimal decision and NS is defined as not selecting any candidate in this stage.

Hence, using the total probability law, it is concluded that:

( )( ) 1 1 2 2, x{Pr{ }} Pr{ }Pr{ } Pr{ }Pr{ }

Pr{ }Pr{ }

V n d n Ma CS CS S S CS S S

CS NS NS

+ = = + +
(69)
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Pr{CS |S1} denotes the probability of correct selection when candidate S1 is selected as the

optimal candidate and this probability equals to its belief, B +(Ok ), and with the same discus‐

sion, it is concluded that Pr{CS |S2}=1−B +(Ok )

Pr{S1} is the probability of selecting out of control candidate (positive shift) as the solution thus

following the decision making strategy, we should have B +(Ok )=max(B +(Ok ), 1−B +(Ok )) and

B +(Ok )>d +(n) that is equivalent to following,

{ } ( ) ( ){ } ( )1Pr Pr , 0.5,1kS B O d n d n+ + + é ù= > Î ë û (70)

With the same reasoning, it is concluded that,

{ } ( ) ( ){ } ( )2Pr Pr 1 , 0.5,1kS B O d n d n+ + + é ù= - > Î ë û (71)

1. Pr{CS | NS } denotes the probability of correct selection when none of candidates has been
selected and it means that the maximum value of the beliefs is less than d +(n) and the
process of decision making continues to latter stage. As a result, in terms of Dynamic
Programming Approach, the probability of this event equals to maximum of probability
of correct selection in latter stage (n-1), V (n −1), but since taking observations has cost,
then the value of this probability in current time is less than its actual value and by using
the discounting factor α, it equals αV (n −1)

2. Since the entire solution space is partitioned, it is concluded that
Pr{CS | NS }=1− (Pr{S1} + Pr{S2})

By the above preliminaries, the function V (n) is determined as follows:
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(72)

In terms of above equation, V (n, d +(n)) is obtained as follows:
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(73)
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Calculation method for V (n, d +(n)) :

B +(gr , Ok ) and B +(sm, Ok ) are defined as follows:

( ) ( ) ( ){ }
( ) ( ) ( ){ }

, max ,1

, min ,1

k k k

k k k

B gr O B O B O

B gr O B O B O

+ + +

- + +

= -
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(74)

Now equation (73) is rewritten as follows:
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There are three conditions:

1. B +(gr , Ok )<αV (n −1)

In this condition, both B +(gr , Ok )−αV (n −1) and B +(sm, Ok )−αV (n −1) are negative, thus we

should have d +(n)=1 in order to maximize V (n, d +(n)). Since B +(gr , Ok )<d +(n)=1, we don’t

select any candidate in this condition and sampling process continues.

2. B +(sm, Ok )>αV (n −1)

In this condition, both B +(gr , Ok )−αV (n −1) and B +(sm, Ok )−αV (n −1) are positive, thus we

should have d +(n)=0.5 in order to maximize V (n, d +(n)). since B +(gr , Ok )>d +(n)=0.5, we

select the candidate of belief B +(gr , Ok ) as the solution.

3. B +(sm, Ok )<αV (n −1)< B +(gr , Ok )

In this condition, one of the probabilities in equation (10) has positive coefficient and one has

negative coefficient, to maximize V (n, d +(n)), optimality methods should be applied.

• Definition:h (d +(n)) is defined as follows:
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First the value of Pr{B +(Ok )>d +(n)} is determined as follows:
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Since φ(xk ) is a cumulative distribution function thus it follows a uniform distribution function

in interval [0, 1], thus the above equality is concluded.

With the same reasoning, it is concluded that:

( ){ } ( ){ } ( )( )Pr 1 ( ) Pr 1 ( ) 0.5 1k kB O d n d n B O h d n+ + + + +- ³ = - ³ = - (78)

Now equation (73) can be written as follows:
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And equation (79) can be written as follows:
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Since V *(n)= Max
0.5<d +(n)<1

V (n, d +(n))  thus it is sufficient to maximize the real value function

V (n, d +(n)), therefore; we should find the function value in points where first derivative is

equated to zero as follows,
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The optimal threshold d +(n) is determined by the above equation. Since the optimal value of
d +(n) should be in the interval [0.5, 1] thus it is concluded that the optimal value of d +(n) will
be determined as follows:
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(82)

The above method is presented for detecting the positive shifts in the process mean and can
be adapted for detecting the negative shifts with the same reasoning.

The general decision making algorithm is summarized as follows:

1. Set k=0 and the initial beliefs B +(O0)=0.5, B −(O0)=0.5.

2. Gather an observation and set k =k + 1, n =n −1.

3. If n <0, then no shift is occurred in the process mean and decision making stops.

4. Update the values for the beliefs B −(Ok ), B +(Ok ) by equation (61).

5. If Min(B +(Ok ), 1−B +(Ok ))>αV (n −1), then if Max(B +(Ok ), 1−B +(Ok ))= B +(Ok ), it is
concluded that a positive shift is occurred in the process mean and decision making stops,
also if Max(B +(Ok ), 1−B +(Ok ))=1−B +(Ok ), then no positive shift is occurred in the process
mean and decision making stops.

6. If Max(B +(Ok ), 1−B +(Ok ))<αV (n −1), then data is not sufficient for detecting the positive
shift and go to stage 2 after checking the occurrence of negative shift in the rest of the
algorithm.

7. If Min(B −(Ok ), 1−B −(Ok ))>αV (n −1) then if Max(B −(Ok ), 1−B −(Ok ))= B −(Ok ) it is con‐
cluded that a negative shift is occurred the process mean and decision making stops and
if Max(B −(Ok ), 1−B −(Ok ))=1−B −(Ok ), then no negative shift is occurred in the process
mean and decision making stops.

8. If Max(B −(Ok ), 1−B −(Ok ))<αV (n −1), then data is not sufficient for detecting the negative
shift and go to stage 2.

9. If Max(B +(Ok ), 1−B +(Ok ))>αV (n −1)>Min(B +(Ok ), 1−B +(Ok )), then determine the value

of d +(n) (minimum acceptable belief for detecting the positive shift) by the following
equation:
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10. If Max(B −(Ok ), 1−B −(Ok ))>αV (n −1)>Min(B −(Ok ), 1−B −(Ok )), then determine the value

of d −(n) (minimum acceptable belief for detecting the negative shift) by the following
equation:
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1. If B +(Ok )>d +(n), then a positive shift is occurred and decision making stops, and if
(1−B +(Ok ))>d +(n), then no positive shift is occurred and decision making stops, else go
to stage 2 after checking the occurrence of negative shift in rest of the algorithm.

2. If B −(Ok )>d −(n), then a negative shift is occurred and decision making stops, and If
(1−B −(Ok ))>d −(n), then no negative shift is occurred and decision making stops, else go
to stage 2.

3. The approximate value of αV (n −1) based on the discount factor α in the stochastic
dynamic programming approach is α nV (0).

5. Conclusion

In this chapter, we introduced a new approach to determine the best solution out of m
candidates. To do this, first, we defined the belief of selecting the best solution and explained
how to model the problem by the Bayesian analysis approach. Second, we clarified the
approach by which we improved the beliefs, and proved that it converges to detect the best
solution. Next, we proposed a decision-making strategy using dynamic programming
approach in which there were a limited number of decision-making stages.
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Appendix 1

Conditional Mean and Variance of the Variables

Conditional mean of variables gr  and sm can be evaluated using the following equation.

(μsm, μgr | (μj) j≠gr ,sm)= (μsm, μgr) + b2
'((Xkj) j≠gr ,sm− (μ j) j≠gr ,sm) (85)

where, b2
' =ΣxXΣXX

-1

and

é ù
ê ú
ë û

XX xX

xX xx

Σ Σ
Σ =

Σ Σ (86)

Σ: The covariance matrix of the process

Σxx: Submatrix of the covariance matrix Σ for variables j = gr , sm

ΣxX : Submatrix of the covariance matrix Σ between variables j = gr , sm and j ≠ gr , sm

ΣXX : Submatrix of the covariance matrix Σ for variables j ≠ gr , sm

Further, the conditional covariance matrix of variables j = gr , sm on variables j ≠ gr , sm, is
obtained as Σxx-ΣxX

T ΣXX
-1 ΣxX .

Appendix 2

Evaluating the Optimal Value of dgr ,sm(k )

Assume (μj) j∈{1,2,...,m} =0 and (σj) j∈{1,2,...,m} =1. Then,
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Now since (Tk ,sm, Tk ,gr|sm) follow a standard normal distribution

(μj) j∈{gr ,sm} =0 and (σj) j∈{gr ,sm} =1, hence (Tk ,gr|sm)2 and (T k ,sm)2 follow a χ 2 distribution with one

degree of freedom. Then using an approximation, if we assume that (T k ,sm)2 is approximately
equal to its mean, we have
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Thus,
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Now, since (Tk ,gr|sm)2∝χ 2(1), we have
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Hence,
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Similarly
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Replacing the above equations in equation (53) results in
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Now by solving the equation 
δV i , j(N )
δdgr ,sm(k ) =0, the following equation is obtained.
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gr sm k gr sm

gr sm

B gr O V N
r d k

B sm O V N
h d k

a

a

- - =
+

- - -
+

(94)

Finally, the approximate value of dgr ,sm(k ) say d 1
gr ,sm

(k ) is determined by solving this equation

numerically or by a search algorithm.

Now using another approximation, if we assume that (T k ,gr)2 is approximately equal to its
mean, the approximate value of dgr ,sm(k ) say d 2

gr ,sm
(k ) is determined by solving following

equation,

( ) ( )( )
( )( )( )

( ) ( )( )
( )( )( )

*
, ,

,

*
, ,

,

1; 1
ln ( ) 1

1; 1
ln ( ) 1

gr sm k gr sm

gr sm

gr sm k gr sm

gr sm

B sm O V N
r d k

B gr O V N
h d k

a

a

- - =
+

- - -
+

(95)

The approximate optimal value of dgr ,sm(k ) is obtained as follows,

{ }1 2
, , ,( ) max ( ), ( )gr sm gr sm gr smd k d k d k= (96)
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