
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

10

Application of Recurrent Neural Networks
to Rainfall-runoff Processes

Tsung-yi Pan, Ru-yih Wang, Jihn-sung Lai and Hwa-lung Yu
National Taiwan University

Taiwan

1. Introduction

Knowledge of the hydrological process is essential to the watershed and flood management.

Due to the complexity of the interactions among the hydrological process,

hydormeterological and geomorphological processes, a rigorous dynamic system model is

required for the modelling purpose. Among them, the rainfall-runoff modelling is always

considered as one of the most challenging part of hydrological process modelling. It has

been shown in a variety of research fields that the application of recurrent neural network

(RNN) can perform superior in dynamic system modelling (Pan and Wang, 2005). However,

Maier and Dandy (2000) reviewed 43 hydrology journal articles with modelling of artificial

neural networks (ANNs) published before 1998, where only Chow and Cho (1997) applied

RNNs to forecast rainfall.

The application of RNNs to hydrological modelling is rapidly growing these years.
Published between 2000 and 2008 spring, 14 papers in which RNNs have been used for
simulation or forecasting of water resources variables are reviewed in terms of the
modelling process. Due to the rapid increase in journals, it is unlikely that complete
coverage has been achieved. Following the form of Maier and Dandy (2000), the major
features of the models investigated are summarised in Tables 1 and 2, including background
information (variable modelled, location of application, model time step, and forecast
length), information about the data used (data type, normalization range, number of
training samples, and number of testing samples), information about network architecture
(connection type, method used to obtain optimal network geometry, and number of nodes
per layer), information about the optimization algorithm used (optimization method,
internal network parameters (hidden layer transfer function, learning rate, momentum
value, epoch size, and initial weight distribution range)) and the stopping criterion adopted.
While hydrologists have not made an effort to construe the knowledge embedded in the

trained RNN models, the recent studies strive to interpret physical significance from the

internal architecture of RNN hydrological models, like Pan et al. (2004, 2005, and 2007).

Therefore, this chapter will introduce the deterministic linearized recurrent neural network

(denoted as DLRNN) and its application to rainfall-runoff processes.

O
pe

n
A

cc
es

s
D

at
ab

as
e

w
w

w
.i-

te
ch

on
lin

e.
co

m

Source: Recurrent Neural Networks, Book edited by: Xiaolin Hu and P. Balasubramaniam, ISBN 978-953-7619-08-4, pp. 400, September
2008, I-Tech, Vienna, Austria

www.intechopen.com

Table 1. Details of papers reviewed (background information and data).

w
w

w
.intechopen.com

Application of Recurrent Neural Networks to Rainfall-runoff Processes

205

Table 2. Details of papers reviewed (RNN architecture and optimization).

2. Deterministic linearized recurrent neural network

The RNN introduced in this chapter is to integrate a state space form into the neural
network framework. The integration can provide not only the flexibility to represent any
nonlinear functions but also the parallel inputs/outputs (causes/effects) relationships
established between the neural model and the physical system (Pan & Wang, 2004). The
presented RNN has five layers: input layer, hidden layer S, state layer, hidden layer O, and
output layer. The input layer takes the input signals and delivers these inputs to every
neuron in the next layer, hidden layer S, which represents any function that specifies the
behaviour of states. State layer receives the signals from hidden layer S, and each neuron in
this layer represents one state whose output value is the value of the state. After hidden
layer O, which represents the features that relates the outputs of the neural network to the
states, gets the signals from state layer, output layer takes the hidden layer O signals adds
them to each output neuron. These outputs are, finally, the outputs of the RNN embedded
in a state space form as Fig. 1.
The mathematical representation of a deterministic non-linear system in state space form is:

 ()
kkk

uxFx ,
1
=+ (1)

www.intechopen.com

 Recurrent Neural Networks

206

 ()
kk

xGy = (2)

where k
u , k

y , and k
x with m , l , and n ranks denote, respectively, the input, output, and

state vectors at time k . nmnF →×: and lnG →: are two static linear/nonlinear

mappings.

Fig. 1. The RNN embedded in a state space form.

A neural network containing a single hidden layer with bounded transfer functions in its
neurons can be used for the representation of a variety of linear/nonlinear functions
(Zarmarreño et al., 2000). Therefore, to apply the neural network for the linear/nonlinear
mappings in Eqs. (1) and (2), the mathematical form of this special RNN can be written as:

 ()h

k

i

k

rh

k
BuWxWfWx +⋅+⋅⋅=+ 11

ˆ (3)

 ()22

2
ˆ h

k

ho

k
BxWfWy +⋅⋅= (4)

where hW , rW , iW , oW , and 2hW are matrices with dimensions hn× , nh× , mh × ,

2hm× , and nh ×2 as the weights of the RNN, respectively. hB and 2hB are two vectors

with h and 2h elements as biases. 1
f and 2

f are linear/nonlinear functions depending on

the behaviour of the system.
Previous works have established that linearized neural networks suffice to capture
nonlinear systems. Botto and Costa (1998) designed a linear predictive control using a
linearized neural network model. Henriques and Kuanyi (1998) stated that control design
for linear systems has been well developed, and it is natural to make use of it in nonlinear
plants. Hence, they applied as a linearized neural model. Furthermore, Rahman and Kuanyi
(2000) studied a neural network method to linearizing control of nonlinear process plants,
and used neural networks to model the process plant and to linearize the neural network
model in a novel way. Additionally, the difference between a RNN and a linearized one is
the linearity of the active function of each neuron in the hidden layer. In fact, however, it is
not strictly necessary that a neural interpretation of the neuron contains a non-linear

www.intechopen.com

Application of Recurrent Neural Networks to Rainfall-runoff Processes

207

function because the reduction of the diversity of activation functions, such as the sigmoid
function, is beneficial (Ptitchkin, 2001). Although neural networks are known to be universal
function approximators, except for unchanged the active functions, the weights and
structure of the neural network are updated or modified during the entire approximating
process. Moreover, a high-dimensional space nonlinearity problem can be suitably
approximated by modifying the weights in the linear combinations of state variables with
time. Consequently, the linear transfer function of the RNN applied herein is capable of
simulating nonlinear rainfall-runoff process.
Considering the transfer functions of the RNN applied herein are set as linear functions and
the biases are set at zero. Consequently, the Eqs. (3) and (4) are rewritten as:

 ()
k

i

k

rh

k
uWxWWx ⋅+⋅⋅=+1

ˆ

 () ()
kkk

ih

k

rh uWxWuWWxWW ⋅+⋅=⋅⋅+⋅⋅=
21

 (5)

 () ()
kk

ho

k

ho

k
xWxWWxWWy ⋅=⋅⋅=⋅⋅=

3

22ˆ (6)

In the recursive equation (5), W1, W2, and W3 are unknown weights to be identified by
observed input/output sequences { }

110
,,, −N
uuu A and { }

110
,,, −N
yyy A . By replacing the

k
x

term in the observed equation (6) with the solved recursive equation (5), the output
response of the system is given as:

 ∑
=

−

−+=
k

p

pk

pk

k
uWWWxWWy

2

2

1

13113
 (7)

For a system initially at rest, i.e., 0
1
=x , Equation (7) is rewritten as:

 ∑
=

−=
k

p

pkpk
uhy

1

 (8)

where the unit hydrograph (UH) of the rainfall-runoff processes can be summarized as:

2
1

13
≥= −

pWWWh
p

p
 if

2

 10 == ph
p

 if (9)

The impulse response terms
2

WWW
p 1

13

−
 for 2≥p are known as the Markov parameters.

3. Calibration algorithm for DLRNN

3.1 Indirect system identification
The concept of indirect system identification algorithms is to obtain the UH ordinates first,
called the constrained deconvolution step. The linear programming is selected herein to
carry out the UH from the rainfall and runoff data. Then, the system matrices []

31
,, WWW

2

are identified from the UH ordinates via singular value decomposition (SVD), entitled the
realization step.
In the realization step, the state space model can be represented as follows if

kk
Txx = for

some nonsingular transformation matrix T (Romos et al., 1995):

www.intechopen.com

 Recurrent Neural Networks

208

kkk

uTWTxTTWTx][][
2

1

11
+= −

+ (10)

kk

TxTWy][1

3

−= (11)

By considering][1

1

−TTW as
1

W ,][
2

TW as
2

W , and][1

3

−TW as
3

W , the system matrices of

the transformed system are now []
31

,, WWW
2

, and these parameter matrices []
31

,, WWW
2

are identified based on the deconvoluted impulse response sequence }ˆ{
p

h . Specifically, SVD

is performed on the following Hankel matrix:

 () ()
kk

TT

kkkk

k

k

k

tt
VSSUVSU

hhhh

hhhh

hhhh

hhhh

H co ⋅=⋅⋅⋅=⋅⋅=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

−++

+

+
2121

1221

2543

1432

321

,

ˆˆˆˆ

ˆˆˆˆ

ˆˆˆˆ

ˆˆˆˆ

A
BDBBB

A
A
A

 (12)

where Mk ≤−12 . M is the memory of system. The transformed parameter matrices are

identified from:

∗− ==
1,2,

1

11 kk
TTWW cc ;

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

==

0

0

1

22 Bk
cTWW ; []

k
TWW o0,,0,11

33
A== −

where
1,k

c and
2,k

c denote the first and last ()1−k columns of c , and the star denotes a

pseudoinverse.

3.2 Subspace algorithm
Above indirect system identification algorithm computes the weights of a RNN from a
Hankel matrix constructed using Markov parameters. However, using the Markov
parameters as a starting point would be rather difficult to measure in some fields
(Abdelghani & Verhaegen, 1998). The subspace algorithms are the automatic structure
identification, and derive the model directly from the input-output data without estimating
the Markov parameters as an intermediate step (Gustafsson, 2001; Ramos et al., 1995).
Before description of subspace algorithm, the past and future highly rectangular
input/output Hankel matrices, H1 and H2 respectively, are defined by input-output data:

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=⎥
⎦

⎤
⎢
⎣

⎡
=

−++

+

−++

+

11

132

21

11

132

21

1

1

1

jiii

j

j

jiii

j

j

yyy

yyy

yyy

uuu

uuu

uuu

Y

U
H

A
BDBB

A
A
A

BDBB
A
A

 for j>>i>n (13)

www.intechopen.com

Application of Recurrent Neural Networks to Rainfall-runoff Processes

209

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=⎥
⎦

⎤
⎢
⎣

⎡
=

−++

++++

+++

−++

++++

+++

12122

132

21

12122

132

21

2

2

2

jiii

jiii

jiii

jiii

jiii

jiii

yyy

yyy

yyy

uuu

uuu

uuu

Y

U
H

A
BDBB

A
A
A

BDBB
A
A

 for j>>i>n (14)

Two state vector sequences X1 and X2 are defined as]|||[
211 j

xxxX A= and

]|||[
212 jiii

xxxX +++= A . The subspace algorithm is presented as follows:

a) Compute the SVD of the concatenation of H1 and H2:

 T

H

jnlinminli

jnmiT

HHH
V

uu

uu
VU

H

H
⋅⎥
⎦

⎤
⎢
⎣

⎡ Σ
⋅⎥
⎦

⎤
⎢
⎣

⎡
=Σ=⎥

⎦

⎤
⎢
⎣

⎡

×−+×−

×+

)2()2()2(

)2(11

2221

1211

2

1

00

0
 (15)

where 11
u , 12

u , 21
u , 22

u , 11
Σ , and H

V are the matrices with dimensions

)2()(nmilimi +×+ ,)2()(nlilimi −×+ ,)2()(nmilimi +×+ ,)2()(nlilimi −×+ ,

)2()2(nminmi +×+ , and jj × respectively.

b) Compute the SVD of
111112

ΣuuT in order to determine the system order, n:

 [] T

q

minlinnli

minq

qq

T VUUuu ⋅⎥
⎦

⎤
⎢
⎣

⎡ Σ
⋅=Σ

×−×−

×⊥

)2()(2)(2

)2(

111112 00

0
| (16)

where
q

U , ⊥

q
U ,

q
Σ , and

q
V are the matrices with dimensions nnli ×−)2(,

)(2)2(nlinli −×− , nn× , and)2()2(nminmi +×+ respectively.

c) Compute the transformed state vector sequence:

]|||[
211122 jiii

TT

q
xxxHuUX +++== A (17)

where
2

X is the matrix with dimensions jn× .

d) Compute the weights of the RNN by solving the overdetermined system of equations:

 ⎥
⎦

⎤
⎢
⎣

⎡
⋅

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡

−+++

−+++

−+++

+++

121

121

3

21

121

32

0 jiii

jiii

jiii

jiii

uuu

xxx

W

WW

yyy

xxx

A
A

A
A

 (18)

In the past few years, much attention has been paid recently to subspace algorithms when
various time domain methods for identifying dynamic models of systems from modal
experimental data appeared. However, this algorithm was seldom applied in the scope of
hydrology. Except Ramos et al. (1995), they used one event of 29 data points (each 30
minutes long) and 365 daily data to evaluate the algorithm. To compare with daily data,
hourly data used herein have more uncertainty and noisy. The suitability of subspace
algorithm with hourly rainfall-runoff data, therefore, is re-evaluated based on a real
typhoon event of the Keelung River in Taiwan as follows:

www.intechopen.com

 Recurrent Neural Networks

210

Firstly, a sequence of 100 data is generated from a state space model that was identified
from rainfall-runoff data observed on Sep. 27, 1996. Indirect system identification algorithm
was used to check if the subspace algorithm could identify the original system. The state
space model is a 3-order system as following equations:

kkk

UXX ⋅
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+⋅

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=+

0.1485-

0.2144

-0.2274

0.67720.33160.0383-

0.3317-0.83330.1087

-0.0383-0.10870.9600

1
 (19)

 []
kk

XY ⋅= -0.1485-0.2144-0.2274 (20)

The generated sequence was identified as Equations (21) and (22). The results show that the
system order determination in the step 2 of subspace algorithm is correct so that the impulse
response can be simulated accurately.

kkk

UXX ⋅
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+⋅

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=+

0.0386

0.0716

-0.1190

0.66280.1880-0.0237

0.57040.85170.0693

-0.0944-0.18570.9559

1
 (21)

 []
kk

XY ⋅= 0.6034-0.6683-0.4403 (22)

The second test used the original observed data to identify a rainfall-runoff system.
However, according to the identified UHs shown in Fig. 2, the subspace algorithm
performed poorly because it was very sensitive to the noise in observed data. Therefore, the
modified system identification combined with indirect system identification and subspace
algorithm is introduced.

Comparison of unit hydrographs
UH computed by linear programming

UH realized by indirect system identification

UH realized by subspace algorithm

0 10 20 30 40 50

Time (hour)

-0.04

0

0.04

0.08

0.12

U
n

it
 h

y
d

ro
g

ra
p

h
 (

1/
h

o
u

r)

0 10 20 30 40 50

Time (hour)

-0.04

0

0.04

0.08

0.12

U
n

it
 h

y
d

ro
g

ra
p

h
 (

1
/

h
o

u
r)

0 10 20 30 40 50

Time (hour)

-0.04

0

0.04

0.08

0.12

U
n

it
 h

y
d

ro
g

ra
p

h
 (

1
/

h
o

u
r)

Comparison of unit hydrographs
UH computed by linear programming

UH realized by indirect system identification

UH realized by subspace algorithm

0 10 20 30 40 50

Time (hour)

-0.04

0

0.04

0.08

0.12

U
n

it
 h

y
d

ro
g

ra
p

h
 (

1/
h

o
u

r)

0 10 20 30 40 50

Time (hour)

-0.04

0

0.04

0.08

0.12

U
n

it
 h

y
d

ro
g

ra
p

h
 (

1
/

h
o

u
r)

0 10 20 30 40 50

Time (hour)

-0.04

0

0.04

0.08

0.12

U
n

it
 h

y
d

ro
g

ra
p

h
 (

1
/

h
o

u
r)

Fig. 2. UHs carried out via linear programming, indirect system identification, and subspace
algorithm.

www.intechopen.com

Application of Recurrent Neural Networks to Rainfall-runoff Processes

211

3.3 Modified system identification for hydrology
Figure 3 and the left part of Fig. 4 are the flowcharts of indirect system identification
algorithm and subspace algorithm respectively. To compare with these two flowcharts,
indirect system identification algorithm needs to subjectively decide the system order from a
sequence of singular values in Equation (16). In practice, the singular values are not easily
classified into significant and insignificant groups when the singular values descend slowly.
Additionally, subspace algorithm can determine the system order objectively, but it is
sensitive. Therefore, the constrained deconvolution step is considered, firstly, to compute a
discrete UH from rainfall-runoff events for calibration. Secondly, a sequence of rainfall-
runoff data generated form the discrete UH via convolution is synthesized. This synthesized
data are without noise that helps subspace algorithm to get the system order. The right part
of Fig. 4 surrounded by dotted line is the modified system identification for hydrology.

Rainfall-runoff
data

Linear programming Quadratic programming Nonlinear programming

Discrete unit hydrograph

Hankel matrix

Singular value decomposition

Observed matrix
Controlled matrix

Singular value

Determine
the order of the system

Estimate
the weights of DLRNN

Termination of the creation
of DLRNN

Constrained
deconvolution

step
Realization

step

Rainfall-runoff
data

Linear programming Quadratic programming Nonlinear programmingLinear programming Quadratic programming Nonlinear programming

Discrete unit hydrograph

Hankel matrix

Singular value decomposition

Observed matrix
Controlled matrix

Singular value
Observed matrix
Controlled matrix

Singular value

Determine
the order of the system

Estimate
the weights of DLRNN

Termination of the creation
of DLRNN

Constrained
deconvolution

step
Realization

step

Fig. 3. Flowchart of indirect system identification.

4. On-line learning algorithm for DLRNN

Dynamic RNN learning algorithms can be grouped into five major categories (Parlos et al.,

2000), such as (1) the real time recurrent learning; (2) the backpropagation through time

(BTT) method; (3) the fast forward propagation method; (4) the Green’s function method;

and (5) the block update method. All training algorithms above are gradient-based by which

the learning trajectory is represented into the changes of weights of neurons.

The weights updated via gradient-based learning algorithms can be written as:

dW

dE
WW

oldnew
η−= (23)

where η denotes the learning rate, and E is the sum of square errors.

 () ()∑
=

−−=
K

k

kk

T

kk
dydyE

12

1
 (24)

www.intechopen.com

 Recurrent Neural Networks

212

where yk is the output of the model, and dk represents the desired output at time index k. The
algorithm introduced herein is based on the gradient-based learning method developed by
Atiya and Parlos (2000).

Compute
transformation and state

compression matrices

Compute
the transformed

state vector sequence

Compute the system matrices
by solving the overdetermined

system of equations

The quantity of neurons
in hidden layer, and

the weights of DLRNN

Rainfall
and

runoff

Constrained deconvolution step

The quantity of neurons
in hidden layer, and

the weights of DLRNN

Generate a set of
rainfall and runoff data

via discrete unit hydrograph

Compute the SVD of
the concatenation of

H1 and H2

Determine
the system order, n

Refer to the flowchart of Fig. 3

Discrete unit hydrograph

Subspace algorithm

Realization step

Modified system identification

Compute
transformation and state

compression matrices

Compute
the transformed

state vector sequence

Compute the system matrices
by solving the overdetermined

system of equations

The quantity of neurons
in hidden layer, and

the weights of DLRNN

Rainfall
and

runoff

Constrained deconvolution step

The quantity of neurons
in hidden layer, and

the weights of DLRNN

Generate a set of
rainfall and runoff data

via discrete unit hydrograph

Compute the SVD of
the concatenation of

H1 and H2

Determine
the system order, n

Refer to the flowchart of Fig. 3

Discrete unit hydrograph

Subspace algorithm

Realization step

Modified system identification

Fig. 4. Flowchart of modified system identification.

4.1 DLRNN learning algorithm
The idea of the algorithm adopted herein is to obtain an approximation for the gradient that
can be efficiently computed via the interchange of the roles of the network states xk and the
weight matrix W. Let the states be considered as the control variables, and the change in the
weights is determined upon the changes in xk. The details of the algorithm are as follows:
First, the network learning is formulated as constrained minimization problem, with the
objective to minimize the sum of square error, E, given by Equation (24), and the constraints.

 1,,0ˆ
1211

−==⋅+⋅≡ ++ KkxuWxWg
kkkk

A 0,- (25)

According to the Equations (10) and (11), the error gradient can be written as follows:

111

w

x

x

y

y

E

w

E

dw

dE

∂
∂

∂
∂

∂
∂

+
∂
∂

= (26a)

222

w

x

x

y

y

E

w

E

dw

dE

∂
∂

∂
∂

∂
∂

+
∂
∂

= (26b)

www.intechopen.com

Application of Recurrent Neural Networks to Rainfall-runoff Processes

213

333

w

y

y

E

w

E

dw

dE

∂
∂

∂
∂

+
∂
∂

= (26c)

where
n

dw

dE
 for n = 1, 2, 3 equals 0 since E is the function of y. Consequently, the updated

weights of W2 and W3 for time K can be derived ffom Equation (23), (24), (26b), and (26c) as

follows:

 ()
KKKKKK

uWdyWW ⋅⋅−⋅−=+ ,3,21,2
η (27)

 ()
KKKKK

xdyWW ⋅−⋅−=+ η
,31,3

 (28)

By taking the derivative of the Equation (25), one can get:

1

1

111

0
w

g

x

g

w

x

w

x

x

g

w

g

∂
∂

⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

−=
∂
∂

⇒=
∂
∂

∂
∂

+
∂
∂

−

 (29)

Solving Equations (26a) and (29), one can get:

1

1

1
w

g

x

g

x

y

y

E

dw

dE

∂
∂

⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

∂
∂

∂
∂

−=
−

 (30)

According to the convention that ()vu ∂∂ for two vectors u and v is the matrix whose (i, j)th

element is ()
ji

vu ∂∂ , the matrices in (28) can be evaluated from Equations (6) and (24) as

follows:

 () ()
K

TT

K
eeeWWeee

x

y

y

E
,,,,,,

213321
AA ⋅=⋅=

∂
∂

∂
∂

 (31)

where
k
e is the error at time k:

kkk
dye −= ,

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−
−

−

=
∂
∂

IW

IW

IW

I

x

g

1

1

1

000

000

000

0000

A
BBDBBB

A
A
A

 (32)

and

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=
∂
∂

−1

1

0

K
X

X

X

w

g

B
 (33)

where

www.intechopen.com

 Recurrent Neural Networks

214

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

T

k

T

k

T

k

k

x

x

x

X

A
BDBBB

A
A

000

000

000

 (34)

I is the identity matrix, and 0 in Equations (32) and (34) is a matrix (or vector) of zeros.
After calculating the gradient of E with respect to the states xk, a small change at the states xk
in the negative direction of that gradient can be written as:

 ⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

−=Δ
x

E
x η (35)

Replace
x

E

∂
∂

 by Equation (29), and Equation (33) can be rewritten as:

 ()
K

T eeWex ,,
13
Aηη −=−=Δ (36)

Since g, given by Equation (25), equals zero, one can get:

 0
1

1

=Δ
∂
∂

+Δ
∂
∂

x
x

g
w

w

g
 (37)

After applying the transposition and the pseudoinverse in Equation (37), the change in
weights can be determined as:

1

1

1

11

1
x

x

g

w

g

w

g

w

g
w

TT

Δ
∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−=Δ

−

 (38)

where

1

1

0

1

0

1

0
1

11

00

00

00

−

−

=

−

=

−

=
−

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∑

∑
∑

K

k

T

kk

K

k

T

kk

K

k

T

kk

T

xx

xx

xx

w

g

w

g

A
BDBB

A

A

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥⎦
⎤

⎢⎣
⎡

⎥⎦
⎤

⎢⎣
⎡

⎥⎦
⎤

⎢⎣
⎡

=

−−

=

−−

=

−−

=

∑

∑

∑

1
1

0

1
1

0

1
1

0

00

00

00

K

k

T

kk

K

k

T

kk

K

k

T

kk

xx

xx

xx

A

BDBB

A

A

 (39)

From Equation (36), let

www.intechopen.com

Application of Recurrent Neural Networks to Rainfall-runoff Processes

215

 x
x

g
e

x

g
T Δ

∂
∂−

=
∂
∂

=
η

γ 1
 (40)

and partition the vector γ into the K vectors as follows:

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

K
γ

γ
γ

γ
B

2

1

 (41)

Using Eqs. (32) and (40), γ can be evaluated by following recursions:

 Te
11

−=γ (42a)

 TT eWe
1122

+−=γ (42b)

 B

 T

K

T

KK
eWe

11 −+−=γ (42c)

Let

 ∑
−

=

=′
1

0

K

k

T

kkK
xxV (43)

Substituting Equations (33), (39), (40), and (43) into (38), one can get after some
manipulation.

1

1

11

−

=
−

′⋅⎥⎦
⎤

⎢⎣
⎡=Δ ∑ K

K

k

T

kk
VxW γη (44)

In order to alleviate the effect of most likelihood ill-conditioning problems caused by the

matrix inversion in Equation (44), a small matrix Iε is added to the outer product matrix

K
V ′ as follows:

 ∑
−

=

+=
1

0

K

k

T

kkK
xxIV ε , (45)

where ε is a small positive constant. Then Equation (44) is rewritten as follows:

 1

1

11

−

=
− ⋅⎥⎦
⎤

⎢⎣
⎡=Δ ∑ K

K

k

T

kk
VxW γη (46)

Since the passed inputs, state variables, and observed outputs (u1, x1, d1, …, uK-1, xK-1, dK-1)

are already available to get
1,1 −Δ

K
W , the on-line updated change in weights

K
W

,1
Δ based on a

new data point (uK, xK, dK) can be written as follows:

 [] 1

1111

1

1

1,1

−

−−−−

−

=
− +⋅⎥⎦

⎤
⎢⎣
⎡ +=Δ ∑ T

KKK

T

KK

K

k

T

kkK
xxVxxW γγη (47)

www.intechopen.com

 Recurrent Neural Networks

216

Furthermore, using the small rank adjustment matrix inversion lemma, the inverse of
K

V

can be obtained recursively in terms of the inverse of
1−K

V as follows:

 () ()()
1

1

11

1

1

11

1

11

1

1

111

1

1 −

−

−−

−

−

−−

−

−−

−

−

−−−

−

+
−=+=

KK

T

K

T

KKKK

K

T

KKKK
xVx

xVxV
VxxVV (48)

and let

 ∑
=

−=
K

k

T

kkK
xB

1

1
γ (49)

Substituting Eq. (48) into Eq. (47), after simplification one can get the final on-line updated
formula of W1 as follows:

[]
1

1

11

1

1

11

1

11

1

11

1,1,1
1 −

−

−−

−

−

−−

−

−−

−

−−
− +

−
+Δ=Δ

KK

T

K

T

KKKKKK

T

KK

KK
xVx

xVxVBVx
WW

γη (50)

5. Application

5.1 Study area and data pre-processing
With a length of 86 km and an area of 501 km2, the Keelung River has a U-turn in the
northeast Taipei county, and runs through Taipei city, where it joins the Dansuie River and
flows out to sea, as shown in Fig. 5. The watershed upstream of Wu-tu with about 204 km2
surrounding the city of Taipei in northern Taiwan was chosen for evaluating the simulation
ability of the DLRNN for recognizing the transition of rainfall-runoff processes. Due to the
northeast monsoon in winter and the typhoons in summer, the mean annual precipitation,
runoff depth, and runoff coefficient are 2865 mm, 2177 mm, and 0.76, respectively. Owing to
the rugged topography of the watershed, large floods caused by the short and steep runoff
path-line arrive rapidly in the middle-to-downstream reaches of the watershed, and cause
serious damage.
According to the records of three rain gauges (Wu-tu, Jui-fang, and Huo-shao-liao) and on
discharge site (Wu-tu) in Wu-tu watershed, as shown in Fig. 5, 38 rainfall-runoff events from
1966 to 1997 were selected as study cases including 13 multi-peak and 25 single-peak events
(Table 3). With 766 rainfall-runoff observations, the earliest 10 events, from 1966 to 1972,
were used for calibration while the remainder events were used for validation. Through the
Kriging method to calculate the average effective rainfall based on effective rainfall
measurements from three rain gauges, current average effective rainfall (mm) and direct
hourly runoff (m3/s) are the input and output with no lead-time considered after be
normalized between 0 and 0.9.

5.2 Criteria
The performances of rainfall-runoff simulations were evaluated by four criteria as follows:
(1) Coefficient of efficiency, CE, is defined as follows:

[]

[]∑
∑

=

=

−

−
−= K

k

obskobs

K

k

kestkobs

QQ

QQ

CE

1

2

,

1

2

,,

1 (51)

www.intechopen.com

Application of Recurrent Neural Networks to Rainfall-runoff Processes

217

where
kest

Q
,

 denotes the discharge of the simulated hydrograph for time index k (m3/s),
kobs

Q
,

is the discharge of the observed hydrograph for time index k (m3/s), and
obs

Q is the mean of

the discharge of the observed hydrograph during whole event period K. The better the fit,

the closer CE is to 1.

Fig. 5. The maps of Wu-tu watershed showing the study area near Taipei, Taiwan (the
coordinates are TWD67 2-degree wide Transverse Mercator projection).

Typhoon

name

Time

(y/m/d)

Rainfall

duration

(h)

Rainfall

depth

(mm)

Max rainfall

intensity

(mm/h)

Max

discharge

(m
3
/s)

Typhoon

name

Time

(y/m/d)

Rainfall

duration

(h)

Rainfall

depth

(mm)

Max rainfall

intensity

(mm/h)

Max

discharge

(m
3
/s)

Cora 1966/09/06 48 247.9 20.0 770.7 *Gerald 1984/08/14 127 513.5 23.4 586.4

*Carla 1967/10/17 72 1088.0 52.9 921.2 Nelson 1985/08/22 46 341.4 25.0 1177.0

*Gilda 1967/11/16 59 339.5 29.1 706.9 Brenda 1985/10/03 38 248.4 15.1 626.7

Nadine 1968/07/26 61 252.1 15.1 219.7 *Abby 1986/09/17 91 521.3 28.8 579.0

Elaine 1968/09/29 72 686.6 44.5 1037.7 Alex 1987/07/27 30 187.0 40.7 519.8

*Storm 1969/09/09 89 678.5 24.1 848.4 *Gerald 1987/09/09 33 321.2 47.2 553.9

Elsie 1969/09/26 38 288.5 38.0 662.5 *Storm 1988/09/29 101 627.3 22.7 670.2

Agnes 1971/09/18 69 411.3 31.5 466.3 *Sarah 1989/09/10 61 322.5 27.7 401.2

Bess 1971/09/22 54 353.3 32.0 994.1 *Offlia 1990/06/22 49 251.0 20.6 500.0

Betty 1972/08/16 40 177.2 15.2 677.9 Yancy 1990/08/19 44 259.5 46.3 824.5

Storm 1973/09/20 22 292.5 37.3 862.3 Abe 1990/08/30 35 239.1 15.7 764.4

Wendy 1974/09/28 57 321.2 16.7 822.0 Storm 1990/09/02 26 192.8 32.2 842.5

Vera 1977/07/31 46 264.7 16.9 735.7 *Polly 1992/08/29 98 500.6 17.8 278.9

Storm 1977/11/15 72 292.2 15.2 538.4 Gladys 1994/09/01 18 184.1 31.3 434.2

Irving 1979/08/14 56 340.3 24.4 974.1 *Seth 1994/10/09 48 300.7 12.2 451.3

Storm 1980/11/19 42 266.9 21.9 687.1 Herb 1996/07/31 44 313.6 31.8 1082.9

*Cecil 1982/08/09 34 235.7 23.9 626.4 *Zane 1996/09/27 84 440.6 29.9 666.0

Storm 1984/06/02 18 212.7 46.1 1403.5 Winnie 1997/08/17 47 343.5 24.1 1034.8

Freda 1984/08/06 30 242.1 30.7 501.5 Amber 1997/08/29 42 329.8 30.2 953.5

* Multi-peak event

Table 3. Information about the 38 events selected from Wu-tu watershed.

(2) The error of peak discharge, EQp (%), is defined as follows:

 () %100%
,

,,
×

−
=

obsp

obspestp
p

Q

QQ
EQ (52)

www.intechopen.com

 Recurrent Neural Networks

218

where
estp

Q
,

 denotes the peak discharge of the simulated hydrograph (m3/s) and
obsp

Q
,

 is the

peak discharge of the observed hydrograph (m3/s).
(3) The error of the time for peak to arrive, ETp, is defined as follows:

obspestpp

TTET
,,

−= (53)

where
estp

T
,

 denotes the time for the simulated hydrograph peak to arrive (hours) and
obsp

T
,

represents the time required for the observed hydrograph peak to arrive (hours).
(4) The error of total discharge volume, VER(%), is defined as follows:

 () %100%

1

,

1

,

1

,

×
⎟
⎠
⎞

⎜
⎝
⎛ −

=
∑

∑∑

=

==

K

k

kobs

K

k

kobs

K

k

kest

Q

QQ

VER (54)

where
kest

Q
,

 denotes the discharge of the simulated hydrograph for time index k (m3/s) and

kobs
Q

,
 is the discharge of the observed hydrograph for time index k (m3/s). The better the fit,

the closer EQp, ETp and VER are to 0.

6. Result and discussion

A developed DLRNN is applied to perform rainfall-runoff simulation and recognize the
transition of rainfall-runoff processes using UHs realized from the DLRNN weights. First,
the DLRNN is compared with a forward neural network to demonstrate the advantage of
RNNs. DLRNNs identified using indirect system identification and modified system
identification then are compared. Furthermore, control system theory is employed to
consider a DLRNN in canonical form and compare it with that identified using modified
system identification. Finally, rainfall-runoff processes recognition using DLRNN is
described.

6.1 Comparison between DLRNN and FNN (Pan et al., 2007)
Through the modified system identification based on the earliest 10 events, a DLRNN with 4
neurons in the hidden layer is calibrated, as shown in Fig. 6. Due to the full connection
between neurons in hidden layer, the DLRNN totally has 24 weights for storing information.
Therefore, it is fair to have the same control on the quantity of weights for comparing the
DLRNN with the feed-forward neural networks (FNNs) although the structures of FNNs
with inputting information as a time delay pattern that constitutes the tapped delay line
information are classified as local or global RNNs according to the definition by Tsoi and
Back (1997). Based on the rule of Equations (55) and (56), observed runoff and rainfall data
are used in sequence to constitute the tapped delay line inputs as the input layer illustrated
in Fig. 7. In hidden layer of Fig. 7, a bias neuron always delivers a negative impulse as a
threshold to each hidden neuron. All FNNs compared with the DLRNN herein are trained
using the same calibrated data via the back-propagation learning algorithm, the most
common learning algorithm for FNNs.

 ()()()()1rainfallneuron input ++−= 2/1int nk , if n is odd; (55)

www.intechopen.com

Application of Recurrent Neural Networks to Rainfall-runoff Processes

219

 ()()()2/int nk −= runoffneuron input , if n is even (56)

Input layer Hidden layer Output layer

rainfall (k) runoff (k)

∑)(⋅f
∑

)(⋅f

Input layer Hidden layer Output layer

rainfall (k) runoff (k)

∑)(⋅f∑)(⋅f
∑

)(⋅f

∑

)(⋅f

Fig. 6. Architecture of DLRNN identified via modified system identification.

-1

Input layer Hidden layer Output layer

rainfall (k)

rainfall (k-1)

runoff (k-1)

rainfall (k-(int((m+1)/2)+1)

runoff (k-int(n/2))

runoff (k)…

∑

)(⋅f∑)(⋅f-1

Input layer Hidden layer Output layer

rainfall (k)

rainfall (k-1)

runoff (k-1)

rainfall (k-(int((m+1)/2)+1)

runoff (k-int(n/2))

runoff (k)…

∑

)(⋅f

∑

)(⋅f∑)(⋅f∑)(⋅f

Fig. 7. The structure of FNNs with the tapped delay line inputs.

www.intechopen.com

 Recurrent Neural Networks

220

Model Form DLRNN

Number of neurons in hidden layer 1 2 3 4 5 6 7 8 4

Number of neuraons in input layer 22 10 6 4 3 2 2 1 1

Number of neural network's weights 24 24 24 24 25 24 28 24 24

CE 0.943 0.982 0.975 0.974 0.957 0.952 0.950 -0.074 0.926

EQp (%) 10.363 4.377 4.432 4.445 4.545 4.687 5.322 48.936 12.438

ETp (hour) 2.079 1.184 1.184 1.526 1.895 1.921 1.921 7.474 1.036

VER (%) 5.504 2.088 2.242 2.383 2.513 3.101 3.295 24.509 4.769

Feed-forward neural network

Table 4. The averages of absolute criteria of the DLRNN and FNNs to simulate the rest 28
events (Pan et al., 2007).

Table 4 shows the averages of the absolute criteria of the DLRNN and the FNNs in which
FNN(1-8-1) is the only neural network without any feedback connection. According to the
average absolute criteria, the FNN(1-8-1) performs poorly because it is merely a static
system without memory and only executes mapping from rainfall to runoff. However, the
FNNs with tapped delay line inputs, such as FNN(2-7-1) to FNN(22-1-1), perform
superiorly. The result shows the importance of a feedback connection and using tapped
delay line inputs to the FNN. Chiang et al. (2004) also noticed that the feature of feedback
connections is especially important and useful for grasping the extraordinary time-varying
characteristics of the rainfall-runoff processes. The neural network with only one rainfall
input can not achieve a satisfactory mapping to the current runoff because the rainfall-
runoff processes are dynamic systems. One more tapped delay line input, like FNN(2-7-1),
gives the feed-forward neural network the last-time-step status of the runoff, and raises the
CE over 0.94. However, the DLRNN only needs the current rainfall as the input to get a
satisfactory simulation because the feedback connections in hidden layer give the DLRNN
the function to calculate the state of the rainfall-runoff process recurrently.

6.2 Comparison between DLRNNs based on two identification methods
Vos et al. (2005) commented that a disadvantage of artificial neural networks is that the
optimal form or value of most network design parameters differ for each application and
cannot be theoretically defined, which is why they are commonly found using trial-and-
error approaches. However, the identification methods mentioned herein provide a
deterministic solution. This chapter considers the indirect and modified system
identification for identifying DLRNNs. In the realization step of the indirect system
identification, a series of singular values is carried out through the singular value
decomposition, and it can be illustrated in Fig. 8. If the singular values can be separated
distinctly into two groups, namely the significant and the neglected groups, the number of
neurons in the hidden layers of a RNN equals to the size of the significant group. From Fig.
8, the first two singular values are relatively significant and the number of neurons in the
hidden layers are at least 2. However, the other singular values do not decrease noticeably,
making it difficult to optimize the number of neurons of the hidden layers. Furthermore, the
relation between the coefficient of efficiency and the number of neurons in the hidden layers
of the DLRNN determined using trial-and-error method is illustrated as the open dots in
Fig. 9. The CE increases from 0.70 to over 0.86 while the number of neurons in hidden layers
exceeds 2 in Fig. 9. Six neurons in the hidden layer are selected as the optimum DLRNN
(denoted as DLRNN(1)), denoted as the solid dot at the right side of Fig. 9) using the best
coefficient of efficiency (CE=0.87043).

www.intechopen.com

Application of Recurrent Neural Networks to Rainfall-runoff Processes

221

0 20 40 60 80
Singular value sequence

0

0.4

0.8

1.2

S
in

g
u

la
r

v
a

lu
e

Singular Value Plot
calculated from
1966/09/06
1967/10/17
1967/11/16
1968/07/26
1968/09/29
1969/09/09
1969/09/26
1971/09/18
1971/09/22

Fig. 8. The singular value plot from the realization step of indirect system identification.

0 4 8 12 16

Quantity of nerons in hidden layer

0.68

0.72

0.76

0.8

0.84

0.88

C
o
e
ff
ic

ie
n
t
o
f
e
ff
ic

ie
n
c
y

Relation between
coefficient of efficiency and
quantity of neurons in hidden layers

Fig. 9. The relation between coefficient of efficiency and number of neurons in hidden layers
of the DLRNN.

Another DLRNN (denoted as DLRNN(2)) has four neurons in the hidden layer, as
determined using modified system identification (solid dot at the left side of Fig. 9). Owing
to part of the subspace algorithm being included in modified system identification, the four
neurons in the hidden layer are chosen without any referable plot, such as singular value
plot. From Fig. 9, the CE of DLRNN(2) is just 0.00028 less than that of DLRNN(1). However,
DLRNN(2) reduces 48 weights of DLRNN(1), to 24 weights. The 50% reduction in weights
from DLRNN(2) demonstrates that the combination of modified system identification and

www.intechopen.com

 Recurrent Neural Networks

222

the advantages of indirect system identification and subspace algorithm provide an efficient
algorithm for applying DLRNN in hydrology.

6.3 Comparison between DLRNNs in different forms
The DLRNN adopted herein is a fully RNN and has full connections between neurons in

different layers. However, using a state space model is well known to over parameterize the

estimation problem, while using canonical forms, as illustrated in Fig. 10, is far more

economical for estimating the linear model. Figures 6 and 10 show that the DLRNNs have

the feed-back connections in the hidden layers that belong to the local recurrent structures.

The DLRNN in a canonical form has the same number of neurons as the original DLRNN,

but the DLRNN in a canonical form has the minimum connections and weights to achieve

the same performance. Hence, the comparison between the two DLRNNs in canonical form

is of interest in this investigation. Some experiments are designed to clarify this issue. First,

in the flowchart illustrated in Fig. 4, the original DLRNN(1) is transformed into a DLRNN in

the canonical form after identifying the quantity of neurons in hidden layer and the weights

of the DLRNN. Figure 10 shows that the DLRNN in the canonical form is clearly not a fully

RNN. 28 validated events are fed to the model, and a new on-line learning method

developed by Pan and Wang (2004), is applied to develop the DLRNN into a fully RNN via

on-line learning. Table 5 lists the average absolute criteria. The table reveals that the

canonical and non-canonical form DLRNNs do not differ significantly, and the on-line

learning algorithm always derives a fully RNN from a DLRNN in the canonical form.

Input layer Hidden layer Output layerInput layer Hidden layer Output layer

Fig. 10. The DLRNN in canonical form.

model type CE EQp (%) ETp (hour) VER (%)

original model 0.926 12.438 1.036 4.769

canonical form 0.925 12.704 1.071 4.845

original model: a DLRNN identified via modified system identification.

canonical form: a DLRNN in canonical form.

Table 5. The averages of absolute criteria of the DLRNNs in two forms.

6.4 Recognition of the transition of rainfall-runoff processes (Pan et al., 2007)
A streamflow or discharge hydrograph is a graph showing the flow rate as a function of

time at a given location on the stream. In effect, the hydrograph is “an integral expression of

the physiographic and climatic characteristics that govern the relations between rainfall and

www.intechopen.com

Application of Recurrent Neural Networks to Rainfall-runoff Processes

223

runoff of a particular drainage basin” (Chow, 1959). UH is a hypothetical unit response of

the watershed to a unit input of rainfall that has been widely adopted by hydrologists to

represent the mechanism of rainfall-runoff processes. Through the visualization of the

transition of rainfall-runoff processes by UHs, the duration of a storm event, the time to

peak flow, and the peak flow can be detected from the UHs. Therefore, the DLRNN learning

algorithm is applied to modify the weights of the DLRNN on-line for detecting the

transition of UHs based on the connection between the DLRNN and UH representation by

treating the weights as Markov parameters. The structure of DLRNN can analogize the

rainfall-runoff processes in a simple manner. The number of neurons in the hidden layer

calibration by modified system identification describes the dimensions of the state space for

the rainfall-runoff processes. Each neuron in the hidden layer represents a state variable that

is controlled by rainfall and interacts with all state variables recurrently. Although the state

variables can not be measured directly, UH can be represented based on their weights to

describe the transition of rainfall-runoff processes.

Equations (8) and (9) reveal the relationship between the UH and the weights of DLRNN.

Equation (9) also illustrates the relationship between the system responses to a unit impulse

and the weights of DLRNN used herein. The time variance of the weights of a DLRNN can

be used to recognize the transition of rainfall-runoff processes. Figure 11 illustrates the

transition of UHs of the single-peak typhoon in Aug. 17, 1997, while Fig. 12 shows the

simulation of this typhoon through DLRNN with on-line learning. At the beginning of the

simulation, the weights of the DLRNN are identified from the earliest 10 events to form a

generalized model. When comparing these two figures, the change of the UHs reveals the

peak arrival is between the 15th and 30th hours. The time to peak of this typhoon is

approximately 8 hours, shown in Fig. 11. The 8-hour duration is significantly increased after

the time to peak of UH is calibrated as 3 hours. The rainfall process is fed to DLRNN to

simulate runoff, as illustrated in Fig. 12, and the simulated runoff should follow the trends

of the rainfall process. The rainfall-runoff simulations are evaluated as effective if the trends

of rainfall and runoff are identical.

Another study case, Zane typhoon, is a multi-peak rainfall-runoff process out of the 38

selected events (Table 5). Figure 14 illustrates the variation between observed rainfall and

runoff, and shows the excellent simulation performance from DLRNN. Figure 13

characterizes the transition of the rainfall-runoff process as the changes of UHs. During the

first 20 hours of Zane typhoon, the simulated runoff is slightly higher than observed runoff

(Figure 14), and this phenomenon demonstrates that the peak of the actual UH is lower than

the UH realized from DLRNN. Through the on-line learning, the peak of the UH realized

from DLRNN decays during first 20 hours. However, the largest peak of observed runoff is

higher than the simulated runoff, and this shows that the actual UH of the rainfall-runoff

process changes with time. Therefore, the peak of the UH realized from DLRNN increases

after on-line learning. Furthermore, the difference between observed and simulated runoffs

around the 60th hour demonstrates again the property of DLRNN that simulated runoff

goes with the trends of the rainfall process. Additionally, a common conceptual model,

called linear reservoir model, is introduced to compare with the DLRNN. It is an objective

comparison in which both two models consider rainfalls as inputs. Results show that

DLRNN performs better than the linear reservoir model.

www.intechopen.com

 Recurrent Neural Networks

224

Fig. 11. The transition of UHs of the single-peak typhoon in Aug. 17, 1997.

0 20 40 60 80

Time (hour)

0

400

800

1200

R
u

n
o

ff
 (

m
3 /

s)

0 20 40 60 80

40

30

20

10

0

R
ai

n
fa

ll
 (

m
m

)

Aug. 17, 1997
Observed rainfall

Observed runoff

Simulation by DLRNN

Simulation by a lineaer reservoir model

Fig. 12. Simulation of Winnie typhoon in Aug. 17, 1997 via DLRNN with on-line learning
and a linear reservoir model.

www.intechopen.com

Application of Recurrent Neural Networks to Rainfall-runoff Processes

225

Fig. 13. The transition of UHs of the multi-peak typhoon in Sep. 27, 1996.

0 40 80 120

Time (hour)

0

200

400

600

800

R
u

n
o

ff
 (

m
3 /

s)

0 40 80 120

40

30

20

10

0

R
ai

n
fa

ll
 (

m
m

)

Sep. 27, 1996
Observed rainfall

Observed runoff

Simulation by DLRNN

Simulation by a lineaer reservoir model

Fig. 14. Simulation of Zane typhoon in Sep. 27, 1996 via DLRNN with on-line learning and a
linear reservoir model.

www.intechopen.com

 Recurrent Neural Networks

226

A generalized UH identified from multi-event rainfall-runoff records can represent the
hydrological feature of the watershed. However, due to the complex interaction with other
hydrometeorological and geomorphological processes within the hydrological cycle, the
true UH of a rainfall-runoff process can not be predetermined before the event happens.
DLRNN has the capability to shape the generalized UH to catch the transition of rainfall-
runoff processes by real time modifying weights. The case study shows that the
representation of UHs from DLRNN weights and the tracing ability of the DLRNN. The
transition of the rainfall-runoff processes is visualized by the representation of UHs that
furthers the interpretation of DLRNN weights.

7. Conclusion

In this chapter, the application of a DLRNN is demonstrated to simulate rainfall-runoff
processes and recognize the transition of UHs in hydrology. Although most neural networks
are black-box models that lack physical meanings of weights, the DLRNN developed in this
chapter connects its weights with UHs that reveal the physical concepts from the network
based on the special structure of RNNs. Without trial and error method, the structure and
the weights of DLRNN can be quickly determined through a modified form of system
identification that combines indirect system identification with the subspace algorithm.
Then, the DLRNN learning algorithm based on the interchange of the roles of the network
state variables and the weight matrix is derived for on-line training.
In this chapter, the DLRNN introduced can not only simulate rainfall-runoff processes, but
also recognize the transition of UHs. Owing to the feedback connections, DLRNN performs
rainfall-runoff simulations as dynamic systems, and the advantage of DLRNN’s dynamic
feature has been proven after the comparison between DLRNN and FNN. The investigation
of the connections between weights and physical meanings is an extension of neural
networks applied in hydrological field due to the linearization of the RNN. Based on the
linearization, weights of DLRNN are treated as Markov parameters to realize the transition
of UHs. Through on-line learning, DLRNN modifies the weights to capture the relation
between rainfall and runoff every time step, and the transition of rainfall-runoff processes
can be emerged based on the changes of UHs.
Furthermore, a modified system identification that combines indirect system identification
with subspace algorithm is described to calibrate the DLRNN. This method determines the
quantity of neurons in hidden layer and the weights of the network. It overcomes the
drawback of costing time by traditional trial and error search for optimum structure of
DLRNN. Additionally, the different forms of DLRNN have also been discussed herein. The
results show that the performances of DLRNNs in different forms are close. Hence, the
transformation of canonical form can be ignored in the flowchart of simulation via DLRNN.
Finally, four criteria have been applied to evaluate the performance of rainfall-runoff
simulation via DLRNN. The results show that the performance is satisfactory and DLRNN
is competent to simulate dynamic systems, like rainfall-runoff processes.

8. Future research

Although feed-forward neural networks are commonly adopted to solve hydrological
problems, applying RNNs to deal with the issues of hydrology is still a novel technique
because the structure and the learning algorithm of RNN are more complex than those of
FNN. This chapter has demonstrated an example to show how RNN applies to hydrological
problems. However, further research is necessary. As Sudheer mentioned (2005),

www.intechopen.com

Application of Recurrent Neural Networks to Rainfall-runoff Processes

227

hydrologists have not endeavored to construe the knowledge embedded in the trained
ANN models, other than the recent research attempts to assign physical significance to the
internal architecture of ANN hydrological models. Therefore, how to abstract more physical
interpretations from the weights or the architectures of RNN, like the connection between
UHs and the weights of DLRNN, is one of the major issues. Furthermore, in order to clarify
some opacity in RNN, the DLRNN mentioned herein is only a single-input-single-output
(SISO) system with a nonlinearity-interpretation trade-off. With construing the knowledge
embedded in, an ideal multi-input-multi-output RNN without any trade-off for rainfall-
runoff simulation is needed.

9. References

Abdelghani M. & Verhaegen M. (1998). Comparison study of subspace identification
methods applied to flexible structures. Mechanical Systems and Signal Processing, Vol.
12, No. 5, pp. 679-692, ISSN 0888-3270.

Anctil F.; Asce M. & Rat A. (2005). Evaluation of neural network streamflow forecasting on
47 watersheds. Journal of Hydrologic Engineering, Vol. 10, No. 1, pp. 85-88, ISSN
1084-0699.

Atiya A.F. & Parlos A.G. (2000). New results on recurrent network training: unifying the
algorithms and accelerating convergence. IEEE Transactions on Neural Networks, Vol.
11, No. 3, pp. 697-709, ISSN 1045-9227.

Boto M.A. & Costa J.S. (1998). A comparison of nonlinear predictive control techniques
using neural network models. Journal of Systems Architecture, Vol. 44, No. 8, pp. 597-
616, ISSN 1383-7621.

Chang L.C.; Chang F.J. & Chiang Y.M. (2004). A two-step-ahead recurrent neural network for
stream-flow forecasting. Hydrological Processes, Vol. 18, pp. 81-92, ISSN 0885-6087.

Chow T.W.S. & Cho S.Y. (1997). Development of a recurrent sigma-pi neural network
rainfall forecasting system in Hong Kong. Neural Computing and Applications, Vol.
51, No. 5, pp. 921-927, ISSN 0941-0643.

Chiang Y.M.; Chang L.C. & Chang F.J. (2004). Comparison of static-feedforward and
dynamic-feedback neural networks for rainfall-runoff modelling. Journal of
Hydrology, Vol. 290, pp. 297-311, ISSN 0022-1694.

Chiang Y.M.; Chang F.J.; Jou B.J.D. & Lin P.F. (2007a). Dynamic ANN for precipitation
estimation and forecasting from radar observations. Journal of Hydrology, Vol. 334,
pp. 250-261, ISSN 0022-1694.

Chiang Y.M.; Hsu K.L.; Chang F.J.; Hong Y. & Sorooshian S. (2007b) Merging multiple
precipitation sources for flash flood forecasting. Journal of Hydrology, Vol. 340, pp.
183-196, ISSN 0022-1694.

Chow V.T. (1959). Open Channel Hydraulics, McGraw Hill, ISBN 007085906X, New York.
Coulibaly P; Anctil F.; Rasmussen P. & Bobée B. (2000). A recurrent neural networks

approach using indices of low-frequency climatic variability to forecast regional
annual runoff. Hydrological Processes, Vol. 14, pp. 2755-2777, ISSN 0885-6087.

Coulibaly P.; Anctil F.; Aravena R. & Bobée B. (2001). Artificial neural network modeling of
water table depth fluctuations. Water Resources Research, Vol. 37, No. 4, pp. 885-896,
ISSN 0043-1397.

Coulibaly P. & Baldwin C.K. (2005). Nonstationary hydrological time series forecasting
using nonlinear dynamic methods. Journal of Hydrology, Vol. 307, pp. 164-174, ISSN
0022-1694.

www.intechopen.com

 Recurrent Neural Networks

228

Coulibaly P. & Evora N.D. (2007). Comparison of neural network methods for infillin missing
daily weather records. Journal of Hydrology, Vol. 341, pp. 27-41, ISSN 0022-1694.

Gustafsson T. (2001). Subspace identification using instrumental variable techniques.
Automatica, Vol. 37, No. 12, pp. 2005-2010, ISSN 0005-1098.

Henriques J. & Dourado A. (1998). A multivariable adaptive control using a recurrent neural
network. Proceedings of international conference on engineering applications of neural
networks, engineering applications of neural networks, pp. 118-121, UK, June 1998,
Gibraltar.

Karamouz M.; Razavi S. & Araghinejad S. (2008). Long-lead seasonal rainfall forecasting
using time-delay recurrent neural networks: a case study. Hydrological Processes,
Vol. 22, pp. 229-241, ISSN 1099-1085.

Maier H.R. & Dandy G.C. (2000). Neural networks for the prediction and forecasting of
water resources variables: a review of modelling issues and applications.
Environmental Modelling & Software, Vol. 15, pp. 101-124, ISSN 1364-8152.

Nagesh Kumar D.; Srinivasa Raju K. & Sathish T. (2004). River flow forecasting using
recurrent neural networks. Water Resources Management, Vol. 18, pp. 143-161, ISSN
0920-4741.

Pan T.Y. & Wang R.Y. (2004). State space neural networks for short term rainfall-runoff
forecasting. Journal of Hydrology, Vol. 297, pp. 34-50, ISSN 0022-1694.

Pan T.Y. & Wang R.Y. (2005). Using recurrent neural networks to reconstruct rainfall-runoff
processes. Hydrological Processes, Vol. 19, pp. 3603-3619, ISSN 0885-6087.

Pan T.Y.; Wang R.Y. & Lai J.S. (2007). A deterministic linearized recurrent neural network
for recognizing the transition of rainfall-runoff processes. Advances in Water
Resources, Vol. 30, pp. 1797-1814, ISSN 0309-1708.

Parlos A.G.; Rais O.T. & Atiya A.F. (2000). Multi-step-ahead prediction using dynamic
recurrent neural networks. Neural Networks, Vol. 13, pp. 765-786, ISSN 0893-6080.

Ptitchkin V.A. (2001). Models of dynamic neural networks and automatic control systems,
Proceedings of the second international conference on neural networks and artificial
intelligence, Republic of Belarus, October 2001, Minsk.

Rahman M.H.R.F. & Kuanyi Z. (2000). Neural network approach for linearizing control of
nonlinear process plants. IEEE Transactions on Industrial Electronics, Vol. 47, No. 2,
pp. 470-477, ISSN 0278-0046.

Ramos J.; Mallants D. & Feyen J. (1995). State space identification of linear deterministic
rainfall-runoff models. Water Resources Research, Vol. 31, No. 6, pp. 1519-1531, ISSN
0043-1397.

Sudheer K.P. (2005). Knowledge extraction from trained neural network river flow models.
Journal of Hydrologic Engineering, Vol. 10, No. 4, pp. 264-269, ISSN 1084-0699.

Tsoi A.C. & Back A. (1997). Discrete time recurrent neural network architectures: a unifying
review. Neurocomputing, Vol. 15, pp. 183-223, ISSN 0925-2312.

Vos N.J. & Rientjes T.H.M. (2005). Constraints of artificial neural networks for rainfall-runoff
modeling: trade-offs in hydrological state representation and model evaluation.
Hydrology and Earth System Sciences Discussions, Vol. 2, pp. 365-415, ISSN 1812-2108.

Walter M; Recknagel F.; Carpenter C. & Bormans M. (2001). Predicting eutrophication
effects in the Burrinjuck Reservoir (Australia) by means of the deterministic model
SALMO and the recurrent neural network model ANNA. Ecological Modelling, Vol.
146, pp. 97-113, ISSN 0304-3800.

Zarmarreño J.M.; Vega P.; García L.D. & Francisco M. (2000). State-space neural network for
modelling, prediction and control. Control Engineering Practice, Vol. 8, pp. 1063-
1075, ISSN 0967-0661.

www.intechopen.com

Recurrent Neural Networks

Edited by Xiaolin Hu and P. Balasubramaniam

ISBN 978-953-7619-08-4

Hard cover, 400 pages

Publisher InTech

Published online 01, September, 2008

Published in print edition September, 2008

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

The concept of neural network originated from neuroscience, and one of its primitive aims is to help us

understand the principle of the central nerve system and related behaviors through mathematical modeling.

The first part of the book is a collection of three contributions dedicated to this aim. The second part of the

book consists of seven chapters, all of which are about system identification and control. The third part of the

book is composed of Chapter 11 and Chapter 12, where two interesting RNNs are discussed, respectively.The

fourth part of the book comprises four chapters focusing on optimization problems. Doing optimization in a way

like the central nerve systems of advanced animals including humans is promising from some viewpoints.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Tsung-yi Pan, Ru-yih Wang, Jihn-sung Lai and Hwa-lung Yu (2008). Application of Recurrent Neural Networks

to Rainfall-runoff Processes, Recurrent Neural Networks, Xiaolin Hu and P. Balasubramaniam (Ed.), ISBN:

978-953-7619-08-4, InTech, Available from:

http://www.intechopen.com/books/recurrent_neural_networks/application_of_recurrent_neural_networks_to_ra

infall-runoff_processes

© 2008 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

