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1. Introduction 

One way to understand cognitive system is to think in terms of dependency relationships 
between the neural controller or micro level, and the agent’s body configuration or macro 
level. Neural dynamics, as modeled in Recurrent Neural Networks (RNN), is determined by 
units and connections self-organization rules. This micro dynamics guides body 
configuration as it commands muscular action. On the other hand, an agent’s self-perception 
causes the body configuration state to influence neural dynamics. Cognitive agents thus 
work in a multi-level causality loop. 
An apparent limitation of RNN to model neural controllers for cognitive agents is that the 
dynamics may converge to a small region of neural state space. In the extreme case, this 
includes convergence to a fixed point or to limit cycles where only a few neural states are 
visited. Since agent’s body configuration is mostly determined by neural activity, limited 
neural dynamics also implies a limited dynamic in an agent’s body — as being completely 
“frozen” or keep doing the the same thing over and over again. 
Because natural cognitive agents, understood as animals and humans, maintain an almost 
continuous thread of behavior while they are awake, one can suggest that neural controllers 
for cognitive modeling and engineering should also allow for this kind of behavior. RNN 
with adaptive thresholds, modeling neural homeostasis, provide one possible answer. When 
units in a RNN are endowed with a rule for dynamically changing units thresholds the 
neural network as a whole behaves in a complex manner, ranging from a close to periodic 
behavior to aperiodic (or chaotic) behavior. When coupled to an agent’s body the neural 
dynamics can be used to produce variability in body configuration dynamics — this is the 
cognitive agent’s behavior at the macro level. This variability is a key requisite to allow 
agents the unaided discovery of possibilities of action (affordances) of their body in the 
context of their environment. Behavior habituation to instantaneous body-environment 
configurations resulting from neural homeostasis, keeps agent continuously exploring the 
configuration space, thus producing novel body postures and/or move the agent to new 
locations in the environment. 
This mechanism while essential for the production of creative or novel behavior, may not be 
enough. Without sensors to perceive their body and environment neural activity can not be O
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influenced by the body-configuration. Thus, neural chaos by itself can not guarantee that the 
agent performs adequately. For example, it may lunch the agent as whole to enter in a self-
destructive non-viable biological, psychological, or social region. Introducing sensors that 
perturb individual neurons and collective dynamics, offers an additional mechanism to 
develop structured behavior. At the formal level, one can infer that by having sensors for 
self and environment perception an agent can change the probability distribution of the 
neural state space. This change, in turn, changes the dynamics and probability distribution 
of the agent body configuration, possibly steering the agent into more interesting regions. 
To illustrate the application of this principles, we show with concrete examples of simple 
articulated agents how chaos in neural controllers can be used to generate novel behavior 
and how self-perception can be used to change neural dynamics. Target applications, 
included muscular control and visual attention. To make the principles general, we also 
present a conceptual framework for embodied neural agents as models for cognitive 
systems. 
We divide this article into four main parts: in section 2, we make an abstract theoretical 
characterization of cognitive systems that is useful for the remaining parts of the discussion. 
In section 3, we describe and discuss the proposed Recurrent Neural Network model that 
uses units with adaptive thresholds to model homeostasis. In section 4, we use this neural 
model to build a particular model of a minimalist cognitive agent, endowed with a single 
link and a joint with only one-degree-of-freedom. The experimental results obtained with 
this cognitive agent are used study muscular control and to illustrate the application of 
RNN with homeostasis. In particular, we compare the behavior of agent at the micro and 
macro level when neural units have or do not have adaptive thresholds and self-perception. 
In section 5, we describe another model that uses RNN with homeostasis, this time modeling 
visual attention. In section 6, we present our conclusions and relate our results with others. 

2. A meta-model for cognitive systems 

For improved understanding of cognitive system, one needs to have a meta-model or meta-
theory that allows one to think in abstract terms and helps to identify the relevant entities and 
concepts specific to the problem domain of cognition. In particular, the relation between 
agents and the environments in which they live, and the relation between its neural controller 
dynamics and body configuration dynamics needs to be put in appropriate perspective. If this 
is achieved, we are better equipped to see what are the relevant elements that models of 
neural networks need to take into consideration to work  effectively as models of cognition. 
In this section, we present such a meta-model organizing the components sub-sections as 
follows: section 2.1 presents the concepts needed to begin understanding cognition; section 2.2 
further develops the relation between neural controllers and behavior of agents; section 2.3 
formally characterizes cognitive systems as complex dynamical systems. 

2.1 Situated cognitive agents and environments 
We characterize cognitive agents as complex systems that can be studied at two different 
complexity levels: the macro-level and the micro-level. The macro-level is defined by the 
configuration state — a formal description of the agents body posture in space and time, as 
seen by an external observer or as made apparent to the agent itself through self-perception. 
A small number of degrees-of-freedom is often required to describe an agent at this level 
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(e.g., the variables of the joint angles plus the parameters of link geometry, as is often used 
in robotics). 
The micro-level is a characterization of the state of agent neural controller. In simple neural 
models, this may include the activation level of neural units, units’ thresholds, and neural 
connections’ weights. Usually, the micro-level requires a much higher number of degrees-of-
freedom to be fully described than the macro-level, since an agent with few links and joints 
may have a controller with many neural units. Interfacing the micro and macro-levels, agent 
descriptions include the way the neural controller is connected to the agents’ body — both 
in muscular connections (efferent) and in the way sensation-perception cells/inputs 
impinge on the neural controller. In complex articulated agents, the number of macro-level 
variables and parameters needed may be in high number (e.g., on the order of dozens), but 
we always assume that the micro-level requires a much high number of variables and 
parameters to be described. A physical (non-cognitive) systems analogy of this, would be a 
rigid body (object) described at the macro-level by a few variable and parameters (e.g., for 
geometry, location and orientation in space, and material properties), and that at the micro-
level requires much more variables if one wanted to describe in detail where all its 
constituent particles/elements are located in space at a given time, assuming, for illustration 
purposes, that this could be done in practice. 
 

 

Figure 1. Conceptual diagram of a cognitive agent, its environment and the external 
observer 

Real and virtual agents are often situated in some environment, in such a way that its 
behavior and interaction with the environment can be observed by an external observer. As 
pointed out by many classical thinkers and researcher in the AI community, the agent’s own 
perception of the environment may be quite different from an external observer’s 
perspective [10]. Namely, external observers can not make easily educate guesses about the 
subjective perspective of the observed agent own perception (e.g., the perspective a human 
and another animal, such as a dog or frog, might have from the same environment, say a 
tree, might be quite different — assuming for illustrations purposes, that the two of them 
could somehow be compared). In Figure 1, we make a sketch representation of the 
relationship between the agent, its environment, the external observer, and the two levels of 
description. Below, we postulate that an agent can be sensitive to its own actions by means 
of self-perception, and we use this to provide a causal account of how such self-generated 
information can be used to guide autonomously the behavior development of the agent 
through learning at the micro-level. 
The activity of neural units often dictates the generation of body movements, by 
commanding internal force to be made by muscular-like structures. Given this, the 
dynamics of body movements as captured by the formal configuration definitions, is a 
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reflection of the dynamics of the neural units (plus whatever mechanical external 
perturbations the environment might impose in the agent at a given time). This is micro-
macro causality mechanism. Moreover, selforganizing mechanisms at the micro-level (e.g., 
learning and homeostasis) may change the probability distribution of states of the micro-
level, and these can also leave a trace at the observed behavior. This macro behavior is 
emergent from the micro-level activity. 
An additional consequence of the above characterization, is that the mapping from the 
(micro) neural level to the (macro) configuration level is not one-toone, since the number of 
degrees-of-freedom are different. Many different neural states may mandate the same body 
configuration. Moreover, since body limbs are pulled by several muscular structures each 
with possibly many different force generating components (e.g., muscular micro-fibers), the 
coordinated action of a large number of neurons and muscular cells is usually required to 
generate strong and high-amplitude body movements. We also explore these aspects below. 
 

 

Figure 2. Block diagram of cognitive agents. 

Since agents have component units sensitive to the environment (the sensationperception 
inputs), agents can receive feedback of the “world-state” (as inferred by their sensorial 
apparatus). This is interpreted as a macro-micro (downward) causality mechanism. 
Moreover, because agent’s sensitivity of the macro world also applies to its own body state, 
agents can sense the effects of their own actions (e.g., using input from proprio-perceptive 
cells in muscles and tendons, by visually looking at body limbs — such as hands, or by 
listing the sounds produced by itself). Below, we call this type of macro-micro causality 
mechanism as self-perturbation or self-perception. 

2.2 Multi-level causality 
Once we make a micro–macro characterization of cognitive systems, we need to focus on the 
causal relations between the two levels. Figure 2, represents these causal relation in agent 
behavior according to the presented meta-model. X represents the (activation) state of the 
neural controller of the agent (part of micro-level or internal state), and Cag represents the 
body configuration of the agent (the macro-level or external state). The self-loop in X 
represents the internal dynamics of the controller, such as modeled in recurrent neural 
network models. The arrow from X to the motor units Mc represent the commanding of 
muscular contraction/distention causing the generation or cessation of internal force. The 
connection from Mc to Cag, represents the actual changes made in body configuration 
caused by changes in internal state (if any). 
Due to self-perturbation (in any sensorial modality) the agent configuration Cag generates 
input or perturbation to the neural dynamics — represented as Π. This represents part of the 
macro-micro causality. As a “side-effect” of the controller internal dynamics, changes in 
body configuration may change the state or configuration of the environment, in the 
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diagram represented as Cenv (e.g., as in a manipulation task). Changes to environment state 
trigger additional perturbation to the neural controller. For individual neural units, the two 
types of perturbation (self-generated and other) should be considered (mechanistically) 
indistinguishable. Additionally, in a complex task-environment, environments may also 
have complicated dynamics of their own (e.g., gravity, dumping, reaction force, etc.) — 
represented as a self-loop in the box labeled Cenv in Figure 2. The environment may also 
impose macro-perturbation in the configuration of the agent, abstracted as mechanical 
external forces Fext. We represent this as an additional arrow in Figure 2 from Cenv to Cag. We 
aggregate the agent configuration Cag and environment configuration Cag, and call it the 
global configuration or just configuration for short. We represent this as: C = Cag · Cenv. 
Changes in neural activity often (but not necessarily always), create body limb movements 
because they command muscular-like structures that create internal mechanical forces on 
the body. In most natural situations, body limb movements are also dependent on other 
mechanical external perturbations on the agent that combine to self-generate internal forces. 
This may include forces such as gravity, object contact reaction-force, and physical 
manipulation by social other. This aspects of agent-environment interaction are not 
developed in the chapter. 
 

 

Figure 3. Diagrammatic representation of multi-level causality with two types of 
perturbation: X is the micro state and C is the macro state as seen by an external observer or 
by the agent itself. Πμ represents the micro-perturbations, mostly due to input to sensorial-
perception units/cells, and Fext represents macroscopic/mechanical perturbations, also 
represented as ΠM. 

Since agents have component units sensitive to the environment (the sensationperception 
inputs), agents can receive feedback of the “world-state”. This input may change internal 
neural dynamics, and in turn change the internal forces that cause body limb movements. 
Agents may also have perception of their own body state (e.g. thought proprio-perception of 
limb displacement, visual perception of own body, or self-produced sounds). In the model 
presented below, we focus our attention on studies of a simple form of proprioceptive 
muscular input. 
Given this characterization, we see that micro and macro level are connected in a two-way 
causality loop. The state of the micro-level determines/influences body configuration, and 
the body configuration perturbs the internal dynamics of the neural controller due to self-
perturbation. Figure 3, further illustrates the notion multi-level causality in cognitive systems. 
An upward arrow is used to represent emergence or upward causality, and an downward 
arrow represents downward causality due to self-perception and perception of the 
environment. 
This characterization of embodied neural agents relates to Ashby classical characterization 
of adaptive agents and agent-environment couplings as dynamical systems [2], further 
explored in mainstream situated AI literature [3]. The above presentation, although similar 
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in general form, makes additional distinctions. In particular, it makes explicit and gives 
theoretical significance to the difference between the typical number of degrees-of-freedom 
at the micro or neural level, and the macro or configuration-level. Namely, |X| >> |Cag|. 

2.3 Characterization as complex dynamical system 
From a formal point of view, the agent body, neural controller, and environment represent a 
(complex) dynamical system that can be summarized with two (vectorial) coupled 
differential equations: 

 

where fa is the neural units activation function, fΠ some (possibly complicated) function that 
maps agent and world configuration to a particular value of individual units perturbation, 
and fC and Mc are functions that relate changes in internal state with changes in agent body 
and world configuration. We are ignoring here and until the next section, second-order 
dynamics in the neural controller, such as learning and/or homeostasis. 
When we make the assumption that the neural state fully determines body posture (e.g. due 
to lack of body inertia), than the differential equation above for the configuration can be 
simplified to a functional equation: C = fC[Mc(X)]. That is the neural state fully determines 
the instantaneous body configuration. When no confusion in caused, we abbreviate the 
above equation to: C = fC(X). 
For simplicity sake, we leave ambiguous whether the information about configuration state 
the agent uses is the same or comparable with the information a particular external observer 
might use to characterize the agent and its environment state. For purposes of neural 
control, the relevant information is the information the agent uses. 

3. A model of RNN with homeostasis 

In previous section, we made an abstract characterization of embodied cognitive agents that 
is independent of the controller and neural model used to generate its behavior. In this 
section, we propose a model of Recurrent Neural Networks with adaptive threshold 
capturing homoeostasis behavior in natural neural cell [16]. In section 3.1, we present the 
equation for neural dynamics. This is a variation of the continuous Hopfield RNN model [7], 
where units threshold changes to push activation back to a resting value. In section 3.2, we 
discuss how the non-embodied RNN model can be extended to control an embodied system 
as is the case of cognitive agents with a body living in some environment. 

3.1 Equations for neural dynamics 
The neural model consist of a set of units whose activation levels is described b a vector X = 
[x1, . . . , xi, . . . , xN], with |X|as the number of units. Neural units activation xi is constrained 
to lie in the interval range [xmin, xmax], where xmax is the saturation value and xmin is the 
lowest/depression value. Units are also assumed to have a rest or natural activation value 
x0. In computer simulation we make neural units start in this rest/natural activation state. 
Neural units are assumed to be connected in a network/graph as a fully recurrent neural 
network (all units connect to all) [7]. Connection strengths are represented by a connectivity 
matrix M, where element cij represents the connection strength or weight between unit i and 
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j. In the simulation results presented below we experiment mostly with fixed connection 
weights. Neural units are assumed to be initially connected with random weights, using a 
normal distribution with mean value 0 and variance 2(M). 
Neural units have an adaptive threshold that is used to maintain units in a sensitive state. 
This is equivalent to cellular homeostasis mechanisms in biological neural networks [16]. 
For unit i we represent its threshold as θi. When a unit’s activation is very high, a slow 
adaptation process takes place that gradually moves the activation value to a rest or natural 
activation value x0. Likewise, when a unit’s activation value is low the same adaptation 
process takes place to raise the activation level to x0. 
The operation of units is formally defined using two ordinary first-order differential 
equations [approximated by the Euler method in the simulations below]. The first equation 
below describes the (fast) dynamics of individual unit’s activation. The second equation 
describes the (slower) dynamics of homeostasis. 

 
above τ1, τ2, with τ 1 << τ 2, are constants for the characteristic times of the neural processes 
modelled. x0 is the resting or natural activation of units. f is an activation gain function. The 
simplest case is to have f a linear function with a constant gain G = 1. ξ is some (optional) 
random noise value. 
Solving for equilibrium in the first equation, τ 1 x$ i = 0, shows that at rest xi = x0 + f(Σj cjixi − θi) 
+ ξ, which is a fast quiescent/rest state. Solving for equilibrium for the second equation, τ 2 

θ$ i = 0, show that at rest xi = x0, which is a slow quiescent/rest state (since τ 1 << τ 2). 
Simulation results presented below show that full equilibrium (that is, xi = x0 for all units) is 
often not reached due to units’ interconnections. 
Neural connections can be made to have weights changed similarly to Hopfield networks by 
using a Hebb-like learning rule. This level of plasticity allow neural agents to have more 
adaptation possibilities since it introduces a second-order dynamics in the system. In this 
chapter, we will focus in networks without learning. 

3.2 Embodiment neural agents 
A straightforward way to give an embodiment to a RNN (with or without homestasic units), 
is to postulate that each agent actuator is controlled by a sub-set of units. Formally, if agent 

configuration state and state space is defined by vector C = [ ψ1, . . . , ψi, . . . , ψN ’], with |C| 

the number-of-degree of freedom of the configuration, then we make each degree-of-

freedom ψi to be a function of a sub-set of neural units X|i. In mathematical notation: ψi = 

f(X|i). Due to this functional relations, movement in neural state space may produce some 
kind of movement at the configuration level. On the other hand, since |X|>> |C|, neural 
dynamics may be sufficiently confined to make changes in agent configuration minimal. 
To make the neural units to receive feedback about behavioral consequence of neural 
dynamics sensorial mechanisms need to be used. One way to model this is to think that each 
agent sensor has the ability to produce a perturbation πi that adds to a units input, with a 
gain ci. This slightly changes the equation for neural dynamics, as follows: 
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Figure 4. Body configuration of a minimalist articulated agent with a single link and 
rotational joint in 2D plane (one degree-of-freedom), controlled by an artificial muscle 
composed of a set of muscular units: left): abstract design; right): visualization in the 
developed neural agent simulator. 

4. A minimalist embodied neural agent 

In this section, we present a model of an embodied neural agent that relies on a RNN with 
homeostasis to control its behavior. In particular, we show that the homeostasis introduces 
aperiodic (chaotic) behavior in the system preventing the agent to ever reach a stationary 
regime. This is argued to be useful for characterizing cognitive systems, since behavioral 
exploration and continuous novelty is a distinguishing feature of this type of systems. 

4.1 Model 
We consider an embodied articulated agent with a single link and a single joint. The joint 
angle   fully defines the body configuration of the agent. The joint angle is determined by the 
contraction of a simplified muscle that works like a mechanical lever. The muscle has a large 
number of muscular units mi. The contraction/ extension of a muscular unit mi produces a 
spatial displacement Δsi, and the summation of all displacements determines the joint angle. 

Formally, ψ = f(Σi Δsi), where f is a function of the detailed geometry of the agent. We 

assume that the contraction of a single neural units produces a relatively small link 
displacement. Therefore, the simultaneous contraction of a large proportion of muscular 
units is required to generate maximum displacement of the link. Additionally, the joint 

angle ψ is always constrained to lie within a maximum amplitude interval [− , ]. The 

agent also contains proprioceptive mechanisms for muscle contraction/distention or link 
angular position (discussed below). In Figure 4, we show the abstract design of the agent. 
We also show the graphical design of the agent as visualized in a developed simulator. 
Muscle contraction (and thus body configuration) is controlled by a neural population with 
N units. We make a simple attachment between this neural population and the muscle units, 
by making the number of muscular units equal to the number of neural units, and 
connecting them one-to-one (unidirectional). Muscular contraction is thus proportional to 

the total activation of the network. When all units are in a rest/natural activation value, φ 
takes value 0 (the link is horizontal). 
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A fixed proportion fπ of neural units is sensitive to the angular position of the link. Namely, 

we define a preferred angular position φ * and cause that sub-set of units to receive 
additional excitation the closer the link is to that preferred position/angle. Thus, this units 
work as proprio-perceptive (proprioceptive) neural cells. The concrete equation we use to 
model this is: 

 

where πi is the external perturbation to the cell due to proprioceptive input, K1 is a parameter 

for maximum perturbation value, (φ − φ*)2 is the squared difference of the link’s current 

angular position and the preferred angle φ*, and K2 is a parameter for how slow perturbation 

decreases as the current angle moves away from the preferred angle φ*. (K2 is also represents 
the variance of a Gaussian curve.) In the simulation results presented below, fπ  is always set 

to .3, φ* always set to 80°. 

4.2 Experimental results 
We have performed several experiments to study the behavior of the previous presented 
model. In these experiments, we generate neural controllers with random connections 
according to the weight matrix M, using mean 0 and variance 2(M) = 1. For the presented 
results, we made connection weights fixed (no learning), and removed internal noise. 
Parameters for unit’s activation were set as follows: x0 = 1, xmax = 3, xmin = .1. Perturbation 
parameters where set as K1 = 5xmax, and K2 = 2. Neural activation levels xi at time t = 0 are 
always set to x0. In studying model behavior, we look both at the neural (micro) and link 
configuration (macro) levels. We also look both at the dynamical and the stochastic aspects 
of model behavior. 
Neural Dynamics without Homeostasis 
When units homeostasis is not put in the model’s operation (τ2 = +∞), the neural activation 
state and the configuration angle converges in most simulation runs to a fixed point. In 
fixed points, a large proportion of units are either fully saturated (xi = xmax) or fully 
depressed (xi = xmin). In some simulation runs, some units converge to intermediary values 
(closer to x0). Simulation runs with different random connection matrices produce different 
fixed points. Figure 5 shows the evolution in neural state space and link-configuration state 
spaces, along side with corresponding probability distributions, for a particular simulation 
run during 200 time steps. (High activation of units is coded as red in color plates, low 
activation as blue, and values near x0 as green.) This is a similar behavior to that observed in 
recurrent neural networks with symmetric connections, as in Hopfield RNN [7]. In a small 
proportion of simulation runs with different connection weight matrices, neural dynamics 
converges to a small region of state space usually in the form of a periodic cycle. In these 
scenarios, most neural units are either in fully depressed or saturated regime, as in fixed 
points solutions, but a proportion of cells oscillates due to non -symmetric and opposite sign 
connections. In Figure 6 we show the evolution of the configuration state for one of such 
simulation run, showing a small periodic cycle that corresponds to an oscillation of low 
amplitude in configuration space. In a set of 10 consecutive runs with the same settings (but 
different weight matrices), the results obtained were qualitatively similar — following one 
of these two cases. The results (either fixed points or periodic cycle) also appeared in 
controllers and networks with different number of neural units, from 5 to 50. Previous work 
also showed that the introduction of considerable noise is (most of the times) not enough to 
take the system away from fixed-points or small-regions of state space [14, 13]. Formally, 
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this means that fixed points are either attracting or Lyapunov stable (neural states tend to 
stay within a small distance of a fixed point when perturbed [15]). 
 

 
Figure 5. Dynamics without homeostasis with convergence to a fixed point (τ2 = +∞, N = 16). 
left-to-right) neural activation history [in (blue, green, red) color code for depressed, rest, 
and saturated activation levels]; probability distribution of neural state space mapped to 

two dimensions (X|1 is the total activation of units index [1 : ], and X|2 is the total units 

activation index [ +1,N])); time series for agent-link configuration angle  ; probability 

distribution for angle configuration angle ψ. 
 

 

Figure 6. Dynamics without homeostasis — convergence to a small region of state space or 
periodic cycle (τ2 = +∞, N = 16). 

Neural Dynamics with Homeostasis 
When units have homeostasis, the behavior of the system changes considerably. The 
proportion of time that units are not saturated or depressed increases, as inspection of the 
differential equation for the threshold above suggests. However, most units do not remain 
with an activation value near x0 all the time since they are taken away from homeostasis due to 
interconnection with other units. Figure 7 and figure 8 shows two qualitatively typical 
simulation runs. [Noise is absent, 2(ξ) = 0.] The system state does not converge to a fixed point 
or some simple attractor, but exhibits behavior that qualitatively can be categorized between 
non-periodic behavior and nearly periodic, due to threshold adjustments [15]. When the 
number of units is small, the behavior of systems tends to be closer to periodic behavior 
(nearly periodic), and when the number of units increases the behavior tends to be more 
aperiodic. Following Langton [8], such class of qualitative behaviors may be designated as 
complex behavior. This is explained considering that although first-order neural dynamics 
cause the system to move to a small region of state space, individual units’ homeostasis 
(modeled as threshold adjustments) take the system away from this regions (fixed-points or 
periodic cycles). This creates the conditions for a wider exploration of state space, when 
compared with setting where the neural controller as only a first-order dynamics. 

www.intechopen.com



Aperiodic (Chaotic) Behavior in RNN with Homeostasis as a Source of Behavior Novelty:  
Theory and Applications 

 

11 

 
Figure 7. Dynamics with Homeostasis: convergence to aperiodic/chaotic regime (τ2 = 1

−τ 1, N =16). 
 

 
Figure 8. Dynamics with Homeostasis: convergence to a nearly periodic regime (τ2 = 

1

−τ 1, N = 8). 
 

 
Figure 9. The effects of proprioceptive input in probability distribution of neural and 
configuration state spaces: top) with proprioceptive input the probability distribution become 
bi-modal, with one high activation region (link up), and one low activation or depressed 
region (link down); bottom)) without proprioceptive input probability distribution become 

uni-modal, with the region near ψ = 0 of highest probability due to homeostasis. 
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Neural Dynamics with Proprioceptive Input 
To investigate the behavior of the system when proprioceptive input is used, we compared 
the behavior of the systems with and without proprioception perturbation for neural 
controllers with the same connection matrices. In particular, we want to see if increasing 
neural activity when body configuration angle is near a preferred position would increase 
the probability of the agent to staying near that region. Figure 9 shows diagrams for the 
probability distribution of the configuration (left) and neural state spaces (right), for one 
particular neural network with and without (top and bottom) proprioceptive perturbation. 
The results show that proprioception cause the link angle distribution to become bimodal; 
with the region slightly above the preferred angle, at 1.4 rad. (marked with a red vertical bar 
in the probability distribution graph on the left), to have highest probability, corresponding 
to a saturated region, and another high probability region corresponding to a region of 
neural depression (with higher entropy than the saturated region). In contrast to this, for the 
same connection weights matrix, the neural dynamics without proprioceptive perturbation 

causes the link distribution to be uni-modal. In this case, the region near ψ = 0 (link at 

horizontal position) is the highest probability region. (Previous work, suggests that this 
distribution can be characterized by a (symmetric) power-law distribution [14]). 
 

 

Figure 10. Comparing probability of regions in configuration state space across 10 different 
simulation runs. 

Testing for Robustness 
Because, the system’s behavior changes considerable with different connection weight 
matrices, we wanted to test the robustness of these findings across multiple runs with 
different controllers. For this purpose, we divided the total link-configuration state space, 

ψ∈ [−  ,  ], in three regions: a depressed region, corresponding to a interval range of ψ∈ 

[−  ,−  ], a resting region with ψ∈ [−  , ], and a saturated and high amplitude region, ψ∈ 

[  ,  ]. Figure 10 shows the probability distribution of link angle for each of these three 

intervals (mean and variance) for 10 different simulation runs. The left-hand graph 
correspond to the settings with proprioceptive input, and in right-hand the graph represents 
the setting without proprioceptive input. The results confirm the initial observation that 
introducing proprioceptive input with higher intensity near a preferred region tends to 
make that region of higher probability. 
The bi-modality, induced by proprioception, arrives because positive perturbations tends to 
increase neural excitation. This can be understood by looking at the equations governing 

system behavior (here in vector form): X$ = F(X, Π; M), which can be linearized to  

X$  ≈ F(X;M)+G· Π, if most units are in linear (non-saturated, non-depressed regime), a 
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condition ensured by homeostasis. Thus, higher input |Π| increases the value of first-

derivative X$ , and higher values of X correspond to higher configuration angles ψ. 

Formally, we can say that in the linear regime  > 0. For link states ψ = ψ*, the first 

derivative X$  is still positive, so the highest probability angle tends to be higher than ψ*. 

5. Other applications: visual attention 

To further illustrate the use of RNN endowed with homeostasis, we describe in this section 
an additional model this time targeting visual attention. It is a variant of the previous model 
for muscular control, but now the agent-link as a sensor apparatus for visual perturbation. 

5.1 Model 
As previously, our agent model description consist of two parts: the description of the agent 
body and the description of the neural controller. The body of the agent consists of a single 
link with a tip with visual-input sensitive cells (figure 11). The link position or body 
configuration is controlled by an antagonistic muscle pair (the left and right muscle), and 
their contraction-extension depends on the activation of the motor units ml and mr, directly 
connected to them. Activity of motor units fully defines the body configuration of the agent, 
and consequently the angular position of his visual axes. Formally, we specify the link angle 
to be: 

 
where Km is a proportionality constant. Therefore, the link will turn to the left when ml > mr 

and to the right when mr > ml. The link is always constrained to lie within a maximum 
amplitude interval [−  ,  ]. 

The visual tip of the agent detects external visual stimuli, modeled here as punctual particles 
fixed or moving in a direction parallel to the horizontal baseline of the link. The particle 
position is defined by the angle Φ*, which is constrained to a maximum amplitude interval  
[ − ,  ]. The presence of the particle imposes a visual input to the neural controller, that 

includes Nv visual units. A visual unit has a maximum activation value when the stimulus is 
located at a particular angular position in relation to a preferred position. Formally, visual 
input is defined as: 

 
where k1 and k2 are two visual input constants. Δ Φ = Φ − Φ* represents the difference 

between link and particle orientations. '

i
Φ  corresponds the preferential angle for each visual 

unit. With the settings above, Δ Φ is constrained to be in the interval [− , ], with limits 
representing the two extreme situations where the particle and the link are as far away as 
possible. 
We made a simple attachment between the visual input units and a neural control 
population, by making the number of units of each population equal and connecting them 
one-to-one (unidirectionally). Control units are connected as a fully recurrent neural 
network — all units connect to all. The control population is connected to the neural motor 
population such that half of the Nc units connect to the motor unit ml, and the other half 
connects to the motor unit mr. That is: 
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5.2 Experimental results 
In this section, we present simulation results for basic experimental settings. We focus on 
experiments with a single particle with a fixed position or simple movements. For more 
elaborated experimental settings see [1]. 
 

 

Figure 11. Diagram of a minimalist embodied neural agent with one degree-offreedom for 
visual attention tasks, subject to a variety of simple visual stimuli (point particles). The agent 
consists of a single link and joint, representing the orientation of a visual axes, a tip sensitive 
to visual stimuli, and an antagonistic muscle pair. left): Graphical visualization in the 
developed neural agent simulator. right): Abstract design representing the agent’s body and 
the set of units controlling muscular contraction-distension, and receiving visual input. The 
body configuration is defined by the link angle _ as commanded by left and right muscles, 
whose contraction/extension is set by two motor units ml and mr. The motor units are 
connected to a set of control neural units. Control units are connected in a fully recurrent 
way (complete connection graph), and each control unit receives input from a 
corresponding visual input unit. 

Neural Dynamics without Homeostasis 
The experiments described in this section were used to analyze the effect of homeostasic 
mechanisms in the visual system, with and without visual perturbation. This study was 
performed with 8 control units (Nc = 8), and then with different sizes of neural populations, 

Nc ∈ {4, 8, 16, 32, 64}. 
In the first trials, the neural control population was setup with eight units. Units in the 
motor population were always set with two units (controlling the left and right muscles). 
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We set as visual stimulus a point particle situated at a fixed distance from the horizontal 
basis of the agent. Different simulation runs select a different (randomly selected) angular 
position for the particle. The weight matrices also take different random values for each 
simulation run with Vc = 1. 
Figure 12 shows the system’s behavior during 500 time-steps of a particular run, when there 
is no visual stimuli present in the agent’s environment. Here, neural homeostasis is turn off 
(τ2 = +∞). The left-handed side of figure 12 depicts the time-series for configuration angle Φ, 
with the vertical axes representing time and the horizontal axes representing angular 
displacement of the link. In the right-handed side is represented the history of neural 
activation using codes (blue for depression, red for saturation and green for intermediate 
values). This is represented with the symbol Xc_. The results show that the body 
configuration/visual orientation quickly converge to a fixed-point. The same happens with 
the neural network dynamics. When equilibrium is reached (around t = 20) a variety of 
individual neural states can be observed. Some cells are in depressed state, some in 
saturated state (in this run, only one), and some take intermediate activation values. The 
initial state fluctuation corresponds to a transient period which can be interpreted as a 
“relaxation” of neural state. The potential energy of the network tends to decrease during 
this period [7]. Different simulation runs would produce different equilibrium states. 
 

 

Figure 12. Time-series for the link configuration angle Φ, and control units’ activation state 
Xc over 500 time-steps. Neural controller has 8 units without homeostasis. 

Neural Dynamics with Perception but without Homeostasis 
In figure 13 we show the behavior of the visual system for two simulation run when a point 
particle is present in the visual field. The figure includes the time-series for the configuration 
state and the time-series for the neural state, and also (in the middle) the time-series for the 
angular difference between link and particle orientations (Δ Φ). The position of the particle 
is highlighted as a vertical red line in the plot for Φ. The results show that for the first 
presented simulation run the angular position of the link is close to the position of the 
particle. This can also be seen by looking at the data plot for Δ Φ which shows that the 
angular distance to the particle quickly converges to a value close to zero. The second row in 
the figure 13, shows that this is not always the case. In this second run the link converges to 
a position far away from the particle position. 
The left-handed side of figure 14 shows the time-series of Δ Φ for 10 consecutive simulation 
runs when the neural controller is configured without homeostasis. The plots confirm the 
previous observations. Although for an important fraction of simulation runs the angular 
differences are reduced (6), for several of the simulation runs the link converges to positions 
far away from the particle. This occurs because the relaxation of the neural state takes the 
link to certain positions before the visual input is able to significantly influence the neural 
dynamics. 

www.intechopen.com



 Recurrent Neural Networks 

 

16 

 

Figure 13. Time-series for the link configuration angle Φ, the difference between link and 
particle positions Δ Φ, and control units activation state Xc over 50 time-steps. Neural 
controller has 8 units without homeostasis. The visual stimulus is represented as a vertical 
red line. Positions were set randomly and were invariant during the simulation time. 
 

 

Figure 14. Time-series of Δ Φ over 200 time-steps for 10 consecutive simulation runs. A 
different particle position was set for each simulation run. (Nc = 8) left): Neural controllers 
without homeostasis; right): Neural controllers with homeostasis. 

Neural Dynamics with Homeostasis 
The introduction of an adaptive mechanism in the form of homeostasis completely changes 
the agent’s internal and external dynamics. Figure 15 shows that when homeostasic 

mechanisms are used (  = 0.5), the body configuration of the agent exhibits a non-periodic 

or chaotic behavior [15]. This means that while the equations for neural dynamics are 
completely deterministic both the link angle and the neural state seems to move erratically 
as if a stochastic process is involved. Note that in this trial the point particle is not present 
yet. Additionally, it can be seen that individual neural units hardly stabilize in particular 
activation values. This occurs because homeostasis slowly pushes unit’s activation to resting 
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value x0. However, due to unit’s interconnections a global equilibrium is never reached [13]. 
Therefore, the proportion of cells not saturated or depressed at a given time is much less 
than when homeostasis is not used. Consequently, the activation state of the neural 
population does not converge to a fixed point. Instead, we can observe complex oscillating 
patterns of neural activity. 
Neural Dynamics with Perception and Homeostasis 
In figure 16, we present data plots for two simulation runs with neural controllers working 
with homeostasis and a point particle is present in two slightly different positions. The 
results show that in both simulation runs the link orientation converges to a region close to 
the particle position. This is confirmed in the middle plot of figure 16 where is shown that  
Δ Φ converges to values close to zero. Most importantly, the link orientation does not 
converge to a fixed-point. Instead, it performs small oscillatory movements. 
Experimentation with model variations, showed that the use of an antagonistic muscle pair, 
as apposed to a single muscle, is very useful to give robustness to the model’s behavior. 
Model variations with a single muscle requires parameters to be carefully selected to 
achieve effective visual fixation behavior. It is interesting to note that while homeostasis 
tends to move the neural state away from particular regions (e.g. a fixed-point) [14, 13], this 
does not cause the system to loose track of the particle and increase error. This happens 
because there is redundancy in the neural state–configuration state mapping, with the 
number of degrees-of-freedom in the former being much higher than the number of degree-
of-freedom in the later (|X| >> 1). This explains why in the righthand plots of figure 16 the 
neural state moves between several states and yet the orientation of the visual axes changes 
little. 
 

 

Figure 15. Time-series for the link configuration angle Φ, and control units activation state 
Xc over 500 time-steps. Neural controller has 8 homeostasic units. 

The right-handed side of figure 14 shows time-series of Δ Φ for 10 consecutive simulation 
runs when the neural controller is configured with homeostasis. The plot shows that the 
behavior of the system is qualitatively different from the behavior when no homeostasis is 
used (left-handed side of figure 14 ). In a significant proportion of runs the link orientation 
approximately matches the particle orientation (Δ Φ ≈ 0), although we can identify 
continuous aperiodic oscillations of the link around the particle position. This happens 
because homeostasis prevents neural state to reach a long-term equilibrium and makes 
unit’s activation to oscillate. On the other hand, the presence of the particle promotes the 
selection of neural states that corresponds to configuration states of high visual stimulation. 
Thus, changes at the macro-level are limited while changes in the micro-level can occur. For 
another important proportion of runs the link orientation moves away from the particle 
position some proportion of the total number of simulation time-steps (in the case, 200). 
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Again this happens due to homeostasis, but at particular occasions the neural state moves to 
regions of the neural states space that do not correspond to a configuration state where the 
link is aligned with the visual particle. Only in one simulation run (plotted in a blue line) the 
link is unable to fixate the particle. 
 

 

Figure 16 Time-series for the link configuration angle Φ, the difference between link and 
particle positions Δ Φ and control units activation state Xc over 500 time-steps. Neural 
controller with 8 homeostasic units. The particle is represented as a vertical red line and is 
located in random positions. 

6. Summary discussion, related work, and conclusions 

Research in Recurrent Neural Networks since Hopfield initial contribution [7] as received 
very much attention specially in exploring its properties as a model for associative memory. 
Additionally, theoretical and experimental advances in artificial intelligence and robotics 
research have identified complexity theory as a promising tool to understand how neural 
agents can self-organize to produce adaptive behavior [11]. Combining RNN models and 
behavioral research is thus a promising approach to understand cognitive systems and the 
role played by recurrent connection in the nervous system. 
In this article, we make a characterization of cognitive agents that is suggestive of how RNN 
can control embodied agents, and extend the basic formulation of RNN to include adaptive 
thresholds to model neural homeostasis. In the proposed approach, adaptive thresholds 
make neural units to move to a resting activation value although at a slower pace than main 
activation dynamics. Experimental results show that homeostasis make neural dynamics to 
produce aperiodic (chaotic) behavior and, for small networks, nearly periodic behavior. We 
showed that this can be used as a source of behavioral exploration and novelty in embodied 
neural agents. 
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Homeostasic mechanisms have been identified in the biological neural networks literature 
[16], and its behavioral relevance is being explored by other researchers [12]. The emergence 
of aperiodic behavior in recurrent neural networks as been previously advanced in literature 
[5], and fits known empirical data about animal and human brain activity [4]. Classical 
cybernetics has also identified homeostasic behavior as a key characteristic of natural and 
artificial adaptive/intelligent systems [2]. Experimental methods have been applied to study 
the role of proprioceptors in neuro-muscular control in animals and humans [6]. The 
situated AI and ALife community as also identified proprioception as an important 
mechanism in agent’s sensoriomotor coordination [9]. 
The applicability of the framework and experimental results presented in this chapter are 
wide. We have provided concrete examples in the domain of muscular control and visual 
attention, and reported some promising results. Other problem domains in cognitive 
modeling should also be considered, to see to what extent embodied neural agents and 
RNN with homeostasis provide a good experimental grounding for research in cognitive 
modeling. 
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