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1. Introduction 

This chapter is devoted to the analysis of the complex dynamics exhibited by two-
dimensional discrete-time delayed Hopfield-type neural networks. 
Since the pioneering work of (Hopfield, 1982; Tank & Hopfield, 1986), the dynamics of 
continuous-time Hopfield neural networks have been thoroughly analyzed. In 
implementing the continuous-time neural networks for practical problems such as image 
processing, pattern recognition and computer simulation, it is essential to formulate a 
discrete-time system which is a version of the continuous-time neural network. However, 
discrete-time counterparts of continuous-time neural networks have only been in the 
spotlight since 2000.  
One of the first problems that needed to be clarified, concerned the discretization technique 
which should be applied in order to obtain a discrete-time system which preserves certain 
dynamic characteristics of the continuous-time system. In (Mohamad & Gopalsamy, 2000)  a 
semi-discretization technique has been presented for continuous-time Hopfield neural 
networks, which leads to discrete-time neural networks which faithfully preserve some 
characteristics of the continuous-time network, such as the steady states and their stability 
properties. 
In recent years, the theory of discrete-time dynamic systems has assumed a greater 
importance as a well deserved discipline. In spite of this tendency of independence, there is 
a striking similarity or even duality between the theories of continuous and discrete 
dynamic systems. Many results in the theory of difference equations have been obtained as 
natural discrete analogs of corresponding results from the theory of differential equations. 
Nevertheless, the theory of difference equations is a lot richer than the corresponding theory 
of differential equations. For example, a simple difference equation resulting from a first 
order differential equation may exhibit chaotic behavior which can only happen for higher 
order differential equations. This is the reason why, when studying discrete-time 
counterparts of continuous neural networks, important differences and more complicated 
behavior may also be revealed.   
The analysis of the dynamics of neural networks focuses on three directions: discovering 
equilibrium states and periodic or quasi-periodic solutions (of fundamental importance in 
biological and artificial systems, as they are associated with central pattern generators 
(Pasemann et al., 2003)), establishing stability properties and bifurcations (leading to the O
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discovery of periodic solutions), and identifying chaotic behavior (with valuable 
applications to practical problems such as optimization (Chen & Aihara, 1995, 1997, 2001; 
Chen & Shih, 2002), associative memory (Adachi & Aihara, 1997) and cryptography (Yu & 
Cao, 2006)). 
We refer to (Guo & Huang, 2004; Guo et al., 2004) for the study of the existence of periodic 
solutions of discrete-time Hopfield neural networks with delays and the investigation of 
exponential stability properties. 
In (Yuan et al., 2004, 2005) and in the most general case, in (He & Cao, 2007), a bifurcation 
analysis of two dimensional discrete neural networks without delays has been undertaken. 
In (Zhang & Zheng, 2005, 2007), the bifurcation phenomena have been studied, for the case 
of two- and n-dimensional discrete neural network models with multi-delays obtained by 
applying the Euler method to a continuous-time Hopfield neural network with no self-
connections. In (Kaslik & Balint, 2007a-b), a bifurcation analysis for discrete-time Hopfield 
neural networks of two neurons with self-connections has been presented, in the case of a 
single delay and of two delays. In (Guo et al., 2007), a generalization of these results was 
attempted, considering three delays; however, only two delays were considered 
independent (the third one is a linear combination of the first two) and the analysis can be 
reduced to the one presented in (Kaslik & Balint, 2007a). 
The latest results concerning chaotic dynamics in discrete-time delayed neural networks can 
be found in (Huang & Zou, 2005) and (Kaslik & Balint, 2007c). 
A general discrete-time Hopfield-type neural network of two neurons with finite delays is 
defined by:  

 )k,k,k,k(maxn
)(ygT)(xgTya=y

)(ygT)(xgTxa=x
22211211

22kn22221kn121n21n

12kn21211kn111n11n
≥∀

⎪⎩

⎪
⎨
⎧

++
++

−−+

−−+
 (1) 

 In this system (0,1)ai ∈  are the internal decays of the neurons, 22ij )T(=T ×  is the 

interconnection matrix, RR →:gi  represent the neuron input-output activations and 

N∈ijk  represent the delays. The reason for incorporating delays into the model equations of 

the network is that, in practice, due to the finite speeds of the switching and transmission of 
signals in a network, time delays unavoidably exist in a working network. 
In order to insure that delays are present, we consider 0>)k,k,k,k(max 22211211 . The non-

delayed case was extensively studied in (He & Cao, 2007). In the followings, we will denote 
)k,k(max=k 21111  and )k,k(max=k 22122 . 

We will suppose that the activation functions ig  are of class 3C  in a neighborhood of 0  

and that 0=(0)gi . In the followings, let 22:g RR →  be the function given by 

T
21 ))y(g),x(g(=)y,x(g  and  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
′′
′′

2221

1211

222121

212111

bb

bb
=

(0)gT(0)gT

(0)gT(0)gT
=(0)TDg=B  

We use the notations )B(tr=bb=2 2211 +β  and )B(det=bbbb= 21122211 −δ . 

The aim of this chapter is to present a complete stability and bifurcation analysis in a 
neighborhood of the null solution of (1), choosing the characteristic parameters ),( δβ  for the 
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system. Considering equal internal decays a=a=a 21  and delays satisfying 

21122211 kk=kk ++ , two complementary situations are discussed:  

• 2211 k=k   

• 2211 kk ≠  (with the supplementary hypothesis 2211 b=b )  

To the best of our knowledge, these are generalizations of all cases considered so far in the 
existing literature. This analysis allows the description of the stability domain of the null 
solution and the types of bifurcation occurring at its boundary, in terms of the characteristic 
parameters. By applying the center manifold theorem and the normal form theory, the 
Neimark-Sacker bifurcations are analyzed. A numerical example is presented to substantiate 
the theoretical findings. Moreover, the numerical example shows that the dynamics become 
more and more complex as the characteristic parameters leave the stability domain, 
eventually leading to the installation of chaotic behavior. The route from stability towards 
chaos passes through several stages of strange attractors and periodic solutions. 

2. Preliminary results 

We will start by giving two results that have particular importance for the bifurcation 
analysis to follow, namely for the study of the distribution of the roots of the characteristic 
polynomial associated to sysem (1) with respect to the unit circle.  
The first result concerns the distribution of the roots of a polynomial function with respect 
to the unit circle, and can be proved using Rouché's theorem. 
Proposition 1. (see (Zhang & Zheng, 2005, 2007)) Suppose that R⊂S  is a compact and 

connected set, and the polynomial )(p...)(p)(p=),(P m
2n

2
1n

1
m α++λα+λα+λαλ −−  is 

continuous on S×C . Then, as the parameter α  varies, the sum of the order of the zeros of 

),(P αλ  out of the unit circle, i.e. 1})|>|0,=),(P:({card λαλ∈λ C , can change only if a zero 

appears on or crossed the unit circle. ■  
The second result concerns the existence of the roots of a special equation which plays an 
important role in the analysis of the characteristic polynomial associated to system (1). 
Proposition 2. (see (Kaslik & Balint, 2007b)) Let be 0m ≥ , ]m[  the integer part of m  and 

(0,1)a∈ . The equation  

 0=msina1)m(sin φ−φ+  (2) 

has exactly 2]m[ +  solutions in the interval ][0,π . More precisely:   

• 0=0φ  is a solution;  

• if 1m ≥ , there is one solution jφ  in every interval ⎟
⎠
⎞

⎜
⎝
⎛ ππ−

⊂⎟
⎠
⎞

⎜
⎝
⎛

+
π

+
π−

m

j
,

m

1)j(

1m

j
,

1m2

1)j(2
, 

]}m[{1,2,...,j∈ ;  

• if N∈m  then πφ + =1]m[  is a solution and if N∉m  then there is one solution 

⎟
⎠
⎞

⎜
⎝
⎛ π

π
∈φ + ,

m

]m[
1]m[ . ■ 

3. Stability and bifurcation analysis 

We transform system (1) into the following system of 2kk 21 ++  equations without delays: 
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)j(
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n222
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n121

(0)
n2

(0)
1n

1
1)j(

n
)j(

1n

)12k(
n212

)11k(
n111

(0)
n1

(0)
1n

 (3) 

where R∈)j(x , 1k0,=j  and R∈)j(y , 2k0,=j . 

Let be the function 
22k1k22k1k

:F
++++ →RR  given by the right hand side of system (3). The 

jacobian matrix of system (3) at the fixed point 
22k1k

0
++∈R  is )0(DF=Â . 

The following characteristic equation is obtained:  

 0=zbb)zbaz)(zbaz(
)21k12k(

2112
22k

222
11k

111
+−−− −−−−−  (4) 

Studying the stability and bifurcations occurring at the origin in system (1) reduces to the 

analysis of the distribution of the roots of the characteristic equation (4) with respect to the 

unit circle. The difficulty of this analysis is due to the large number of parameters appearing 

in the characteristic equation. 

In the followings, considering equal internal decays a=a=a 21  and delays satisfying 

21122211 kk=kk ++ , we will analyze the roots of equation (4) in two particular situations, 

depicting information about the stability and bifurcations occurring at the origin in system 
(1). 

3.1 Situation 1: 2211 k=k  

We will denote k=k=k 2211  and therefore, we have k2=kk 2112 + . 

A particular case of this situation is the one studied in (Kaslik & Balint, 2007a), where in 

addition, it was considered that k=k=k 2112 , that is, all four delays are equal. Another 

particular case of this situation is the one analyzed in (Guo et al., 2007), considering the 

supplementary hypothesis 2211 b=b  (but without assuming that all four delays are equal). 

In this situation, the characteristic equation (4) can be written as:  

 0=)az(z2)az(z k2k2 δ+−β−−  (5) 

The distribution of the roots of the characteristic equation (5) has been thoroughly analyzed 

in (Kaslik & Balint, 2007a). This analysis provides us with the following results concerning 

the stability and bifurcations occurring at the origin in system (1): 

Considering the following notations and associated basic results:   

• 1φ  the unique solution of the equation 0=ksina1)k(sin φ−φ+  from the interval 

)
1k

(0,
+
π

; 

• the strictly decreasing function R→φ ][0,:c 1 , θ−θ+θ kcosa1)k(cos=)(c ; 

• 0<)cosa21a(=)(c 2

1

1
2

1 φ−+−φ ; 
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• the strictly decreasing function )(0,]a),1(c[:U 1 ∞→−φ  defined by 

))(c(cosa2a1=)(U 12 β−+β − ; 

• the function RR →λ :0 , 2
0 )a(1)a2(1=)( −−β−βλ ; 

• the function RR →λ :1 , 2
111 )(c)(c2=)( φ−βφβλ ; 

• the function R→−φ ]a),1(c[:L 1 , ( ){0,1}j)/(max=)(L j ∈βλβ ; 

• ]a1)(c[
2

1
= 10 −+φβ ; 

The following theorem holds: 

Theorem 1. The null solution of (1) is asymptotically stable if and only if β  and δ  satisfy the 

following inequalities:  

 ).(U<<)(Landa1<<)(c 1 βδβ−βφ  (6) 

On the boundary of the set )}(U<<)(Landa1<<)(c:),{(=D 1
2

S βδβ−βφ∈δβ R  the 

following bifurcation phenomena causing the loss of asymptotical stability of the null 
solution of (1) take place:   

i. Let be )a,1( 0 −β∈β . When )(=)(L= 0 βλβδ  system (1) has a Fold bifurcation at the 

origin. 

ii. Let be )),(c( 01 βφ∈β . When )(=)(L= 1 βλβδ  a Neimark-Sacker bifurcation occurs in 

system (1), i.e. a unique closed invariant curve bifurcates from the origin near )(= 1 βλδ . 

iii. Let be )a),1(c( 1 −φ∈β . When )(U= βδ , system (1) has a Neimark-Sacker bifurcation at 

the origin. That is, system (1) has a unique closed invariant curve bifurcating from the 

origin near )(U= βδ . 

iv. For 0= ββ  and )a)(1(c=)(L= 10 −φβδ  a Fold-Neimark-Sacker bifurcation occurs at the 

origin in system (1). 

v. For )(c= 1φβ  and 2
1)(c= φδ , the null solution of (1) is a double Neimark-Sacker 

bifurcation point. 

vi. For )a(1= −β  and 2)a(1= −δ , the system (1) has a strong 1:1 resonant bifurcation at 

the origin. ■ 
The set SD  given by Theorem 1 is the stability domain of the null solution of (1) with 

respect to the characteristic parameters β  and δ . 

3.2 Situation 2: 2211 kk ≠  and 2211 b=b  

A particular case of this situation has been studied in (Kaslik & Balint, 2007b), where in 
addition, it was considered that 2111 k=k  and 2212 k=k . 

In this situation, the characteristic equation (4) can be written as:  

 0=)az(z)az(z)az(z 11k22k222k11k δ+−β−−β−−+
 (7) 

This equation is the same as the one obtained and analyzed in (Kaslik & Balint, 2007b). The 
conclusions of this analysis will be presented below. 
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First, a list of notations will be introduced and some mathematical results will be presented, 
which can be proved using basic mathematical tools:   

• )kk(
2

1
=m 2211 +  and |kk|

2

1
=l 2211 − ; remark: 

2

1
l ≥ , 1>m ; 

• },...,,0,={=S 1]m[2101 +φφφφ  the set of all solutions of the equation (2) from the interval 

][0,π ; 

• }
2

1l2
{1,2,...,j/

l2

1)j(2
={=S j2 ⎥⎦

⎤
⎢⎣
⎡ +

∈
π−

ψ ; 

• ),(min= 111 ψφθ ; 

• the function R→π][0,:c , θ−θ+θ mcosa1)m(cos=)(c ; 

• the function R→π][0,:s , θ−θ+θ msina1)m(sin=)(s ; 

• the strictly decreasing function R→θ )[0,:h 1 , )l(sec)(c=)(h θθθ ; 

• 
⎩
⎨
⎧

ψ≥φ∞−
ψφφφ

θα
θ→θ 11

1111

1
if

<if0<)l(sec)(c
=)(hlim=  

• )[0,]a,1(:h 1
1 θ→−α−  the inverse of the function h ; 

• the strictly decreasing function )(0,]a,1(:U ∞→−α , ))(h(cosa2a1=)(U 12 β−+β − ;  

• the functions RR →λ :j , 2
jjjj )(c)l(cos)(c2=)( φ−βφφβλ ; 

• the function R→−α ]a,1(:L , ( )1}]m[{0,1,...,j)/(max=)(L j +∈βλβ ; 

• ijβ  the solution of the equation )(=)( ji βλβλ , ji ≠ ; 

• 0)<1},]m[{1,2,...,j/(max= j0j00 β+∈ββ ; 

• remark: 2
0 )a(1)a2(1=)(=)(L −−β−βλβ  for any ]a,1[ 0 −β∈β ; 

• if the equation )(L=)(U ββ  has some roots in the interval ),( 0βα , then 1β  is the largest 

of these roots; otherwise, αβ =1 .  

We will consider the following two cases:   

(c1) At least one of the delays 11k  or 22k  is odd.  

(c2) Both delays 11k  and 22k  are even.  

Theorem 2.  The null solution of (1) is asymptotically stable if β  and δ  satisfy the following 

inequalities:  

 ).(U<<)(Landa1<<1 βδβ−ββ  (8) 

On the boundary of the set )}(U<<)(Landa1<<:),{(=D 1
2

S βδβ−ββ∈δβ R  the following 

bifurcation phenomena causing the loss of asymptotical stability of the null solution of (1) 
take place:   

i. Let be )a,1( 1 −β∈β . When )(U= βδ , system (1) has a Neimark-Sacker bifurcation at the 

origin. That is, system (1) has a unique closed invariant curve bifurcating from the 

origin near )(U= βδ . 

ii. Let be ),( 01 ββ∈β  such that the function L  is differentiable at β . When )(L= βδ :  
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        (c1) system (1) has a Neimark-Sacker bifurcation at the origin.  
        (c2) system (1) has a Flip or a Neimark-Sacker bifurcation at the origin.  

iii. Let be )a,1( 0 −β∈β . When 2)a(1)a2(1=)(L= −−β−βδ  system (1) has a Fold 

bifurcation at the origin. 

iv. For )a(1= −β  and 2)a(1= −δ , system (1) has a strong 1:1  resonant bifurcation at the 

origin. 

v. For 0= ββ  and 2
00 )a(1)a2(1=)(L= −−β−βδ , system (1) has a Fold-Neimark-Sacker 

bifurcation at the origin. 

vi. For 1= ββ  and )(U= 1βδ :   

        (c1) system (1) has a double Neimark-Sacker bifurcation at the origin.  

        (c2) system (1) has a double Neimark-Sacker or a Flip-Neimark-Sacker bifurcation at the  

        origin.  

vii. If there exists ),( 01 ββ∈β∗  such that the function L  is not differentiable at ∗β , then for 

∗ββ =  and )(L= ∗βδ :   

        (c1) system (1) has a double Neimark-Sacker bifurcation at the origin.  

        (c2) system (1) has a double Neimark-Sacker or a Flip-Neimark-Sacker bifurcation at the  

        origin. ■  

We underline that Theorems 1 and 2 completely characterize the stability domain (in the 

),( δβ -plane) of the null solution of (1) and the bifurcations occurring at its boundary, in the 

considered situations. 

4. Direction and stability of Neimark-Sacker bifurcations 

Let be the function 
22k1k22k1k

:F
++++ →RR  given by the right hand side of system (3). Let 

be the operators )0(DF=Â , )0(FD=B̂ 2  and )0(FD=Ĉ 3 . 

In the cases ii. and iii. of Theorem 1 and i. and ii. of Theorem 2, Neimark-Sacker bifurcations 

occur at the origin in system (1). That is, matrix Â  has a simple pair )z,z(  of eigenvalues on 

the unit circle, such that z  is not a root of order 1,2,3,4  of the unity. 

The restriction of system (3) to its two dimensional center manifold at the critical parameter 

values can be transformed into the normal form written in complex coordinates (see 

(Kuznetsov, 2004)):  

 C∈++ w),|w(|O)|w|d
2

1
(1zww 42U  (9) 

with 

〉−+−+〈 −− ))q,q(B̂)ÂIz(,q(B̂))q,q(B̂)ÂI(,q(B̂2)q,q,q(Ĉ,pz=d 121  

 

where zq=qÂ , pz=pÂT  and 1=q,p 〉〈  (with qp=q,p T〉〈 ) 

Direct computations provide the following result: 
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Proposition 3. Suppose that 21122211 kk=kk ++  and a=a=a 21 . Consider 

]b)az(z][b)az(z[=)z(P 22
22k

11
11k −−−− . The vectors q  and p  of 

22k1k ++
C  which verify  

1=q,p;pz=pÂ;zq=qÂ T 〉〈  

are given by: 

T
222

12k
2

2k
111

11k
1

1k
)q,zq,...,qz,qz,q,zq,...,qz,qz(=q

−−
 

T
2

12k
2221

11k
111 )p)az(z,...,p)az(z,p)az(,p,p)az(z,...,p)az(z,p)az(,p(=p −−−−−− −−

 

where 
)z(Pb

)az(z
=p;

)z(P

1
=p;b=q;)az(z=q

21

11k

21212
22k

1 ′
β−−

′
β−− .■  

The following result gives us information about the direction and stability of Neimark-
Sacker bifurcations. 
Proposition 4. (see (Kuznetsov, 2004)) The direction and stability of the Neimark-Sacker 
bifurcation is determined by the sign of )d(Re . If 0<)d(Re  then the bifurcation is 

supercritical, i.e. the closed invariant curve bifurcating from the origin is asymptotically 
stable. If 0>)d(Re , the bifurcation is subcritical, i.e. the closed invariant curve bifurcating 

from the origin is unstable. ■  

5. Example 

In the following example, we will consider the delays 1=k11 , 5=k22 , 4=k12  and 

2=k21 . We will also choose 0.5=a  and β=b=b 2211 . In this case, using Mathematica, we 

compute:   

• }2.28703,1,1.44928,{0,0.66756=S1 π  (rad), }
4

3
,

4
{=S2

ππ
; 

• 0.667561== 11 φθ  (rad), 2.91934= −α , 0.723816=1 −β , 0.162831=0 −β ; 

• 0.380779.= −β∗   

The bifurcations occurring at the boundary of SD  (provided by Theorem 2) are:   

• For ),( 01 ββ∈β  and )(U= βδ  a Neimark-Sacker bifurcation occurs, with the multipliers 

)(1ihe β−± ; 

• For )a,1( 0 −β∈β  and 2
0 )a(1)a2(1=)(= −−β−βλδ  a Fold bifurcation occurs; 

• For ),( 1
∗ββ∈β  and )(=)(L= 2 βλβδ  a Neimark-Sacker bifurcation occurs, with the 

multipliers 2i
e

φ±
; 

• For ),( 0ββ∈β ∗  and )(=)(L= 1 βλβδ  a Neimark-Sacker bifurcation occurs, with the 

multipliers 1i
e

φ±
; 

• For a1= −β  and 2)a(1= −δ  a 1:1 resonant bifurcation occurs; 

• For 1= ββ  and )(U= 1βδ  a double Neimark-Sacker bifurcation occurs; 
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• For 0= ββ  and )(=)(L= 000 βλβδ  a Fold-Neimark-Sacker bifurcation occurs. 

• For ∗ββ =  and )(L= ∗βδ  a double Neimark-Sacker bifurcation occurs. 

The stability domain in the ),( δβ -plane for this network is the one presented in Figure 1. 

More precisely, we consider the delayed discrete-time Hopfield neural network:  

 5n
)y(sin)x(tanh)(y0.5=y

)y(sin)x(tanhx0.5=x

5n2n
2

n1n

4n1nn1n ≥∀
⎩
⎨
⎧

β+β−δ+
−β+

−−+

−−+
 (10) 

 

Choosing 0.25= −β , we obtain that the origin is asymptotically stable if 

.324255)0.385082,0(−∈δ  and supercritical Neimark-Sacker bifurcations occur at 

0.385082=)(L= −βδ  and 0.324255=)(U= βδ  respectively (see Figures 4-5). The bifurcation 

diagram for 2.5,2.5)(−∈δ  is presented in Figure 2 and the values of the Largest Lyapunov 

Characteristic Exponent are presented in Figure 3. It can be seen that as δ  leaves the 

stability domain SD , the dynamics in a neighborhood of the origin become more and more 

complex, eventually leading to the occurrence of chaotic behavior. The phase portraits presented 
in Figures 6-7 sillustrate the changes which appear on the route from stable dynamics to chaotic 
dynamics, in a neighborhood of the origin, as ||δ  increases from 0 to 2.5. 

 

Fig. 1. Stability domain for the null solution when 1=k11 , 5=k22 , 4=k12 ,  2=k21  

 
 

Fig. 2. Bifurcation diagram for system (10) with 0.25= −β , in the (,x) -plane, for  ∈(-2.5,2.5) 

(with the step size of 0.02 for ). For this bifurcation diagram, for each  value, the initial 
conditions were reset to (x0,y0)=(0.01,0.01) and 105 time steps were iterated before plotting 
the data (which consists of  102 points per  value). 
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Fig. 3. Largest Lyapunov Characteristic Exponent for system (10) with 0.25= −β . For the 

computation of the Lyapunov spectrum, for each δ  value (step size 0.02  for δ ), the initial 

conditions were reset and 510  time-steps were iterated before calculating the LCEs (which 

were computed over the next 510  time steps). The Lyapunov spectrum was computed 
using the Householder QR based (HQRB) method presented in (Bremen et al., 1997).  
 

  
 

Fig. 4. Supercritical Neimark-Sacker bifurcation at 0.324255=δ . For 0.32=δ , the null 

solution is asymptotically stable, and the trajectory converges to the origin. For 0.33=b , an 
asymptotically stable cycle (1-torus) is present, and the trajectory converges to this cycle. 
 

  
Fig. 5. Supercritical Neimark-Sacker bifurcation at 0.385082= −δ . For 0.38= −δ , the null 

solution is asymptotically stable, and the trajectory converges to the origin. For 0.39=b − , 
an asymptotically stable cycle (1-torus) is present, and the trajectory converges to this cycle. 
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Fig. 6. Phase portraits for various values of (0,2.5)∈δ , at the first step towards chaos. The 

route towards chaos passes through several stages: 0.6=δ , 1=δ , 1.5=δ : 1-toruses 

( 0=LLCE ); 1.55=δ : 2-torus ( 0=LLCE ); 1.6=δ : strange attractor ( 0LLCE ≈ ); 1.7=δ : 
chaos (LLCE>0). For each plot, considering the initial conditions (x0,y0)=(0.01,0.01), the first 106 
iterations of system (10) have been dropped, and the next 104 iterations have been plotted.  
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Fig. 7: Phase portraits for various values of 2.5,0)(−∈δ , at the first step towards chaos. The 

route towards chaos passes through several stages: 0.6= −δ , 1.5= −δ : 1-toruses 

( 0=LLCE ); 1.55= −δ : stable period-9 orbit ( 0<LLCE ); 1.6= −δ : 1-torus ( 0=LLCE ); 

1.8= −δ : 2-torus ( 0=LLCE ), 2= −δ : strange attractor ( 0LLCE ≈ ). For each plot, 

considering the initial conditions )(0.01,0.01=)y,x( 00 , the first 610  iterations of system (10) 

have been dropped, and the next 104 iterations have been plotted.  
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6. Conclusions 

A complete bifurcation analysis has been presented for a discrete-time Hopfield-type neural 
network of two neurons with several delays, uncovering the structure of the stability 
domain of the null solution, as well as the types of bifurcations occurring at its boundary. 
The numerical example illustrated the theoretical results and suggested some routes 
towards chaos as the characteristic parameters of the system leave the stability domain.  
A generalization of these results to more complicated networks of two or more neurons may 
constitute a direction for future research. 
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