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1. Introduction 

In this chapter, we review existing locally recurrent neural networks and introduce a novel 
artificial neural network architecture that merges the locally recurrent probabilistic neural 
networks (LRPNN) with swarm intelligence algorithms and concepts.   
In particular, we develop an enhanced LRPNN model, referred to as Partially Connected 
LRPNN (PC-LRPNN). In contrast to LRPNN, where the recurrent layer consists of a set of 
fully connected neurons, the proposed new architecture assumes a swarm of neurons in the 
recurrent layer. Each neuron of the swarm presumes a neighbourhood of neurons with 
which it communicates through interconnections. The locality that determines the 
neighbourhoods is defined based on existing neighbourhood and communication schemes 
proposed in the swarm intelligence literature. Obviously, the PC-LRPNN offers a more 
general scheme, in which the fully connected LRPNN can be considered as a particular case, 
where all links in the recurrent layer are implemented. 
The neighbourhood topology of the new, swarm-based recurrent layer can be either static or 
dynamic. Dynamic neighbourhoods have been studied extensively in the field of swarm 
intelligence, since swarms with dynamic communication schemes among individuals have 
been shown to achieve remarkably better results than swarms with static communication 
schemes in the field of optimization. Also, the plasticity of the neighbourhoods can be useful 
in cases where better fit to unknown data is required.  In the present chapter we will limit 
our exposition to the static neighbourhoods, which are defined once during training, and 
remain unchanged during the operation of the PC-LRPNN.  However, the concepts that we 
introduce here can be extended further to the dynamic counterparts. 
The aforementioned local neighbourhoods and communications schemes facilitate the 

optimization of the recurrent layer linkage, which leads to much faster operation of the 

neural network, when compared to the fully linked structure.  Furthermore, it significantly 

reduces the computational load for the overall training of the recurrent layer, which is 

performed at each case using the Particle Swarm Optimization (PSO) algorithm.  Equipping 

the PC-LRPNN with PSO, results in an efficient hybrid scheme that takes advantage of the 

virtues of the probabilistic neural networks (PNN), recurrent neural networks (RNN), 

swarm intelligence concept, and that can tackle successfully real-life classification problems 

that assume temporal or spatial correlations among subsequent events. O
pe

n 
A

cc
es

s 
D

at
ab

as
e 

w
w

w
.i-

te
ch

on
lin

e.
co

m

Source: Recurrent Neural Networks, Book edited by: Xiaolin Hu and P. Balasubramaniam, ISBN 978-953-7619-08-4, pp. 400, September 
2008, I-Tech, Vienna, Austria
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2. Locally recurrent neural networks 

A large number of recurrent and locally recurrent neural networks (LRNNs) have been 
studied in the literature. All they posses the valuable virtue to learn temporal dependences 
among the training data, which allows for context awareness, and thus, for improved 
recognition capabilities when compared to their non-recurrent counterparts. This advantage 
has proved useful in numerous applications of the LRNNs on real-life problems, which 
among others include: nonlinear system identification (Back & Tsoi, 1992; Lin et al., 1998); 
grammatical inference (Lin et al., 1998); weather prediction (Aussem et al., 1995); speech 
recognition (Kasper et al., (1995, 1996)); protection of power systems (Cannas et al., 1998); 
speaker verification (Ganchev et al., (2003, 2004, 2007)); wind speed prediction (Barbounis & 
Theocharis, (2007a, 2007b)), etc. 
The locally recurrent global feedforward architecture was originally proposed by Back and 
Tsoi (Back & Tsoi, 1991), who considered an extension of the Multilayer Perceptron (MLP) 
neural network to exploit contextual information.  In their work, they introduced the Infinite 
Impulse Response (IIR) and Finite Impulse Response (FIR) synapses, able to utilize temporal 
dependencies in the input data.  The FIR synapse has connections to its own, current and 
delayed, inputs, while the IIR synapse has also connections to its past outputs.   
Ku and Lee (Ku & Lee, 1995) proposed Diagonal Recurrent Neural Networks (DRNN) for 
the task of system identification in real-time control applications.  Their approach is based 
on the assumption that a single feedback from the neuron’s own output is sufficient.  Thus, 
they simplify the fully connected neural network to render training easier.   
A comprehensive study of several MLP-based Locally Recurrent Neural Networks is 
available in (Campolucci et al., 1999).  They introduced a unifying framework for the 
gradient calculation techniques, called Causal Recursive Back-Propagation. All 
aforementioned approaches consider gradient-based training techniques for neural 
networks, which, as it is well known, require differentiable transfer functions. 
From the abundance of LRNN, in the present work, we will consider primary architectures 
originating from the family of the Probabilistic Neural Network (PNN).  Specifically in the 
present section we will briefly outline the Locally Recurrent Probabilistic Neural Network 
(LRPNN), which was introduced (Ganchev et al., 2003) as an extension of the feed-forward 
Probabilistic Neural Network (PNN) architecture (Specht, (1988, 1990)). This structure is 
used as basis for the novel partially connected LRPNN (PC-LRPNN), which we will discuss 
in the next sections. 
In brief, the LRPNN was derived from the original PNN by incorporating an additional 
hidden layer, referred to as recurrent layer, between the summation layer and the output 
competitive layer of the PNN structure.  The recurrent layer consists of neurons possessing 
feedbacks from all other neurons in that layer. Due to this recurrent layer, the LRPNN, in 
contrast to the original PNN, is sensitive to the context in which the individual input data 
appear, and thus, it is capable to learn temporal regularities and the sequence of occurrence 
of events.  Specifically, in the frame of speech processing this new capability of the LRPNN 
enables detecting and exploiting the abundance of correlations among speech features 
vectors estimated for successive speech frames. Exploiting these correlations was found 
important for improving the classification accuracy in the speaker verification task (Ganchev 
et al., (2003, 2004, 2007)).  
As presented in earlier studies  (Ganchev et al., (2003, 2004)) in the LRPNN architecture each 
neuron in the recurrent layer receives as input not only current values of its inputs, but also 
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the N  previous outputs of all neurons in that layer.  Broadly speaking, the input, acting on 

a recurrent neuron located in the recurrent hidden layer of an LRPNN, is a sum of two 
differences: The first difference is between the weighted probability of the given class and 
the sum of weighted probabilities computed for all other classes. These probabilities are 
computed at the output of the summation layer of the LRPNN.  The second difference is 
between the weighted past output values of the given unit and the sum of the weighted past 
output values of all other neurons in this layer.  Thus, in the proposed architecture, the 
probability of belonging to a specific class is combined with the probabilities computed for 
the other classes, and more importantly with the past values of the outputs of the recurrent 
units for all classes. This incorporation of previous information enables the LRPNN network 
to take advantage of the temporal context, which results in producing smoother in the time 
output scores, improved confidence levels, and consequently more accurate final decisions. 
In the present chapter, we elaborate further on the LRPNN architecture by studying ways to 
optimize the recurrent layer linkage.  In contrast to LRPNN, where the recurrent layer 
consists of a set of fully connected neurons, the introduced here new PC-LRPNN 
architecture assumes a swarm of neurons in the recurrent layer.  Each neuron of the swarm 
presumes a neighbourhood of neurons with which it communicates through 
interconnections.  The locality that determines the neighbourhoods is defined based on 
existing neighbourhood and communication schemes proposed in the swarm intelligence 
literature.  When compared to the original LRPNN architecture, the PC-LRPNN has a 
greater capacity to adapt (its recurrent layer linkage) to the training dataset.  This is due to 
the additional degree of freedom provided by the recurrent layer linkage selection that can 
be controlled for a fine-tuning of the neural network to the problem at hand.  Obviously, the 
fully connected LRPNN architecture can be regarded as a particular case of the PC-LRPNN, 
which implements the full linkage in the recurrent layer. 

3. Particle swarms and particle swarm optimization 

The particle swarm is a community of individual performers, known as particles, which 
communicate/share information and collaborate on finding optimal regions in the search 
space. In the literature, the particle swarm is synonym to Particle Swarm Optimization 
(PSO) algorithm, which has become an attractive alternative to other optimization 
techniques (Clerc and Kennedy, 2002).  
In brief, PSO is a stochastic optimization, population-based algorithm. It was introduced in 
1995 by Kennedy and Eberhart (Kennedy & Eberhart, 1995), inspired by social behaviour 
simulation models. Features such as information exchange and neighbour alignment are 
inherent in such models, allowing the emergence of intelligent behaviour in swarms of 
simple agents with limited field of action. Similarly to evolutionary algorithms, PSO exploits 
a population, called a swarm, of potential solutions, called particles, which adapt their 
position stochastically at each iteration of the algorithm.  
In contrast to standard evolutionary approaches, PSO promotes cooperativeness rather than 
competition among the solutions. More specifically, instead of using explicit mutation and 
selection operators in order to modify the population and favour the best performing 
individuals, PSO uses an adaptable position shift, called velocity, to move each particle to a 
new position at each iteration of the algorithm. The particles are moving towards promising 
regions of the search space by exploiting information springing from their own experience 
during the search as well as from the experience of other particles. For this purpose, a 
memory of the best position ever visited by each particle in the search space is retained.  
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In the context of single-objective optimization, the PSO can be outlined formally as follows: 

Let S be an n-dimensional search space, f : S → { be the objective function, and N  be the 

number of particles that comprise the swarm,  

 S = {x1, x2,…, xN}.  (1) 

Then, the ith particle is a point in the search space,  

 xi = (xi1, xi2,…, xin) ∈ S,  (2) 

as well as its best position, 

 pi = (pi1, pi2,…, pin) ∈ S, (3) 

which is the best position ever visited by xi  during the search. The velocity of xi  is also an n-
dimensional vector, 

 vi = (vi1, vi2,…, vin).  (4) 

In order to avoid biasing the swarm in specific parts of the search space, the particles as well 
as their velocities are randomly initialized in the search space.  

Let NGi ⊆ S  be a set of particles that exchange information with xi. This set is called the 

neighbourhood of xi and it will be discussed later. Let also, g, be the index of the best particle 
in NGi, i.e.,  

 f(pg) ≤ f(pl),                for all l  with xl ∈ NGi, (5) 

and t denote the iteration counter. Then, the swarm is manipulated according to the 
equations (Eberhart & Shi, 2000), 

 vij(t+1) = w vij(t) + c1 r1 (pij(t) – xij(t)) + c2 r2 (pgj(t) – xij(t)),  (6) 

 xij(t+1) = xij(t) + vij(t+1),  (7) 

where i = 1, 2,…, N; j = 1, 2,…, n; w is a positive parameter called inertia weight; c1 and c2 are 
two positive constants called cognitive and social parameter, respectively; and r1, r2, are 
realizations of two independent random variables that assume the uniform distribution in 
the range [0, 1]. The best position of each particle is updated at each iteration by setting  

 pi(t+1) = xi(t+1),                  if  f(xi) < f(pi), (8) 

otherwise it remains unchanged. Obviously, an update of the index g is also required at each 
iteration. 
The inertia weight was not used in early PSO versions. However, experiments showed that 
the lack of mechanism for controlling the velocities could result in swarm explosion, i.e., an 
unbounded increase in the magnitude of the velocities, which resulted in swarm divergence. 
For this purpose, a boundary, vmax, was imposed on the absolute value of the velocities, such 
that, if vij > vmax then vij = vmax, and if vij < -vmax then vij = -vmax. In later, more sophisticated 
versions, the new parameter was incorporated in the velocity update equation, in order to 
control the impact of the previous velocity on the current one, although the use of vmax was 
not abandoned.  
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Intelligent search algorithms, such as PSO, must demonstrate an ability to combine 
exploration, i.e., visiting new regions of the search space, and exploitation, i.e., performing 
more refined local search, in a balanced way in order to solve problems effectively 
(Parsopoulos & Vrahatis, (2002, 2004, 2007)).  Since larger values of w promote exploration, 
while smaller values promote exploitation, it was proposed and experimentally verified that 
declining values of the inertia weight can provide better results than fixed values. Thus, an 
initial value of w around 1.0 and a gradually decline towards 0.0 are considered a good 
choice. On the other hand, the parameters c1 and c2 are usually set to fixed and equal values 
such that the particle is equally influenced by its own best position, pi, as well as the best 
position of its neighbourhood, pg, unless the problem at hand implies a different setting. 
An alternative velocity update equation was proposed by Clerc & Kennedy, (2002), 

 vij(t+1) = χ [vij(t) + c1 r1 (pij(t) – xij(t)) + c2 r2 (pgj(t) – xij(t))],  (9) 

where χ  is a parameter called constriction factor. This version is algebraically equivalent with 
the inertia weight version of (6). However, the parameter selection in this case is based on 
the stability analysis due to Clerc and Kennedy (2002), which expresses χ as a function of c1 
and c2. Different promising models were derived through the analysis of the algorithm, with 
the setting χ = 0.729, c1 = c2 =2.05, providing the most promising results and robust 
behaviour, rendering it the default PSO parameter setting. 
Regardless of the PSO version used, it is clear that its performance is heavily dependent on 
the information provided by the best positions, pi  and pg, since they determine the region of 
the search space that will be visited by the particle. Therefore, their selection, especially for 
pg, which is related to information exchange, plays a central role in the development of 
effective and efficient PSO variants. Moreover, the concept of neighbourhood mentioned 
earlier in this section, raises efficiency issues. A neighbourhood has been already defined as 
a subset of the swarm. The most straightforward choice would be to consider as neighbours 
of the particle xi, all particles enclosed in a sphere with centre xi and a user-defined radius in 
the search space. Despite its simplicity, this approach increases significantly the 
computational burden of the algorithm, since it requires the computation of all distances 
among particles at each iteration. This deficiency has been addressed by defining 
neighbourhoods in the space of particles’ indices instead of the actual search space. 
Thus, the neighbours of xi are determined based solely on the indices of the particles, 
assuming different neighbourhood topologies, i.e., orderings of the particles’ indices. The most 
common neighbourhood is the ring topology, depicted in Fig. 1 (left), where the particles are 
arranged on a ring, with xi-1 and xi+1 being the immediate neighbours of xi, and x1 following 
immediately after xN. Based on this topology, a neighbourhood of radius r of xi is defined as 

 NGi(r) = {xi-r, xi-r+1,…, xi-1, xi, xi+1,…, xi+r-1, xi+r}, (10) 

 

 

Fig. 1. The ring (left) and star (right) neighbourhood topologies of PSO 
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and the search is influenced by the particle’s own best position, pi, as well as the best 
position of its neighbourhood. This topology promotes exploration, since the information 
carried by the best positions is communicated slowly through the neighbours of each 
particle. A different topology is the star topology, depicted in Fig. 1 (right) where all particles 
communicate only with a single particle, which is the overall best position, pg, of the swarm, 

i.e., NGi ≡ S. This topology promotes exploitation, since all particles share the same 

information. This is also called the global variant of PSO, denoted as gbest in the relative 

literature, while all other topologies with NGi ⊂ S, define local variants, usually denoted as 

lbest. Different topologies have also been investigated with promising results (Kennedy, 
1999; Janson & Middendorf, 2005). 

4. The partially connected locally recurrent probabilistic neural network 

The LRPNN was derived (Ganchev et al., 2003) from the original PNN (Specht, 1988) by 
incorporating an additional hidden layer, referred to as recurrent layer, between the 
summation layer and the output competitive layer of the PNN structure.  This recurrent 
layer consists of neurons possessing feedbacks with all other neurons in that layer.  
Elaborating on the LRPNN, here, we introduce the Partially Connected LRPNN (PC-LRPNN) 
architecture.  Fig. 2 presents the simplified structure of a PC-LRPNN for classification in 
K classes.  In contrast to the fully connected LRPNN, where each neuron in the recurrent 
layer communicates with all other neurons in that layer (i.e. global communication is enabled), 
in the PC-LRPNN the recurrent layer linkage is implemented only partially, depending on 
the problem at hand and the actual training data.  This is illustrated in Fig. 2, where the 
 

 

Fig. 2. Structure of the Partially Connected Locally Recurrent Probabilistic Neural Network 
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dashed line indicates that the linkage between neurons 1y , 2y  and yK  might not be 

implemented.  In general, the concept of partially connected recurrent layer can be regarded 
as defining local neighbourhoods for each of the recurrent layer neurons.  This can be 
viewed as establishing a swarm of neurons which cooperate (i.e. exchange information) in 
order to categorize more precisely a given unknown input.  However, in contrast to the 
classic particle swarms that are utilized in the PSO schemes, here the local neural 
neighbours are not defined by the specific values of the neurons’ indexes but the swarm 
members are selected during training, on a competitive basis, and in data-dependent 
manner, with respect to certain predefined criterion.  In practice, the size of neighbourhood 
and the recurrence depth (i.e. the depth of memory) in the recurrent layer are specified 
depending on a priori knowledge about the specific problem at hand, or are identified 
heuristically after some experimentation with a representative dataset.  
However, before describing any specific strategy for implementing the (partial) linkage of 
the recurrent layer, for comprehensiveness of exposition we briefly outline the PC-LRPNN 
architecture.  In brief, the first two hidden layers the PC-LRPNNs, as their predecessor — 
the PNNs, implement the Parzen window estimator (Parzen, 1962) by using a mixture of 

Gaussian basis functions.  If a PC-LRPNN for classification in K  classes is considered, the 

class conditional probability density function ( | )i p ip kx  is defined as: 

 
2 2

1

1 1 1
( | ) f ( ) exp ( ) ( )

2(2 )

iM
T

i p i i p p ij p ijd d
ji ii

p k
M σπ σ =

⎛ ⎞
= = ⋅ − − −⎜ ⎟

⎝ ⎠
∑x x x x x x , 1,2,..., ,i K=  (11) 

where for simplicity of further notations ( | )i p ip kx  is replaced by f ( )i px .  Here ijx  is the j th 

training vector from class iκ , px  belonging to the set { },p=X x  with 1,2,..., ,p P=  is the p th 

input vector, d  is the dimension of the input vectors, and iM  is the number of training 

patterns in class iκ .  Each training vector ijx  is assumed a centre of a kernel function, and 

consequently the number of pattern units in the first hidden layer of the neural network is 

given by the sum of the pattern units for all the classes.  The standard deviation iσ  acts as a 

smoothing factor, which softens the surface defined by the multiple Gaussian functions.  

Instead of the simple covariance matrix, { }2
i Iσ , where I  represents the identity matrix, the 

full covariance matrix can be computed using the Expectation Maximization algorithm, as 
proposed in (Yang & Chen, 1998; Mak & Kung, 2000) and elsewhere.  Since the computation 

of the covariance matrix, or the optimization of the smoothing factor iσ , does not interfere 

with the development of the PNN we discuss, for simplicity of exposition, we consider here 
the simple case, where the value of the standard deviation is identical for all pattern units 

belonging to a specific class.  Moreover, iσ  can be the same for all pattern units, irrespective 

of their class belonging, as it was originally proposed (Specht, 1990). 

Next, the class conditional probability density functions f ( )i px  for each class iκ , estimated 

through (11), act as inputs for the recurrent layer.  In general, the recurrent layer can be 
considered as a form of Infinite Impulse Response (IIR) filter that smoothes the probabilities 
generated for each class, by incorporating information about the probabilities computed for 
all other classes, and more importantly, by exploiting one or more past values of the outputs 
for all classes.   
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The recurrent layer is composed of recurrent neurons, which in addition to the inputs 
coming from the summation layer also possess feedbacks from their own past outputs and 
from current and past outputs of the neurons of the other classes.  Fig. 3 illustrates the 
linkage of a single neuron belonging to the hidden recurrent layer.  As shown in the figure, 

beside the PDFs from all classes, f ( ),  1,2,..., ,i p i K=x  this neuron also receives feedbacks 

from its past outputs, y ( ),  1,2,..., ,i p t t N− =x  with i  denoting the current neuron number, as 

well as from current y ( ),  1,2,...,j i p j K≠′ =x  and past y ( ),j i p t≠ −x  1,2,..., ,  1,2,..., ,j K t N= =  

outputs from all other neurons belonging to that layer.  Here, the subscript p  stands for the 

serial number of the input vector px .  On its own side, the current neuron provides to the 

other neurons of the recurrent layer its current y ( )i px  and past y ( ),i p t−x  1,2,...,t N=  

outputs, again with p  standing for the specific input vector.   

 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

Fig. 3.  Linkage of a neuron that belongs to the recurrent layer 

A detailed structure of the recurrent neurons is provided in Fig. 4.  As the figure presents, 

the inputs f ( ),  1,2,..., ,i p i K=x  denoting the class conditional PDFs, are weighted by the 

coefficients ,i jb .  The two indexes of the weights of ,i jb  with 1,2,...,i K=  and 1,2,...,j K=  

stand for the current recurrent neuron and for the class to which the corresponding input 

belongs.  The first two indexes of the weights , ,i j ta  have the same meaning as for the 

weights ,i jb , and the third index 1,2,...,t N=  shows the time delay of the specific output 

before it appear as an input.   

All feedbacks y ( )i p t−x , 1,2,...,t N=  that originate from the present neuron i , and the links 

y ( ),j i p t≠ −x  1,2,..., ,j K=  1,2,...,t N=  coming from the other neurons j i≠  of the recurrent 

layer are weighted by the coefficients , , ,  1,2,...,i i ta t N=  and , , ,i j i ta ≠  1,2,..., ,j K=  

1,2,...,t N= , respectively. 
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The summation units’ output y ( )i px  of the locally recurrent layer is computed by: 

 , , , , , ,
1 1 1

1,2,..., ,y ( ) f ( ) f ( ) y ( ) y ( ) ,  
K N K

i p i i i p i k k p i i t i p t i k t k p t
k t k
i k i k

i Kb b a a− −
= = =
≠ ≠

=

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= − + −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

∑ ∑ ∑x x x x x  (12) 

where f ( )i px  is the probability density function of each class iκ , px  is the p th input vector, 

K  is the number of classes, N  is the recurrence depth, ( )yi p t−x  is the normalized past 

output for class iκ  that has been delayed on t  time steps, and , ,i j ta  and ,i jb  are weight 

coefficients.  The output y ( )i px  of each summation unit from the recurrent layer is subject to 

the regularization transformation: 

 
( )
( )

1

sgm y ( )
y ( )

sgm y ( )

i p

i p K

j p
j=

=
∑

x

x

x

, 1,2,..., ,i K=  (13) 

which retains the probabilistic interpretation of the output of the recurrent layer.  Here, the 
designation sgm  refers to the sigmoid activation function. 

∑
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Fig. 4. Internal structure of the ith neuron from the recurrent layer of the PC-LRPNN 
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Subsequently, in the output layer, often referred as competitive layer, the Bayesian decision 

rule (14) is applied to distinguish class iκ , to which the input vector px  is categorized:  

 { }D( ) argmax y ( ) ,  1,2,..., ,p i i i p
i

h c i K= =x x  (14) 

where ih  is a priori probability of occurrence of a pattern from class iκ , and ic  is the cost 

function associated with the misclassification of a vector belonging to class iκ . 

Finally, provided that all classes are mutually exclusive and exhaustive, we can compute the 

Bayesian confidence for every decision D( )px by applying the Bayes’ theorem: 

 

1

y ( )
( | ) ,  1,2,..., .

y ( )

i i p
i p K

j j pj

h
P k i K

h=

= =
∑

x
x

x

 (15) 

The posterior probability ( | )i pP k x  for the p th input vector belonging to class iκ  is 

computed by relying on the a priori probabilities ih  and the temporally smoothed PDFs 

y ( )i px .   

The decision D( )px , and the confidence for every decision ( | )i pP k x ,  are computed for 

every input vector. However, in many practical applications (such as speaker verification, 

speaker identification, emotion detection, etc) every test trial (usually a speech utterance) 

consists of multiple feature vectors.  Therefore, the probability ( | )iP k X  all test vectors 

originating from a given test trial { },p=X x  1,2,...,p P=  to belong to class iκ , can be 

computed by: 

 
1

1 1

D( )
( | ) ,   1,2,..., ,

D( )

P
p ip

i K P
p jj p

k
P k i K

k

=

= =
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∑
∑ ∑
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 (16) 

where 
1

D( )
P

p ip
k=

⎡ ⎤=⎣ ⎦∑ x  is the number of vectors px classified by the Bayesian decision rule 

(14) as belonging to class iκ .  In applications that assume an exhaustive taxonomy any of 

the inputs px  falls in one of the classes iκ , and therefore the equality: 

 
1 1

D( ) ,
K P

p jj p
P k= =

⎡ ⎤= =⎣ ⎦∑ ∑ x  (17) 

 

where P  is the number of test vectors in the given trial X , is always preserved. 

However, in many real-world applications computing the probability ( | )iP k X  is not 

sufficient as a final outcome from the PC-LRPNN.  In such cases, a final decision is made by 

applying the Bayesian decision rule: 

 { }( ) argmax ( | ) ,i
i

D P k=X X  1,2,..., ,i K=  (18) 

or alternatively, the outcome of (16) is assessed with respect to a predefined threshold θ : 
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      decision #1

( | )  
      decision #2iP k

θ
θ

>⎧
⎨≤⎩

X . (19) 

Most often, the threshold θ  is computed on a data set, referred to as development or 

validation data, which is independent from the training and testing data.  A necessary 

requirement for obtaining a reasonable estimate of θ  is the development data to be 

representative, i.e., they have to bear a resemblance to the real-world data on which the PC-
LRPNN will operate within the corresponding application. 

5. Training the PC-LRPNN 

In general, the training of the PC-LRPNNs is similar to the three-step training procedure of 
the original fully connected LRPNNs (Ganchev et al, 2004) except for one extra step that is 
PC-LRPNN specific.  Specifically, in the LRPNN, the first two steps implement the usual 
strategy for training PNNs, while the third step adjusts the weights in the recurrent layer.  In 
the PC-LRPNN the third training step is preceded by procedure which selects the actual 
linkage that will be implemented in the recurrent layer, i.e. the PC-LRPNN are trained in 
four steps.  In the following we provide a concise description of the entire training process 
of the PC-LRPNN. 
STEP 1:  In brief, by analogy to the original PNN, the first training step creates the actual 

topology of the network.  In the first hidden layer, a pattern unit for each training 
vector is created by setting its weight vector equal to the corresponding training vector.  
In order to reduce the amount of neurons, i.e. the computational load during operation, 
the training data can be compressed by performing some sort of clustering (for instance, 
k-means) as pre-processing of the training dataset.  An alternative approach could be to 
employ pruning and discard redundant neurons, or to build the first layer in multistep 
manner by adding a new neuron only when there is compelling need this to be done.  
The outputs of the pattern units associated with the class iκ  are then connected to one 

of the second hidden layer summation units.  The number of summation units is equal 

to the number of target classes K . The outputs of the summation units can be fed to 
some or all neurons of the recurrent layer, depending on the implemented linkage.  

STEP 2:  The second training step is the computation of the smoothing parameter 
i

σ  for each 

class.  To this end, various approaches (Meisel, 1972; Cain, 1990; Specht, 1992; Musavi et 
al., 1992; Specht & Romsdahl, 1994; Masters, 1993; Georgiou et al., (2006, 2008), etc) have 
been proposed.  Although other methods can be employed, here we will mention only 

the one (Cain, 1990) due to its simplicity.  According to that approach, any 
i

σ  is 

proportional to the mean value of the minimum distances among the training vectors in 

class iκ : 

 { }2

, , 2
1

1
min

iM

i i j i j i
jiM

σ λ ≠
=

= −∑ x x  (20) 

where ,i jx  is the j th pattern unit (located in the pattern layer) for class iκ ; 
2

 .  

corresponds to the 2-norm on dR  (reminding that ,i jx  are the stored training data, and 

therefore, ,
d

i j ∈x R ); d  is the dimensionality of the input data; the expression 
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 { }2

, , 2
min i j i j i≠−x x  (21) 

represents the smallest Euclidean distance computed between j th pattern unit of class 

iκ  and all other pattern units from the same class;  and iM  is the number of training 

patterns in class iκ . The constant λ , which controls the degree of overlapping among 

the individual Gaussian functions, is usually selected in the range λ ∈ [1.1, 1.4]. If the 

smoothing parameter is common for all classes, either it is chosen empirically, or it is 
computed by applying (20) on the entire training data set.   

Step 3:  For the PC-LRPNNs, the third training step selects the recurrent layer linkage to be 
implemented.  This linkage could be static, i.e. defined once during training, or 
dynamic, i.e. changing during operation of the PC-LRPNN, depending on the input 
sequences.  Furthermore, it could be expected that many of the recurrent layer neurons 
will participate in multiple class-specific neighbourhoods, which are then combined to 
assemble the recurrent layer linkage, but there could be neurons that do not participate 
in any swarms and are left detached from their neighbours.  Usually, the linkage 
selection is performed in a data-dependent manner but it could be also based on the 
indexes of the individual neurons, if there is such necessity they to be pre-specified or 
bounded.  

In fact, the linkage selection consists in identifying a sufficient subset of connections which 

typically is much smaller than the size of the full linkage. An assortment of strategies can be 

applied for identifying the optimal subsets of interacting neurons, i.e. the scope of swarm, 

and the neighbourhood for each target class.  For instance, examples could be strategies 

based on identifying the Top-C competitor classes for a given input sequence, and 

implementing the linkage only for the recurrent neurons corresponding to these classes.  

The linkage to the less-promising competitors, which are not members of the Top-C club, is 

not implemented.  An alternative strategy could be to perform pruning of the connections, 

starting from the fully connected LRPNN and iteratively identifying and discarding links 

which are not contributing for maximizing the overall performance.  Yet, another strategy 

could be to start from the simplest reasonable topology and continue adding connections 

until the performance of the PC-LRPNN increases, or predefined limits are reached.  Other 

strategies might involve optimization of the linkage of each particular recurrent neuron or 

the amount of memory it possesses, and then organize teams of super-neurons, etc.  

Obviously, the most successful strategies should exploit any a priori knowledge about the 

problem at hand and be able to interpret properly the information available in the training 

dataset.   

At this point, we need to remember that in the PC-LRPNNs we deal with classification 

scheme of the type winner-takes-all, and that the scores acting on the input of the recurrent 

layer are in fact the probabilities computed by the summation units in the previous layer.  

These probabilities compete for distinguishing the winning class, and in non-trivial multi-

class problems there exist more than one probability bigger than zero.  For this type of 

classification scheme, we can consider a straightforward but efficient and effective strategy 

that builds the recurrent layer linkage by identifying a neighbourhood for a given recurrent 

neuron in terms of its closest competitors for the prise.  In such a strategy, we follow a two 

stage procedure:  
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1. Firstly, we identify the Top-C competitors for each target class, by feeding the original 
non-compressed training data for that class at the input of the already trained pattern 
layer. At the output of the class-specific summation units (residing in the summation 

layer), the outcome will be a set of xiM K  probabilities, with iM  indicating the number 

of feature vectors in the training dataset for class iκ  and K  the total number of target 

classes.  Having computed the matrix xiM K  for a specific class iκ , we can identify the 

Top-C competitors by computing the average score per class, and sorting these values.  
2. Subsequently, we implement symmetric connections only among these Top-C recurrent 

neurons.  Here, symmetric stands for the case where each neuron that receives 
information form another neuron also supplies back to this neuron the equivalent 
information about its own class.  Thus, the relationship between the two neurons is 
symmetric in terms of linkage.  However, in the general case symmetry might not be 
reasonable or desirable and should not be imposed unless the properties of the 
underlying training data indicate such necessity, or there exists some a priori 
knowledge about the problem at hand. 

Eventually, the recurrent layer linkage is formed as union of all class-specific 

neighbourhoods. This can be expressed as follows: Let 0L  be the xK K  matrix which 

represents the connections originating form the output of the summation layer to the inputs 

of the recurrent layer neurons, and 0( , ) 1l i j =  indicates that the specific connection from the 

summation unit corresponding to class iκ  is connected to the recurrent neuron for class jκ . 

Alternatively, the value 0( , ) 0l i j =  would indicate that the specific connection was not 

implemented.  The individual elements of the 0L  matrix, i.e. 0( , )l i j , can be referred to as the 

mask which determines if the specific coefficients ,i jb (refer to (12) ) will be present or not.  

Obviously, it is mandatory for the diagonal elements of 0L  to have non-zero values, i.e. 

0( , ) 1l i i = , for any 1,2,..., ,i K=  so a connection between the summation and recurrent layer 

in class jκ is always guaranteed.  As explained earlier, the rest of the linkage 0( , )
i j

l i j
≠

can 

be identified in a data-dependent manner (for instance, by following the Top-C strategy), or 
by utilizing a priori knowledge. 

By analogy, let the xK K matrixes nL , with 1,2,..., ,n N=  stand for the links that originate 

from the past outputs of the recurrent layer neurons to the inputs of neurons in the same 

layer.  Here n  is the index of delay, and the elements of nL  serve as a mask, which 

determines if the coefficients , ,i j na  (refer to (12) ) will exist, or not.  Again, let the elements of 

1 ,L  1( , ) 1l i j = , indicate that there exists a connection between the past output at time 1t − of 

the recurrent neuron for class iκ  and the input of the recurrent neuron for class jκ , and 

1( , ) 0l i j =  indicate for lack of connection.  The same logic applies for the other matrixes nL , 

but in contrast with 0L  there are no restrictions about the values of their elements, ( , )nl i j , 

i.e. there could be a case where all ( , ) 0nl i j = .  In such a case, all recurrent feedbacks from 

past states as well as the connections between the recurrent neurons are dismissed, which is 

equivalent to recurrence depth 0N = . When this is combined with strategy Top-1 (and all 

coefficients , 1i ib = ), the PC-LRPNN becomes functionally identical to the original PNN.  On 
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the other hand, when all ( , ) 1nl i j = and 0( , ) 1l i j =  the structure of the PC-LRPNN coincides 

with the one of the fully connected LRPNN.  
Eventually, the overall linkage of the recurrent layer is the composite matrix 

 [ ]0 1  ...  ...  n NL L L L L= B B B , 1,2,..., ,n N=  (22) 

with dimensionality ( )+ 1 x xN K K , where K  is the total number of target classes, and N  is 

the recurrence depth.   
In general, the linkage defined by the matrixes nL  and 0L  can be identified using different 

strategies, or yet the same Top-C strategy.  Furthermore, in the simplest scenario, the 

matrixes nL  could be duplicates of 0L , so L  to have a repeating structure, however, this is 

not a requisite by any means.  Once the proper linkage L  is identified the weight of each 
connection needs to be estimated. 
STEP 4:  Finally, the forth training step consists in computation of the recurrent layer weights, 

using the uncompressed training data exploited at step three.  In previous work 
(Ganchev et al, (2003, 2004)), we studied training strategies that aim at adjusting the 
weights in the recurrent layer in a manner that maximizes the classification accuracy on 
the training data set.  Here we rely on another more successful strategy that was 
developed recently (Ganchev, in-press-2008).  In brief, this new training strategy does 
not rely on a quantitative measure accounting for the classification performance on the 
training dataset, but merely aims at maximizing the probability for the target class and 
simultaneously minimizing the probabilities computed for the non-target classes over 
the training dataset. This leads to a simplification of the error function and reduction in 
the number of steps necessary for evaluating the goodness of the recurrent layer 
weights at each iteration.  

Specifically, the new error function that is subject to minimization here involves the 

complementary to one value of the probability ( | )
ik iP kX , and the compound probability for 

ikX  belonging to any other class:   

 ( )
1 1 1

1
E( ) 1 ( | ) ( ) ( | ) ( )

1i i

K K K

i k i i j k j j
i i j

j i

m P k P k m P k P k
K= = =

≠

= − +
−∑ ∑∑w X X . (23) 

Here 
ikX are the training data for class iκ , and ( )iP k  are the a priori probability of class  iκ .  

Finally, the constants im  and jm  determine the relative importance of (or alternatively the 

significance of misclassification of an input belonging to) the corresponding class iκ  or 

j iκ ≠ , respectively. 

The first term in equation (23) estimates the distance between the probability ( | )
ik iP kX  and 

one, i.e. the error with respect to the probability computed for a perfect match to the model.  
This term causes the output for class iκ  of the trained recurrent layer to strive towards 

value one for input vectors that resemble the training dataset for that class.   The second 
term in equation (23) is the cumulative error of 

ikX being acknowledged as belonging to any 

of the competitive classes j iκ ≠ .  This second term contributes towards restraining the output 

values produced by the competitive classes for input data that belong to class iκ . 
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The minimization of total error E( )w  is performed by employing a PSO algorithm Type 1 

(Clerc & Kennedy, 2002), which was found more successful and/or much faster than other 
PSO implementations, such as the basic PSO (Eberhart & Shi, 2000), the local PSO as in 
(Liang et al., 2006), and the UPSO (Parsopoulos & Vrahatis, 2005). 

6. Numerical evaluation 

The experimentations reported in the present section aim at illustrating the operation of the 
PC-LRPNNs, but also serve as a scene for discussing the advantages and disadvantages of 
the PC-LRPNN, when compared to the original PNN and the fully connected LRPNN.  
Specifically, for the purpose of experimentations, we selected two interesting problems of 
different difficulty. Both of these problems are important for the development of human-
friendly spoken dialogue applications, and by that reason they currently enjoy significant 
attention by the speech processing community.  The first one is the text-independent 
speaker identification task, which is of moderate difficulty, and the second one is the 
speaker-independent emotion recognition task, which is well-known as an extremely 
challenging problem. In the following paragraphs we offer a brief outline of these tasks: 
Task 1: Text-independent speaker identification 
Speaker identification is multiple-class decision problem where the identity of a given 
speaker is judged based on a comparison of a sample of her\his voice against multiple pre-
defined models.  The outcome of this process is either a decision about the identity of the 
speaker or a notice that the present input cannot be categorized as any of the known 
speakers.  In the closed set speaker identification that we consider here, the input speech 
utterances always belong to someone of the known speakers.  Here, text-independence 
referrers to the specific aspect that no explicit modelling of the linguistic contents of the 
input utterance is performed.  Thus, the outcome of the identification process is not 
dependent on the exact linguistic contents of the phrase, but only on the degree of proximity 
between the input speech signal and the predefined speaker models.  
Task 2: Speaker-independent emotion recognition 
The emotion classification task is a multiple-class decision problem, where the emotional 
state of a given speaker is judged based on comparison of an input (typically a speech 
utterance) against multiple pre-defined models for the emotional states of interest.  Here, the 
notion for speaker-independency refers to the fact that the models for the emotional states of 
interest are general for a large population of people, and were built utilizing the speech of 
people who do not present in the test datasets.  Emotion recognition from speech is a very 
challenging task mainly due to the inherent speaker-dependency of emotion expression but 
also due to the well-known multi-functionality of speech (Batliner & Huber, 2007).   

6.1 Experimental protocol 

Common training and testing protocols were followed in all experiments. All classifiers 
considered in the present evaluation (GMM, PNN, LRPNN, PC-LRPNN) were trained with 
common task-specific train datasets, and trials were performed with common task-specific 
test datasets.   
For the purpose of the speaker identification task, ten female speakers, extracted from the 

PolyCost v1.0 telephone-speech speaker recognition corpus (Hennebert et al., 2000) were 

modelled as authorized users.  The training data, comprised of ten utterances, containing 
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both numbers and sentences, obtained from the first session of each speaker.  In average, 

about 17 seconds of voiced speech per speaker were available for training each user model.  

The test dataset consisted of 450 target trials, including 45 utterances per speaker.  Each test 

trial involved approximately 3 seconds of speech.  All speech recordings are of telephone 

bandwidth, sampled at 8 kHz, and A-law compressed. 

For the purpose of the experimentations with the emotion classification task, we utilized the 

recordings of all eight speakers available in the Emotional Prosody Speech and Transcripts 

database (LDC, 2002).  All recordings were split in utterances, with respect to the provided 

annotations, and then were down-sampled to 8 kHz and band-limited to telephone quality 

bandwidth.  

In the specific experimental setup considered here, we carry out recognition of three 

emotional states: neutral, anger, and panic. This combination is of particular interests for 

practical applications, but also has proved as a very challenging set, since the members of 

the pairs: hot anger – panic, and cold anger – neutral, share a number of common prosodic 

characteristics.   

The training dataset consist of the available recordings for the seven speakers and the 

recordings of the remaining speaker were used as the test dataset.  Since one of the speakers 

had only neutral recordings, the training data for the anger and panic models were built 

from the recordings of six speakers.  The amount of available data for training the speaker-

independent models for the three emotional categories of interest was much different: 

approximately 1650, 380 and 180 seconds of speech for neutral, anger and panic, 

respectively.  For the purpose of fair training of the emotion models, we performed k-means 

clustering as a pre-processing of the training dataset.  The resultant codebooks, one per 

speaker, one per emotion category, were of size 256 feature vectors.  Subsequently, these 

codebooks were used to train the neural network-based classifiers.   

On the other hand, the GMM-based classifier was trained directly from the uncompressed 

dataset, for achieving a higher precision of the emotion models.  The diagonal covariance 

GMM emotion models were trained via a standard version of the Expectation Maximization 

algorithm (McLachlan & Krishnan, 1997) with a maximum of 200 iterations.  Training 

termination criterion was applied, and training process was interrupted if there was no error 

reduction among subsequent iterations.  

The amount of target trials per category was 115, 29 and 18 utterances for the neutral, anger 
and panic, respectively.  Each test trial consisted of approximately 3 seconds of speech. 
In both tasks, only the voiced parts of the speech signal was parameterized to Mel-frequency 

cepstral coefficients (MFCC) with a rate of 100 feature vectors per second.  We utilized the 

MFCC implementation of Slaney (Slaney, 1998), but adapted for sampling frequency of 8 

kHz.  This resulted in a filter-bank of thirty-two filters, which cover the frequency range 

[133, 3954] Hz, from which we computed 29 cepstral coefficients.  In all experiments, we 

excluded the first cepstral coefficient (i.e. the one with index zero) from the feature vector, to 

avoid dependence on the recording setup (distance to the microphone, communication 

channel and handset mismatch, etc). Finally, in all experiments we considered a common 

feature vector consisting of the MFCC parameters {MFCC(1) ,…,MFCC(28)}.  All parameters 

of the feature vector were normalized to fit in a common dynamic range. 
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6.2 Experimental results 

In this section, we study the performance of the PC-LRPNN for different connectivity range 

of the neighbourhood, Top-C, and different recurrence depth, ,N  of the recurrent layer. 

Comparisons with the PNN, GMM and the fully connected LRPNN are provided as follows: 
The PC-LRPNN vs. the PNN and LRPNN, in the speaker identification task 
Since in this task we consider identification of 10 different voices, i.e. we have 10 classes, we 
can note that in the case Top-C=10, the PC-LRPNN is equivalent to the fully connected 

LRPNN.  On the other hand, in the case of 0N = , Top-C=1, the PC-LRPNN has the same 

number of weights in the recurrent layer as the number of connections between the 
summation and competitive layers in the PNN.  However, there is no equivalence between 
these two structures, mainly because the weights of the connections between the summation 
and recurrent layers in the PC-LRPNN are adjusted during training, while in the PNN they 
are all equal.  This gives to the PC-LRPNN the capability to model better the training data.  
In Fig. 5, we present the performance of the PC-LRPNN in the speaker identification task, 
and in Table 1, we show the number of recurrent layer weights for different values of the 

recurrence depth, N , and different values of the neighbourhood, Top-C.  As the figure 

presents, for the PNN we obtained recognition accuracy of 91.6%, which we consider as the 
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pcLRPNN(N=0) 93.1 93.6 93.6 92.2 94.0 91.6

pcLRPNN(N=1) 94.0 93.3 93.1 91.8 92.2 92.9

pcLRPNN(N=2) 94.2 93.8 93.6 93.3 93.3 93.1

PNN 91.6

TopC=1 TopC=2 TopC=3 TopC=5 TopC=7 TopC=10

 

Fig. 5. Performance of the PC-LRPNN classifier on the speaker identification task, for 

different values of the recurrence depth, ,N  and different size of the recurrent layer 

neighbourhoods, Top-C. 
 

Number of recurrent 
layer weights 

N=0 N=1 N=2 

Top-C=1 10 20 30 
Top-C=2 30 60 90 
Top-C=3 46 92 138 
Top-C=5 68 136 204 
Top-C=7 90 180 270 

Top-C=10 100 200 300 

Table 1. The number of recurrent layer weights to be trained, for different recurrence depth, 

,N  and different size of the recurrent layer neighbourhood, Top-C 
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baseline.  It is interesting to note that the performance of the PC-LRPNN for 0N = , Top-

C=1, i.e. when there are no recurrent feedbacks in the recurrent layer and the connection 
between the summation layer and recurrent layer neurons is implemented only for the top 
scoring candidates, is higher than the baseline, PNN, although the number of weights is 
equal.  As explained above, this advantage of the PC-LRPNN comes from the fact that the 
values of these weights are trained in a data-dependent manner, while in the original PNN, 

these weight are equal.  Furthermore, for recurrence depth 0N = , the PC-LRPNN with 

neighbourhood Top-C=7 demonstrated the highest recognition accuracy (94.0%), which is 
higher than the recognition accuracy for the case of Top-C=10, i.e. the equivalent to the fully 
connected LRPNN.  The last can be explained with the smaller number of weights to be 
adjusted for the case of Top-C=7, and the limited amount of training data. 
Next, as Fig. 5 presents, the highest recognition accuracy among all (94.2%) was achieved for 

the PC-LRPNN with 2,N =  and Top-C=1.  The top performance here illustrates both the 

importance of the recurrence depth (i.e. the memory about past states) and the capability of 
the PC-LRPNN to implement partial linkage in the recurrent layer.  As the figure presents, 

the second best performance is shared between the PC-LRPNN with 1,N =  and Top-C=1, 

and the already discussed  0,N =  and Top-C=7.   It is interesting to note that the recurrent 

PC-LRPNN ( 1N = ) achieves this performance with only 20 weights, while the non-

recurrent PC-LRPNN ( 0N = ) needs 90 (please refer to Table 1.) 

Speaking generally, we can conclude that the presented example on the speaker 
identification task illustrates undoubtedly that the PC-LRPNNs provide higher recognition 
accuracy than the baseline PNN.  This advantage is mainly due to the exploitation of 
information from the competitive classes, which the recurrent layer neurons utilize for 
proper selection of the class belonging of a given input sequence.  Furthermore, we 
observed that the PC-LRPNNs show performance even better than the one of the fully 
connected LRPNN.   This superiority is due mainly to the additional degree of freedom that 
the PC-LRPNNs possess, i.e. the better flexibility to adjust the implementation of the 
recurrent layer linkage to the available training data.  Finally, it is worth mentioning that 
due to the reduced number of weights, the PC-LRPNN are trained and operate much faster 
than the fully connected LRPNN. 
The PC-LRPNN vs. the PNN, LRPNN and GMM, in the emotion recognition task 
In the emotion recognition task, we firstly experimented with a state-of-the-art GMM-based 
classifier to identify the maximum performance that can be obtained (for a context-blind 
classifier) in our experimental setup.  In Fig. 6, we present the identification accuracy 
obtained for different number of components in a Gaussian mixture.  As the figure presents, 
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Fig. 6. Performance of the GMM classifier for different number of components on the 
speaker-independent emotion recognition task 
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the highest recognition accuracy (59.4%) was observed for the case of Gaussian mixture with 
35 components.  This performance will be considered as the baseline. 
In Fig. 7, we present the recognition accuracy obtained for the PNN, PC-LRPNN and the 

LRPNN for different values of the recurrence depth, ,N  and different size of the recurrent 

layer neighbourhoods, Top-C.  Table 2 presents the number of weights in the recurrent layer 
that need to be trained for the PC-LRPNN and LRPNN.  Since in the present experimental 
setup we have three emotional categories, the PC-LRPNN with Top-C=3 is equivalent to the 
fully connected LRPNN. 
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Fig. 7. Performance of the PC-LRPNN classifier on the emotion recognition task, for 

different values of the recurrence depth, ,N  and different size of the recurrent layer 

neighbourhoods, Top-C. 

As the figure presents, the recognition accuracy obtained for the PNN is inferior to the one 
for the GMM classifier.  The difference in performance of approximately 1% can be 
explained by the fact that here we employ the original homoscedastic PNN, which utilizes 

uniform smoothing factor 
i

σ  for all classes, while the diagonal GMM employed here adjusts 

the variance for each class and thus is able to adapt better to the underlying distribution of 
the training data.  
 

Number of recurrent 
layer weights 

N=0 N=1 N=2 N=3 N=4 N=5 N=6 N=7 

Top-C=1 3 6 9 12 15 18 21 24 

Top-C=2 7 14 21 28 35 42 49 56 

Top-C=3 9 18 27 36 45 54 63 72 

Table 2. The number of recurrent layer weights to be trained, for different recurrence depth, 

,N  and different size of the recurrent layer neighbourhood, Top-C 

As Fig. 7 presents, the recognition accuracy observed for the PC-LRPNN and the fully 
connected LRPNN is superior to the one observed for the GMM and the PNN.  Inspecting 
the recognition accuracy presented on the figure and the number of weights in the recurrent 
layer, presented in Table 2, we can notice that there are some relations among the 
performance results for similar number of coefficients.  Furthermore, the general trend of 
the plots for different neighbourhood size, Top-C, seems to agree with respect to the 
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increase of the recurrence depth, .N   On the present experimental setup, the PC-LRPNN 

outperforms entirely the fully connected LRPNN, due to its better capacity to adapt to the 

training data.  Exception here is the case for recurrence depth 6N = , where the LRPNN 

outperforms significantly the partially connected counterpart. 
Finally, the significant advantage of the PC-LRPNN and LRPNN over the PNN and GMM 
can be summarized as follows:  
1. LRPNNs and PC-LRPNNs process the information coming from the competitive classes 

(for Top-C > 1) and the target class;  
2. the recurrent structures are capable to capture temporal dependences among 

subsequent feature vectors, and thus, are capable to exploit the context in which a given 
input appears;  

3. the recurrent layer is trained in a constructive manner to maximize the probability 
generated for the target class and to minimize to probabilities generated by the 
competitive classes, which favours resolving ambiguous situations. 

The smoothing factor
i

σ , the PC-LRPNN vs. the PNN 

Utilizing the experimental setup of the emotion recognition task, and the best performing 

locally recurrent neural network, i.e. PC-LRPNN (Top-C=1, N =3), we would like to discuss 

an interesting phenomenon concerning the optimal value of the smoothing factor, 
i

σ .  

Extensive experimentations with the PNN, PC-LRPNNs and fully connected LRPNNs, 

demonstrated that the estimation of the smoothing factor 
i

σ  on the training dataset does not 

lead to optimal performance on the test dataset. This was especially topical in the emotion 
recognition task. To illustrate this phenomenon, in Fig. 8, we plot the performance of the 

PNN and the best performing PC-LRPNN for different values of the smoothing factor, 
i

σ .  

For comprehensiveness of exposition we computed the recognition accuracy obtained on the 
training dataset, presented in the figure with dashed line, and on the test datasets, presented 
with solid line. 
 

 

Fig. 8.  Performance of the PNN and PC-LRPNN (Top-C=1, N =3), for different values of 

the smoothing factor 
i

σ  

As the figure presents, for both the PNN and PC-LRPNN there was a significant gap 
between the recognition accuracy obtained on the training dataset and on the test data.  
Looking at the plots for the PNN, we can see that the trend of this difference in performance 
is a relatively smooth monotonically decreasing function.  However, for the PC-LRPNN, the 

initial difference, for small values of 
i

σ , tends to decrease when 
i

σ increases.  Furthermore, 
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the best performance for the PNN was obtained for 
i

σ =0.6, and the best performance for the 

various PC-LRPNN and LRPNN in the different experiment was for 
i

σ  in the range [1.2, 

2.0], even though the recognition performance for the training dataset was significantly 

lower, when compared to the optimal 
i

σ  computed through (Cain, 1990), or any other 

method.  Although the degree of learning for the training dataset varied greatly in the 
experiments with different PC-LRPNNs, and mostly ranged between 75% and 100%, the 
best performance on the test dataset was observed always for significantly higher values of 

i
σ , when compared to the best one for the training dataset.  The last indicates that in 

challenging problems, for which it is known that there is significant mismatch between the 

training and operational conditions, the computation of the value of 
i

σ  should be 

performed on another independent dataset, referred to as development or validation data.  
The development data are independent from the training and test datasets and serve for 
fine-tuning of the overall performance. 

7. Conclusion and future research directions 

Although the research on locally recurrent neural networks has a long record of history, the 
potential of development has not been exhausted.  Moreover, in the last few years, there is a 
resumption of interest to the field, and recently some new paradigms appeared.  These new 
architectures are in anticipation of further in depth studies, and further improvements and 
elaboration.  
Speaking specifically for the family of LRPNNs, there is a compelling need for further 
studies that will investigate comprehensively how the recurrent layer linkage can be 
optimized for specific problem on specific dataset.  Perhaps, new strategies for automatic 
selection of neighbourhood size and the specific neighbours of each recurrent neuron that 
arise directly from the training data will appear.  It will be particularly interesting to study 
new algorithms for developing dynamically varying neighbourhoods, which depend on the 
input during operation of the neural network, and which go beyond the predefined during 
training look-up tables. 
Finally, despite the progress made during the past decades, we deem that the locally 
recurrent neural networks still await for their golden time, when they will have significantly 
better biological plausibility.  The human brain is still a source of inspiration, and we are 
looking forward to see how the development of the neuroscience will contribute further for 
the progress in the field of recurrent neural networks.   
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