
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

18

Partially Connected Locally Recurrent
Probabilistic Neural Networks

Todor D. Ganchev, Konstantinos E. Parsopoulos, Michael N. Vrahatis,
 and Nikos D. Fakotakis

University of Patras
Greece

1. Introduction

In this chapter, we review existing locally recurrent neural networks and introduce a novel
artificial neural network architecture that merges the locally recurrent probabilistic neural
networks (LRPNN) with swarm intelligence algorithms and concepts.
In particular, we develop an enhanced LRPNN model, referred to as Partially Connected
LRPNN (PC-LRPNN). In contrast to LRPNN, where the recurrent layer consists of a set of
fully connected neurons, the proposed new architecture assumes a swarm of neurons in the
recurrent layer. Each neuron of the swarm presumes a neighbourhood of neurons with
which it communicates through interconnections. The locality that determines the
neighbourhoods is defined based on existing neighbourhood and communication schemes
proposed in the swarm intelligence literature. Obviously, the PC-LRPNN offers a more
general scheme, in which the fully connected LRPNN can be considered as a particular case,
where all links in the recurrent layer are implemented.
The neighbourhood topology of the new, swarm-based recurrent layer can be either static or
dynamic. Dynamic neighbourhoods have been studied extensively in the field of swarm
intelligence, since swarms with dynamic communication schemes among individuals have
been shown to achieve remarkably better results than swarms with static communication
schemes in the field of optimization. Also, the plasticity of the neighbourhoods can be useful
in cases where better fit to unknown data is required. In the present chapter we will limit
our exposition to the static neighbourhoods, which are defined once during training, and
remain unchanged during the operation of the PC-LRPNN. However, the concepts that we
introduce here can be extended further to the dynamic counterparts.
The aforementioned local neighbourhoods and communications schemes facilitate the

optimization of the recurrent layer linkage, which leads to much faster operation of the

neural network, when compared to the fully linked structure. Furthermore, it significantly

reduces the computational load for the overall training of the recurrent layer, which is

performed at each case using the Particle Swarm Optimization (PSO) algorithm. Equipping

the PC-LRPNN with PSO, results in an efficient hybrid scheme that takes advantage of the

virtues of the probabilistic neural networks (PNN), recurrent neural networks (RNN),

swarm intelligence concept, and that can tackle successfully real-life classification problems

that assume temporal or spatial correlations among subsequent events. O
pe

n
A

cc
es

s
D

at
ab

as
e

w
w

w
.i-

te
ch

on
lin

e.
co

m

Source: Recurrent Neural Networks, Book edited by: Xiaolin Hu and P. Balasubramaniam, ISBN 978-953-7619-08-4, pp. 400, September
2008, I-Tech, Vienna, Austria

www.intechopen.com

 Recurrent Neural Networks

378

2. Locally recurrent neural networks

A large number of recurrent and locally recurrent neural networks (LRNNs) have been
studied in the literature. All they posses the valuable virtue to learn temporal dependences
among the training data, which allows for context awareness, and thus, for improved
recognition capabilities when compared to their non-recurrent counterparts. This advantage
has proved useful in numerous applications of the LRNNs on real-life problems, which
among others include: nonlinear system identification (Back & Tsoi, 1992; Lin et al., 1998);
grammatical inference (Lin et al., 1998); weather prediction (Aussem et al., 1995); speech
recognition (Kasper et al., (1995, 1996)); protection of power systems (Cannas et al., 1998);
speaker verification (Ganchev et al., (2003, 2004, 2007)); wind speed prediction (Barbounis &
Theocharis, (2007a, 2007b)), etc.
The locally recurrent global feedforward architecture was originally proposed by Back and
Tsoi (Back & Tsoi, 1991), who considered an extension of the Multilayer Perceptron (MLP)
neural network to exploit contextual information. In their work, they introduced the Infinite
Impulse Response (IIR) and Finite Impulse Response (FIR) synapses, able to utilize temporal
dependencies in the input data. The FIR synapse has connections to its own, current and
delayed, inputs, while the IIR synapse has also connections to its past outputs.
Ku and Lee (Ku & Lee, 1995) proposed Diagonal Recurrent Neural Networks (DRNN) for
the task of system identification in real-time control applications. Their approach is based
on the assumption that a single feedback from the neuron’s own output is sufficient. Thus,
they simplify the fully connected neural network to render training easier.
A comprehensive study of several MLP-based Locally Recurrent Neural Networks is
available in (Campolucci et al., 1999). They introduced a unifying framework for the
gradient calculation techniques, called Causal Recursive Back-Propagation. All
aforementioned approaches consider gradient-based training techniques for neural
networks, which, as it is well known, require differentiable transfer functions.
From the abundance of LRNN, in the present work, we will consider primary architectures
originating from the family of the Probabilistic Neural Network (PNN). Specifically in the
present section we will briefly outline the Locally Recurrent Probabilistic Neural Network
(LRPNN), which was introduced (Ganchev et al., 2003) as an extension of the feed-forward
Probabilistic Neural Network (PNN) architecture (Specht, (1988, 1990)). This structure is
used as basis for the novel partially connected LRPNN (PC-LRPNN), which we will discuss
in the next sections.
In brief, the LRPNN was derived from the original PNN by incorporating an additional
hidden layer, referred to as recurrent layer, between the summation layer and the output
competitive layer of the PNN structure. The recurrent layer consists of neurons possessing
feedbacks from all other neurons in that layer. Due to this recurrent layer, the LRPNN, in
contrast to the original PNN, is sensitive to the context in which the individual input data
appear, and thus, it is capable to learn temporal regularities and the sequence of occurrence
of events. Specifically, in the frame of speech processing this new capability of the LRPNN
enables detecting and exploiting the abundance of correlations among speech features
vectors estimated for successive speech frames. Exploiting these correlations was found
important for improving the classification accuracy in the speaker verification task (Ganchev
et al., (2003, 2004, 2007)).
As presented in earlier studies (Ganchev et al., (2003, 2004)) in the LRPNN architecture each
neuron in the recurrent layer receives as input not only current values of its inputs, but also

www.intechopen.com

Partially Connected Locally Recurrent Probabilistic Neural Networks

379

the N previous outputs of all neurons in that layer. Broadly speaking, the input, acting on

a recurrent neuron located in the recurrent hidden layer of an LRPNN, is a sum of two
differences: The first difference is between the weighted probability of the given class and
the sum of weighted probabilities computed for all other classes. These probabilities are
computed at the output of the summation layer of the LRPNN. The second difference is
between the weighted past output values of the given unit and the sum of the weighted past
output values of all other neurons in this layer. Thus, in the proposed architecture, the
probability of belonging to a specific class is combined with the probabilities computed for
the other classes, and more importantly with the past values of the outputs of the recurrent
units for all classes. This incorporation of previous information enables the LRPNN network
to take advantage of the temporal context, which results in producing smoother in the time
output scores, improved confidence levels, and consequently more accurate final decisions.
In the present chapter, we elaborate further on the LRPNN architecture by studying ways to
optimize the recurrent layer linkage. In contrast to LRPNN, where the recurrent layer
consists of a set of fully connected neurons, the introduced here new PC-LRPNN
architecture assumes a swarm of neurons in the recurrent layer. Each neuron of the swarm
presumes a neighbourhood of neurons with which it communicates through
interconnections. The locality that determines the neighbourhoods is defined based on
existing neighbourhood and communication schemes proposed in the swarm intelligence
literature. When compared to the original LRPNN architecture, the PC-LRPNN has a
greater capacity to adapt (its recurrent layer linkage) to the training dataset. This is due to
the additional degree of freedom provided by the recurrent layer linkage selection that can
be controlled for a fine-tuning of the neural network to the problem at hand. Obviously, the
fully connected LRPNN architecture can be regarded as a particular case of the PC-LRPNN,
which implements the full linkage in the recurrent layer.

3. Particle swarms and particle swarm optimization

The particle swarm is a community of individual performers, known as particles, which
communicate/share information and collaborate on finding optimal regions in the search
space. In the literature, the particle swarm is synonym to Particle Swarm Optimization
(PSO) algorithm, which has become an attractive alternative to other optimization
techniques (Clerc and Kennedy, 2002).
In brief, PSO is a stochastic optimization, population-based algorithm. It was introduced in
1995 by Kennedy and Eberhart (Kennedy & Eberhart, 1995), inspired by social behaviour
simulation models. Features such as information exchange and neighbour alignment are
inherent in such models, allowing the emergence of intelligent behaviour in swarms of
simple agents with limited field of action. Similarly to evolutionary algorithms, PSO exploits
a population, called a swarm, of potential solutions, called particles, which adapt their
position stochastically at each iteration of the algorithm.
In contrast to standard evolutionary approaches, PSO promotes cooperativeness rather than
competition among the solutions. More specifically, instead of using explicit mutation and
selection operators in order to modify the population and favour the best performing
individuals, PSO uses an adaptable position shift, called velocity, to move each particle to a
new position at each iteration of the algorithm. The particles are moving towards promising
regions of the search space by exploiting information springing from their own experience
during the search as well as from the experience of other particles. For this purpose, a
memory of the best position ever visited by each particle in the search space is retained.

www.intechopen.com

 Recurrent Neural Networks

380

In the context of single-objective optimization, the PSO can be outlined formally as follows:

Let S be an n-dimensional search space, f : S → { be the objective function, and N be the

number of particles that comprise the swarm,

 S = {x1, x2,…, xN}. (1)

Then, the ith particle is a point in the search space,

 xi = (xi1, xi2,…, xin) ∈ S, (2)

as well as its best position,

 pi = (pi1, pi2,…, pin) ∈ S, (3)

which is the best position ever visited by xi during the search. The velocity of xi is also an n-
dimensional vector,

 vi = (vi1, vi2,…, vin). (4)

In order to avoid biasing the swarm in specific parts of the search space, the particles as well
as their velocities are randomly initialized in the search space.

Let NGi ⊆ S be a set of particles that exchange information with xi. This set is called the

neighbourhood of xi and it will be discussed later. Let also, g, be the index of the best particle
in NGi, i.e.,

 f(pg) ≤ f(pl), for all l with xl ∈ NGi, (5)

and t denote the iteration counter. Then, the swarm is manipulated according to the
equations (Eberhart & Shi, 2000),

 vij(t+1) = w vij(t) + c1 r1 (pij(t) – xij(t)) + c2 r2 (pgj(t) – xij(t)), (6)

 xij(t+1) = xij(t) + vij(t+1), (7)

where i = 1, 2,…, N; j = 1, 2,…, n; w is a positive parameter called inertia weight; c1 and c2 are
two positive constants called cognitive and social parameter, respectively; and r1, r2, are
realizations of two independent random variables that assume the uniform distribution in
the range [0, 1]. The best position of each particle is updated at each iteration by setting

 pi(t+1) = xi(t+1), if f(xi) < f(pi), (8)

otherwise it remains unchanged. Obviously, an update of the index g is also required at each
iteration.
The inertia weight was not used in early PSO versions. However, experiments showed that
the lack of mechanism for controlling the velocities could result in swarm explosion, i.e., an
unbounded increase in the magnitude of the velocities, which resulted in swarm divergence.
For this purpose, a boundary, vmax, was imposed on the absolute value of the velocities, such
that, if vij > vmax then vij = vmax, and if vij < -vmax then vij = -vmax. In later, more sophisticated
versions, the new parameter was incorporated in the velocity update equation, in order to
control the impact of the previous velocity on the current one, although the use of vmax was
not abandoned.

www.intechopen.com

Partially Connected Locally Recurrent Probabilistic Neural Networks

381

Intelligent search algorithms, such as PSO, must demonstrate an ability to combine
exploration, i.e., visiting new regions of the search space, and exploitation, i.e., performing
more refined local search, in a balanced way in order to solve problems effectively
(Parsopoulos & Vrahatis, (2002, 2004, 2007)). Since larger values of w promote exploration,
while smaller values promote exploitation, it was proposed and experimentally verified that
declining values of the inertia weight can provide better results than fixed values. Thus, an
initial value of w around 1.0 and a gradually decline towards 0.0 are considered a good
choice. On the other hand, the parameters c1 and c2 are usually set to fixed and equal values
such that the particle is equally influenced by its own best position, pi, as well as the best
position of its neighbourhood, pg, unless the problem at hand implies a different setting.
An alternative velocity update equation was proposed by Clerc & Kennedy, (2002),

 vij(t+1) = χ [vij(t) + c1 r1 (pij(t) – xij(t)) + c2 r2 (pgj(t) – xij(t))], (9)

where χ is a parameter called constriction factor. This version is algebraically equivalent with
the inertia weight version of (6). However, the parameter selection in this case is based on
the stability analysis due to Clerc and Kennedy (2002), which expresses χ as a function of c1
and c2. Different promising models were derived through the analysis of the algorithm, with
the setting χ = 0.729, c1 = c2 =2.05, providing the most promising results and robust
behaviour, rendering it the default PSO parameter setting.
Regardless of the PSO version used, it is clear that its performance is heavily dependent on
the information provided by the best positions, pi and pg, since they determine the region of
the search space that will be visited by the particle. Therefore, their selection, especially for
pg, which is related to information exchange, plays a central role in the development of
effective and efficient PSO variants. Moreover, the concept of neighbourhood mentioned
earlier in this section, raises efficiency issues. A neighbourhood has been already defined as
a subset of the swarm. The most straightforward choice would be to consider as neighbours
of the particle xi, all particles enclosed in a sphere with centre xi and a user-defined radius in
the search space. Despite its simplicity, this approach increases significantly the
computational burden of the algorithm, since it requires the computation of all distances
among particles at each iteration. This deficiency has been addressed by defining
neighbourhoods in the space of particles’ indices instead of the actual search space.
Thus, the neighbours of xi are determined based solely on the indices of the particles,
assuming different neighbourhood topologies, i.e., orderings of the particles’ indices. The most
common neighbourhood is the ring topology, depicted in Fig. 1 (left), where the particles are
arranged on a ring, with xi-1 and xi+1 being the immediate neighbours of xi, and x1 following
immediately after xN. Based on this topology, a neighbourhood of radius r of xi is defined as

 NGi(r) = {xi-r, xi-r+1,…, xi-1, xi, xi+1,…, xi+r-1, xi+r}, (10)

Fig. 1. The ring (left) and star (right) neighbourhood topologies of PSO

www.intechopen.com

 Recurrent Neural Networks

382

and the search is influenced by the particle’s own best position, pi, as well as the best
position of its neighbourhood. This topology promotes exploration, since the information
carried by the best positions is communicated slowly through the neighbours of each
particle. A different topology is the star topology, depicted in Fig. 1 (right) where all particles
communicate only with a single particle, which is the overall best position, pg, of the swarm,

i.e., NGi ≡ S. This topology promotes exploitation, since all particles share the same

information. This is also called the global variant of PSO, denoted as gbest in the relative

literature, while all other topologies with NGi ⊂ S, define local variants, usually denoted as

lbest. Different topologies have also been investigated with promising results (Kennedy,
1999; Janson & Middendorf, 2005).

4. The partially connected locally recurrent probabilistic neural network

The LRPNN was derived (Ganchev et al., 2003) from the original PNN (Specht, 1988) by
incorporating an additional hidden layer, referred to as recurrent layer, between the
summation layer and the output competitive layer of the PNN structure. This recurrent
layer consists of neurons possessing feedbacks with all other neurons in that layer.
Elaborating on the LRPNN, here, we introduce the Partially Connected LRPNN (PC-LRPNN)
architecture. Fig. 2 presents the simplified structure of a PC-LRPNN for classification in
K classes. In contrast to the fully connected LRPNN, where each neuron in the recurrent
layer communicates with all other neurons in that layer (i.e. global communication is enabled),
in the PC-LRPNN the recurrent layer linkage is implemented only partially, depending on
the problem at hand and the actual training data. This is illustrated in Fig. 2, where the

Fig. 2. Structure of the Partially Connected Locally Recurrent Probabilistic Neural Network

www.intechopen.com

Partially Connected Locally Recurrent Probabilistic Neural Networks

383

dashed line indicates that the linkage between neurons 1y , 2y and yK might not be

implemented. In general, the concept of partially connected recurrent layer can be regarded
as defining local neighbourhoods for each of the recurrent layer neurons. This can be
viewed as establishing a swarm of neurons which cooperate (i.e. exchange information) in
order to categorize more precisely a given unknown input. However, in contrast to the
classic particle swarms that are utilized in the PSO schemes, here the local neural
neighbours are not defined by the specific values of the neurons’ indexes but the swarm
members are selected during training, on a competitive basis, and in data-dependent
manner, with respect to certain predefined criterion. In practice, the size of neighbourhood
and the recurrence depth (i.e. the depth of memory) in the recurrent layer are specified
depending on a priori knowledge about the specific problem at hand, or are identified
heuristically after some experimentation with a representative dataset.
However, before describing any specific strategy for implementing the (partial) linkage of
the recurrent layer, for comprehensiveness of exposition we briefly outline the PC-LRPNN
architecture. In brief, the first two hidden layers the PC-LRPNNs, as their predecessor —
the PNNs, implement the Parzen window estimator (Parzen, 1962) by using a mixture of

Gaussian basis functions. If a PC-LRPNN for classification in K classes is considered, the

class conditional probability density function (|)i p ip kx is defined as:

2 2

1

1 1 1
(|) f () exp () ()

2(2)

iM
T

i p i i p p ij p ijd d
ji ii

p k
M σπ σ =

⎛ ⎞
= = ⋅ − − −⎜ ⎟

⎝ ⎠
∑x x x x x x , 1,2,..., ,i K= (11)

where for simplicity of further notations (|)i p ip kx is replaced by f ()i px . Here ijx is the j th

training vector from class iκ , px belonging to the set { },p=X x with 1,2,..., ,p P= is the p th

input vector, d is the dimension of the input vectors, and iM is the number of training

patterns in class iκ . Each training vector ijx is assumed a centre of a kernel function, and

consequently the number of pattern units in the first hidden layer of the neural network is

given by the sum of the pattern units for all the classes. The standard deviation iσ acts as a

smoothing factor, which softens the surface defined by the multiple Gaussian functions.

Instead of the simple covariance matrix, { }2
i Iσ , where I represents the identity matrix, the

full covariance matrix can be computed using the Expectation Maximization algorithm, as
proposed in (Yang & Chen, 1998; Mak & Kung, 2000) and elsewhere. Since the computation

of the covariance matrix, or the optimization of the smoothing factor iσ , does not interfere

with the development of the PNN we discuss, for simplicity of exposition, we consider here
the simple case, where the value of the standard deviation is identical for all pattern units

belonging to a specific class. Moreover, iσ can be the same for all pattern units, irrespective

of their class belonging, as it was originally proposed (Specht, 1990).

Next, the class conditional probability density functions f ()i px for each class iκ , estimated

through (11), act as inputs for the recurrent layer. In general, the recurrent layer can be
considered as a form of Infinite Impulse Response (IIR) filter that smoothes the probabilities
generated for each class, by incorporating information about the probabilities computed for
all other classes, and more importantly, by exploiting one or more past values of the outputs
for all classes.

www.intechopen.com

 Recurrent Neural Networks

384

y()i px

1y ()i p−x

2y ()i p−x

y ()i p N−x

1f ()px
f ()i px f ()K px

1y ()j i p≠ −x

y ()j i p N≠ −x

..
.

..
.

..
. y ()K p N−x

y ()i px

......

1y ()i p−x

2y ()i p−x

y ()i p N−x

..
.

y ()j i p≠′ x

y ()i p
′ x

The recurrent layer is composed of recurrent neurons, which in addition to the inputs
coming from the summation layer also possess feedbacks from their own past outputs and
from current and past outputs of the neurons of the other classes. Fig. 3 illustrates the
linkage of a single neuron belonging to the hidden recurrent layer. As shown in the figure,

beside the PDFs from all classes, f (), 1,2,..., ,i p i K=x this neuron also receives feedbacks

from its past outputs, y (), 1,2,..., ,i p t t N− =x with i denoting the current neuron number, as

well as from current y (), 1,2,...,j i p j K≠′ =x and past y (),j i p t≠ −x 1,2,..., , 1,2,..., ,j K t N= =

outputs from all other neurons belonging to that layer. Here, the subscript p stands for the

serial number of the input vector px . On its own side, the current neuron provides to the

other neurons of the recurrent layer its current y ()i px and past y (),i p t−x 1,2,...,t N=

outputs, again with p standing for the specific input vector.

Fig. 3. Linkage of a neuron that belongs to the recurrent layer

A detailed structure of the recurrent neurons is provided in Fig. 4. As the figure presents,

the inputs f (), 1,2,..., ,i p i K=x denoting the class conditional PDFs, are weighted by the

coefficients ,i jb . The two indexes of the weights of ,i jb with 1,2,...,i K= and 1,2,...,j K=

stand for the current recurrent neuron and for the class to which the corresponding input

belongs. The first two indexes of the weights , ,i j ta have the same meaning as for the

weights ,i jb , and the third index 1,2,...,t N= shows the time delay of the specific output

before it appear as an input.

All feedbacks y ()i p t−x , 1,2,...,t N= that originate from the present neuron i , and the links

y (),j i p t≠ −x 1,2,..., ,j K= 1,2,...,t N= coming from the other neurons j i≠ of the recurrent

layer are weighted by the coefficients , , , 1,2,...,i i ta t N= and , , ,i j i ta ≠ 1,2,..., ,j K=

1,2,...,t N= , respectively.

www.intechopen.com

Partially Connected Locally Recurrent Probabilistic Neural Networks

385

The summation units’ output y ()i px of the locally recurrent layer is computed by:

 , , , , , ,
1 1 1

1,2,..., ,y () f () f () y () y () ,
K N K

i p i i i p i k k p i i t i p t i k t k p t
k t k
i k i k

i Kb b a a− −
= = =
≠ ≠

=

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= − + −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

∑ ∑ ∑x x x x x (12)

where f ()i px is the probability density function of each class iκ , px is the p th input vector,

K is the number of classes, N is the recurrence depth, ()yi p t−x is the normalized past

output for class iκ that has been delayed on t time steps, and , ,i j ta and ,i jb are weight

coefficients. The output y ()i px of each summation unit from the recurrent layer is subject to

the regularization transformation:

()
()

1

sgm y ()
y ()

sgm y ()

i p

i p K

j p
j=

=
∑

x

x

x

, 1,2,..., ,i K= (13)

which retains the probabilistic interpretation of the output of the recurrent layer. Here, the
designation sgm refers to the sigmoid activation function.

∑

1f ()px

...

f ()K px

y ()i p
′ x

y ()i px

y ()i px

1

y ()

y ()

i p

K

j p
j=

′

′∑

x

x

0

1

y ()
1 exp

i p

Q

⎛ ⎞
+ −⎜ ⎟

⎝ ⎠

x

,1ib ,i Kb

1y ()j i p≠ −x

y ()j i p N≠ −x..
.

..
.

y ()K p N−x

y ()j i p≠′ x

, ,i K Na

, ,i j i Na ≠

, ,1i j ia ≠

1y ()i p−x2y ()i p−xy ()i p N−x

, ,i i Na

, , 2i ia
, ,1i ia

...

Sigmoid

activation

function

Output

regularization

Summation

unit

Fig. 4. Internal structure of the ith neuron from the recurrent layer of the PC-LRPNN

www.intechopen.com

 Recurrent Neural Networks

386

Subsequently, in the output layer, often referred as competitive layer, the Bayesian decision

rule (14) is applied to distinguish class iκ , to which the input vector px is categorized:

 { }D() argmax y () , 1,2,..., ,p i i i p
i

h c i K= =x x (14)

where ih is a priori probability of occurrence of a pattern from class iκ , and ic is the cost

function associated with the misclassification of a vector belonging to class iκ .

Finally, provided that all classes are mutually exclusive and exhaustive, we can compute the

Bayesian confidence for every decision D()px by applying the Bayes’ theorem:

1

y ()
(|) , 1,2,..., .

y ()

i i p
i p K

j j pj

h
P k i K

h=

= =
∑

x
x

x

 (15)

The posterior probability (|)i pP k x for the p th input vector belonging to class iκ is

computed by relying on the a priori probabilities ih and the temporally smoothed PDFs

y ()i px .

The decision D()px , and the confidence for every decision (|)i pP k x , are computed for

every input vector. However, in many practical applications (such as speaker verification,

speaker identification, emotion detection, etc) every test trial (usually a speech utterance)

consists of multiple feature vectors. Therefore, the probability (|)iP k X all test vectors

originating from a given test trial { },p=X x 1,2,...,p P= to belong to class iκ , can be

computed by:

1

1 1

D()
(|) , 1,2,..., ,

D()

P
p ip

i K P
p jj p

k
P k i K

k

=

= =

⎡ ⎤=⎣ ⎦= =
⎡ ⎤=⎣ ⎦

∑
∑ ∑

x

X

x

 (16)

where
1

D()
P

p ip
k=

⎡ ⎤=⎣ ⎦∑ x is the number of vectors px classified by the Bayesian decision rule

(14) as belonging to class iκ . In applications that assume an exhaustive taxonomy any of

the inputs px falls in one of the classes iκ , and therefore the equality:

1 1

D() ,
K P

p jj p
P k= =

⎡ ⎤= =⎣ ⎦∑ ∑ x (17)

where P is the number of test vectors in the given trial X , is always preserved.

However, in many real-world applications computing the probability (|)iP k X is not

sufficient as a final outcome from the PC-LRPNN. In such cases, a final decision is made by

applying the Bayesian decision rule:

 { }() argmax (|) ,i
i

D P k=X X 1,2,..., ,i K= (18)

or alternatively, the outcome of (16) is assessed with respect to a predefined threshold θ :

www.intechopen.com

Partially Connected Locally Recurrent Probabilistic Neural Networks

387

 decision #1

(|)
 decision #2iP k

θ
θ

>⎧
⎨≤⎩

X . (19)

Most often, the threshold θ is computed on a data set, referred to as development or

validation data, which is independent from the training and testing data. A necessary

requirement for obtaining a reasonable estimate of θ is the development data to be

representative, i.e., they have to bear a resemblance to the real-world data on which the PC-
LRPNN will operate within the corresponding application.

5. Training the PC-LRPNN

In general, the training of the PC-LRPNNs is similar to the three-step training procedure of
the original fully connected LRPNNs (Ganchev et al, 2004) except for one extra step that is
PC-LRPNN specific. Specifically, in the LRPNN, the first two steps implement the usual
strategy for training PNNs, while the third step adjusts the weights in the recurrent layer. In
the PC-LRPNN the third training step is preceded by procedure which selects the actual
linkage that will be implemented in the recurrent layer, i.e. the PC-LRPNN are trained in
four steps. In the following we provide a concise description of the entire training process
of the PC-LRPNN.
STEP 1: In brief, by analogy to the original PNN, the first training step creates the actual

topology of the network. In the first hidden layer, a pattern unit for each training
vector is created by setting its weight vector equal to the corresponding training vector.
In order to reduce the amount of neurons, i.e. the computational load during operation,
the training data can be compressed by performing some sort of clustering (for instance,
k-means) as pre-processing of the training dataset. An alternative approach could be to
employ pruning and discard redundant neurons, or to build the first layer in multistep
manner by adding a new neuron only when there is compelling need this to be done.
The outputs of the pattern units associated with the class iκ are then connected to one

of the second hidden layer summation units. The number of summation units is equal

to the number of target classes K . The outputs of the summation units can be fed to
some or all neurons of the recurrent layer, depending on the implemented linkage.

STEP 2: The second training step is the computation of the smoothing parameter
i

σ for each

class. To this end, various approaches (Meisel, 1972; Cain, 1990; Specht, 1992; Musavi et
al., 1992; Specht & Romsdahl, 1994; Masters, 1993; Georgiou et al., (2006, 2008), etc) have
been proposed. Although other methods can be employed, here we will mention only

the one (Cain, 1990) due to its simplicity. According to that approach, any
i

σ is

proportional to the mean value of the minimum distances among the training vectors in

class iκ :

 { }2

, , 2
1

1
min

iM

i i j i j i
jiM

σ λ ≠
=

= −∑ x x (20)

where ,i jx is the j th pattern unit (located in the pattern layer) for class iκ ;
2

 .

corresponds to the 2-norm on dR (reminding that ,i jx are the stored training data, and

therefore, ,
d

i j ∈x R); d is the dimensionality of the input data; the expression

www.intechopen.com

 Recurrent Neural Networks

388

 { }2

, , 2
min i j i j i≠−x x (21)

represents the smallest Euclidean distance computed between j th pattern unit of class

iκ and all other pattern units from the same class; and iM is the number of training

patterns in class iκ . The constant λ , which controls the degree of overlapping among

the individual Gaussian functions, is usually selected in the range λ ∈ [1.1, 1.4]. If the

smoothing parameter is common for all classes, either it is chosen empirically, or it is
computed by applying (20) on the entire training data set.

Step 3: For the PC-LRPNNs, the third training step selects the recurrent layer linkage to be
implemented. This linkage could be static, i.e. defined once during training, or
dynamic, i.e. changing during operation of the PC-LRPNN, depending on the input
sequences. Furthermore, it could be expected that many of the recurrent layer neurons
will participate in multiple class-specific neighbourhoods, which are then combined to
assemble the recurrent layer linkage, but there could be neurons that do not participate
in any swarms and are left detached from their neighbours. Usually, the linkage
selection is performed in a data-dependent manner but it could be also based on the
indexes of the individual neurons, if there is such necessity they to be pre-specified or
bounded.

In fact, the linkage selection consists in identifying a sufficient subset of connections which

typically is much smaller than the size of the full linkage. An assortment of strategies can be

applied for identifying the optimal subsets of interacting neurons, i.e. the scope of swarm,

and the neighbourhood for each target class. For instance, examples could be strategies

based on identifying the Top-C competitor classes for a given input sequence, and

implementing the linkage only for the recurrent neurons corresponding to these classes.

The linkage to the less-promising competitors, which are not members of the Top-C club, is

not implemented. An alternative strategy could be to perform pruning of the connections,

starting from the fully connected LRPNN and iteratively identifying and discarding links

which are not contributing for maximizing the overall performance. Yet, another strategy

could be to start from the simplest reasonable topology and continue adding connections

until the performance of the PC-LRPNN increases, or predefined limits are reached. Other

strategies might involve optimization of the linkage of each particular recurrent neuron or

the amount of memory it possesses, and then organize teams of super-neurons, etc.

Obviously, the most successful strategies should exploit any a priori knowledge about the

problem at hand and be able to interpret properly the information available in the training

dataset.

At this point, we need to remember that in the PC-LRPNNs we deal with classification

scheme of the type winner-takes-all, and that the scores acting on the input of the recurrent

layer are in fact the probabilities computed by the summation units in the previous layer.

These probabilities compete for distinguishing the winning class, and in non-trivial multi-

class problems there exist more than one probability bigger than zero. For this type of

classification scheme, we can consider a straightforward but efficient and effective strategy

that builds the recurrent layer linkage by identifying a neighbourhood for a given recurrent

neuron in terms of its closest competitors for the prise. In such a strategy, we follow a two

stage procedure:

www.intechopen.com

Partially Connected Locally Recurrent Probabilistic Neural Networks

389

1. Firstly, we identify the Top-C competitors for each target class, by feeding the original
non-compressed training data for that class at the input of the already trained pattern
layer. At the output of the class-specific summation units (residing in the summation

layer), the outcome will be a set of xiM K probabilities, with iM indicating the number

of feature vectors in the training dataset for class iκ and K the total number of target

classes. Having computed the matrix xiM K for a specific class iκ , we can identify the

Top-C competitors by computing the average score per class, and sorting these values.
2. Subsequently, we implement symmetric connections only among these Top-C recurrent

neurons. Here, symmetric stands for the case where each neuron that receives
information form another neuron also supplies back to this neuron the equivalent
information about its own class. Thus, the relationship between the two neurons is
symmetric in terms of linkage. However, in the general case symmetry might not be
reasonable or desirable and should not be imposed unless the properties of the
underlying training data indicate such necessity, or there exists some a priori
knowledge about the problem at hand.

Eventually, the recurrent layer linkage is formed as union of all class-specific

neighbourhoods. This can be expressed as follows: Let 0L be the xK K matrix which

represents the connections originating form the output of the summation layer to the inputs

of the recurrent layer neurons, and 0(,) 1l i j = indicates that the specific connection from the

summation unit corresponding to class iκ is connected to the recurrent neuron for class jκ .

Alternatively, the value 0(,) 0l i j = would indicate that the specific connection was not

implemented. The individual elements of the 0L matrix, i.e. 0(,)l i j , can be referred to as the

mask which determines if the specific coefficients ,i jb (refer to (12)) will be present or not.

Obviously, it is mandatory for the diagonal elements of 0L to have non-zero values, i.e.

0(,) 1l i i = , for any 1,2,..., ,i K= so a connection between the summation and recurrent layer

in class jκ is always guaranteed. As explained earlier, the rest of the linkage 0(,)
i j

l i j
≠

can

be identified in a data-dependent manner (for instance, by following the Top-C strategy), or
by utilizing a priori knowledge.

By analogy, let the xK K matrixes nL , with 1,2,..., ,n N= stand for the links that originate

from the past outputs of the recurrent layer neurons to the inputs of neurons in the same

layer. Here n is the index of delay, and the elements of nL serve as a mask, which

determines if the coefficients , ,i j na (refer to (12)) will exist, or not. Again, let the elements of

1 ,L 1(,) 1l i j = , indicate that there exists a connection between the past output at time 1t − of

the recurrent neuron for class iκ and the input of the recurrent neuron for class jκ , and

1(,) 0l i j = indicate for lack of connection. The same logic applies for the other matrixes nL ,

but in contrast with 0L there are no restrictions about the values of their elements, (,)nl i j ,

i.e. there could be a case where all (,) 0nl i j = . In such a case, all recurrent feedbacks from

past states as well as the connections between the recurrent neurons are dismissed, which is

equivalent to recurrence depth 0N = . When this is combined with strategy Top-1 (and all

coefficients , 1i ib =), the PC-LRPNN becomes functionally identical to the original PNN. On

www.intechopen.com

 Recurrent Neural Networks

390

the other hand, when all (,) 1nl i j = and 0(,) 1l i j = the structure of the PC-LRPNN coincides

with the one of the fully connected LRPNN.
Eventually, the overall linkage of the recurrent layer is the composite matrix

 []0 1 n NL L L L L= B B B , 1,2,..., ,n N= (22)

with dimensionality ()+ 1 x xN K K , where K is the total number of target classes, and N is

the recurrence depth.
In general, the linkage defined by the matrixes nL and 0L can be identified using different

strategies, or yet the same Top-C strategy. Furthermore, in the simplest scenario, the

matrixes nL could be duplicates of 0L , so L to have a repeating structure, however, this is

not a requisite by any means. Once the proper linkage L is identified the weight of each
connection needs to be estimated.
STEP 4: Finally, the forth training step consists in computation of the recurrent layer weights,

using the uncompressed training data exploited at step three. In previous work
(Ganchev et al, (2003, 2004)), we studied training strategies that aim at adjusting the
weights in the recurrent layer in a manner that maximizes the classification accuracy on
the training data set. Here we rely on another more successful strategy that was
developed recently (Ganchev, in-press-2008). In brief, this new training strategy does
not rely on a quantitative measure accounting for the classification performance on the
training dataset, but merely aims at maximizing the probability for the target class and
simultaneously minimizing the probabilities computed for the non-target classes over
the training dataset. This leads to a simplification of the error function and reduction in
the number of steps necessary for evaluating the goodness of the recurrent layer
weights at each iteration.

Specifically, the new error function that is subject to minimization here involves the

complementary to one value of the probability (|)
ik iP kX , and the compound probability for

ikX belonging to any other class:

 ()
1 1 1

1
E() 1 (|) () (|) ()

1i i

K K K

i k i i j k j j
i i j

j i

m P k P k m P k P k
K= = =

≠

= − +
−∑ ∑∑w X X . (23)

Here
ikX are the training data for class iκ , and ()iP k are the a priori probability of class iκ .

Finally, the constants im and jm determine the relative importance of (or alternatively the

significance of misclassification of an input belonging to) the corresponding class iκ or

j iκ ≠ , respectively.

The first term in equation (23) estimates the distance between the probability (|)
ik iP kX and

one, i.e. the error with respect to the probability computed for a perfect match to the model.
This term causes the output for class iκ of the trained recurrent layer to strive towards

value one for input vectors that resemble the training dataset for that class. The second
term in equation (23) is the cumulative error of

ikX being acknowledged as belonging to any

of the competitive classes j iκ ≠ . This second term contributes towards restraining the output

values produced by the competitive classes for input data that belong to class iκ .

www.intechopen.com

Partially Connected Locally Recurrent Probabilistic Neural Networks

391

The minimization of total error E()w is performed by employing a PSO algorithm Type 1

(Clerc & Kennedy, 2002), which was found more successful and/or much faster than other
PSO implementations, such as the basic PSO (Eberhart & Shi, 2000), the local PSO as in
(Liang et al., 2006), and the UPSO (Parsopoulos & Vrahatis, 2005).

6. Numerical evaluation

The experimentations reported in the present section aim at illustrating the operation of the
PC-LRPNNs, but also serve as a scene for discussing the advantages and disadvantages of
the PC-LRPNN, when compared to the original PNN and the fully connected LRPNN.
Specifically, for the purpose of experimentations, we selected two interesting problems of
different difficulty. Both of these problems are important for the development of human-
friendly spoken dialogue applications, and by that reason they currently enjoy significant
attention by the speech processing community. The first one is the text-independent
speaker identification task, which is of moderate difficulty, and the second one is the
speaker-independent emotion recognition task, which is well-known as an extremely
challenging problem. In the following paragraphs we offer a brief outline of these tasks:
Task 1: Text-independent speaker identification
Speaker identification is multiple-class decision problem where the identity of a given
speaker is judged based on a comparison of a sample of her\his voice against multiple pre-
defined models. The outcome of this process is either a decision about the identity of the
speaker or a notice that the present input cannot be categorized as any of the known
speakers. In the closed set speaker identification that we consider here, the input speech
utterances always belong to someone of the known speakers. Here, text-independence
referrers to the specific aspect that no explicit modelling of the linguistic contents of the
input utterance is performed. Thus, the outcome of the identification process is not
dependent on the exact linguistic contents of the phrase, but only on the degree of proximity
between the input speech signal and the predefined speaker models.
Task 2: Speaker-independent emotion recognition
The emotion classification task is a multiple-class decision problem, where the emotional
state of a given speaker is judged based on comparison of an input (typically a speech
utterance) against multiple pre-defined models for the emotional states of interest. Here, the
notion for speaker-independency refers to the fact that the models for the emotional states of
interest are general for a large population of people, and were built utilizing the speech of
people who do not present in the test datasets. Emotion recognition from speech is a very
challenging task mainly due to the inherent speaker-dependency of emotion expression but
also due to the well-known multi-functionality of speech (Batliner & Huber, 2007).

6.1 Experimental protocol

Common training and testing protocols were followed in all experiments. All classifiers
considered in the present evaluation (GMM, PNN, LRPNN, PC-LRPNN) were trained with
common task-specific train datasets, and trials were performed with common task-specific
test datasets.
For the purpose of the speaker identification task, ten female speakers, extracted from the

PolyCost v1.0 telephone-speech speaker recognition corpus (Hennebert et al., 2000) were

modelled as authorized users. The training data, comprised of ten utterances, containing

www.intechopen.com

 Recurrent Neural Networks

392

both numbers and sentences, obtained from the first session of each speaker. In average,

about 17 seconds of voiced speech per speaker were available for training each user model.

The test dataset consisted of 450 target trials, including 45 utterances per speaker. Each test

trial involved approximately 3 seconds of speech. All speech recordings are of telephone

bandwidth, sampled at 8 kHz, and A-law compressed.

For the purpose of the experimentations with the emotion classification task, we utilized the

recordings of all eight speakers available in the Emotional Prosody Speech and Transcripts

database (LDC, 2002). All recordings were split in utterances, with respect to the provided

annotations, and then were down-sampled to 8 kHz and band-limited to telephone quality

bandwidth.

In the specific experimental setup considered here, we carry out recognition of three

emotional states: neutral, anger, and panic. This combination is of particular interests for

practical applications, but also has proved as a very challenging set, since the members of

the pairs: hot anger – panic, and cold anger – neutral, share a number of common prosodic

characteristics.

The training dataset consist of the available recordings for the seven speakers and the

recordings of the remaining speaker were used as the test dataset. Since one of the speakers

had only neutral recordings, the training data for the anger and panic models were built

from the recordings of six speakers. The amount of available data for training the speaker-

independent models for the three emotional categories of interest was much different:

approximately 1650, 380 and 180 seconds of speech for neutral, anger and panic,

respectively. For the purpose of fair training of the emotion models, we performed k-means

clustering as a pre-processing of the training dataset. The resultant codebooks, one per

speaker, one per emotion category, were of size 256 feature vectors. Subsequently, these

codebooks were used to train the neural network-based classifiers.

On the other hand, the GMM-based classifier was trained directly from the uncompressed

dataset, for achieving a higher precision of the emotion models. The diagonal covariance

GMM emotion models were trained via a standard version of the Expectation Maximization

algorithm (McLachlan & Krishnan, 1997) with a maximum of 200 iterations. Training

termination criterion was applied, and training process was interrupted if there was no error

reduction among subsequent iterations.

The amount of target trials per category was 115, 29 and 18 utterances for the neutral, anger
and panic, respectively. Each test trial consisted of approximately 3 seconds of speech.
In both tasks, only the voiced parts of the speech signal was parameterized to Mel-frequency

cepstral coefficients (MFCC) with a rate of 100 feature vectors per second. We utilized the

MFCC implementation of Slaney (Slaney, 1998), but adapted for sampling frequency of 8

kHz. This resulted in a filter-bank of thirty-two filters, which cover the frequency range

[133, 3954] Hz, from which we computed 29 cepstral coefficients. In all experiments, we

excluded the first cepstral coefficient (i.e. the one with index zero) from the feature vector, to

avoid dependence on the recording setup (distance to the microphone, communication

channel and handset mismatch, etc). Finally, in all experiments we considered a common

feature vector consisting of the MFCC parameters {MFCC(1) ,…,MFCC(28)}. All parameters

of the feature vector were normalized to fit in a common dynamic range.

www.intechopen.com

Partially Connected Locally Recurrent Probabilistic Neural Networks

393

6.2 Experimental results

In this section, we study the performance of the PC-LRPNN for different connectivity range

of the neighbourhood, Top-C, and different recurrence depth, ,N of the recurrent layer.

Comparisons with the PNN, GMM and the fully connected LRPNN are provided as follows:
The PC-LRPNN vs. the PNN and LRPNN, in the speaker identification task
Since in this task we consider identification of 10 different voices, i.e. we have 10 classes, we
can note that in the case Top-C=10, the PC-LRPNN is equivalent to the fully connected

LRPNN. On the other hand, in the case of 0N = , Top-C=1, the PC-LRPNN has the same

number of weights in the recurrent layer as the number of connections between the
summation and competitive layers in the PNN. However, there is no equivalence between
these two structures, mainly because the weights of the connections between the summation
and recurrent layers in the PC-LRPNN are adjusted during training, while in the PNN they
are all equal. This gives to the PC-LRPNN the capability to model better the training data.
In Fig. 5, we present the performance of the PC-LRPNN in the speaker identification task,
and in Table 1, we show the number of recurrent layer weights for different values of the

recurrence depth, N , and different values of the neighbourhood, Top-C. As the figure

presents, for the PNN we obtained recognition accuracy of 91.6%, which we consider as the

90

92

94

96

98

100

A
c
c
u

ra
c
y
 [

%
]

pcLRPNN(N=0) 93.1 93.6 93.6 92.2 94.0 91.6

pcLRPNN(N=1) 94.0 93.3 93.1 91.8 92.2 92.9

pcLRPNN(N=2) 94.2 93.8 93.6 93.3 93.3 93.1

PNN 91.6

TopC=1 TopC=2 TopC=3 TopC=5 TopC=7 TopC=10

Fig. 5. Performance of the PC-LRPNN classifier on the speaker identification task, for

different values of the recurrence depth, ,N and different size of the recurrent layer

neighbourhoods, Top-C.

Number of recurrent
layer weights

N=0 N=1 N=2

Top-C=1 10 20 30
Top-C=2 30 60 90
Top-C=3 46 92 138
Top-C=5 68 136 204
Top-C=7 90 180 270

Top-C=10 100 200 300

Table 1. The number of recurrent layer weights to be trained, for different recurrence depth,

,N and different size of the recurrent layer neighbourhood, Top-C

www.intechopen.com

 Recurrent Neural Networks

394

baseline. It is interesting to note that the performance of the PC-LRPNN for 0N = , Top-

C=1, i.e. when there are no recurrent feedbacks in the recurrent layer and the connection
between the summation layer and recurrent layer neurons is implemented only for the top
scoring candidates, is higher than the baseline, PNN, although the number of weights is
equal. As explained above, this advantage of the PC-LRPNN comes from the fact that the
values of these weights are trained in a data-dependent manner, while in the original PNN,

these weight are equal. Furthermore, for recurrence depth 0N = , the PC-LRPNN with

neighbourhood Top-C=7 demonstrated the highest recognition accuracy (94.0%), which is
higher than the recognition accuracy for the case of Top-C=10, i.e. the equivalent to the fully
connected LRPNN. The last can be explained with the smaller number of weights to be
adjusted for the case of Top-C=7, and the limited amount of training data.
Next, as Fig. 5 presents, the highest recognition accuracy among all (94.2%) was achieved for

the PC-LRPNN with 2,N = and Top-C=1. The top performance here illustrates both the

importance of the recurrence depth (i.e. the memory about past states) and the capability of
the PC-LRPNN to implement partial linkage in the recurrent layer. As the figure presents,

the second best performance is shared between the PC-LRPNN with 1,N = and Top-C=1,

and the already discussed 0,N = and Top-C=7. It is interesting to note that the recurrent

PC-LRPNN (1N =) achieves this performance with only 20 weights, while the non-

recurrent PC-LRPNN (0N =) needs 90 (please refer to Table 1.)

Speaking generally, we can conclude that the presented example on the speaker
identification task illustrates undoubtedly that the PC-LRPNNs provide higher recognition
accuracy than the baseline PNN. This advantage is mainly due to the exploitation of
information from the competitive classes, which the recurrent layer neurons utilize for
proper selection of the class belonging of a given input sequence. Furthermore, we
observed that the PC-LRPNNs show performance even better than the one of the fully
connected LRPNN. This superiority is due mainly to the additional degree of freedom that
the PC-LRPNNs possess, i.e. the better flexibility to adjust the implementation of the
recurrent layer linkage to the available training data. Finally, it is worth mentioning that
due to the reduced number of weights, the PC-LRPNN are trained and operate much faster
than the fully connected LRPNN.
The PC-LRPNN vs. the PNN, LRPNN and GMM, in the emotion recognition task
In the emotion recognition task, we firstly experimented with a state-of-the-art GMM-based
classifier to identify the maximum performance that can be obtained (for a context-blind
classifier) in our experimental setup. In Fig. 6, we present the identification accuracy
obtained for different number of components in a Gaussian mixture. As the figure presents,

50

52

54

56

58

60

A
c

c
u

ra
c

y
 [

%
]

Accuracy [%] 51.1 51.1 53.9 53.7 54.3 56.0 56.3 59.1 59.4 56.8 55.4 56.7 54.5 54.1 56.1 54.6

8 16 24 30 31 32 33 34 35 36 37 38 39 40 48 64

Fig. 6. Performance of the GMM classifier for different number of components on the
speaker-independent emotion recognition task

www.intechopen.com

Partially Connected Locally Recurrent Probabilistic Neural Networks

395

the highest recognition accuracy (59.4%) was observed for the case of Gaussian mixture with
35 components. This performance will be considered as the baseline.
In Fig. 7, we present the recognition accuracy obtained for the PNN, PC-LRPNN and the

LRPNN for different values of the recurrence depth, ,N and different size of the recurrent

layer neighbourhoods, Top-C. Table 2 presents the number of weights in the recurrent layer
that need to be trained for the PC-LRPNN and LRPNN. Since in the present experimental
setup we have three emotional categories, the PC-LRPNN with Top-C=3 is equivalent to the
fully connected LRPNN.

50

55

60

65

70

75

A
c
c
u

ra
c
y
 [

%
]

GMM 59.4

PNN 58.5

pcLRPNN(Top-1) 60.5 68.2 69.0 70.7 69.3 68.0 67.6 64.9

pcLRPNN(Top-2) 61.6 70.1 69.0 66.3 65.3 62.0 60.5 63.0

pcLRPNN(Top-3) 62.7 68.4 69.2 62.1 64.6 60.4 64.2 63.5

0 1 2 3 4 5 6 7

Fig. 7. Performance of the PC-LRPNN classifier on the emotion recognition task, for

different values of the recurrence depth, ,N and different size of the recurrent layer

neighbourhoods, Top-C.

As the figure presents, the recognition accuracy obtained for the PNN is inferior to the one
for the GMM classifier. The difference in performance of approximately 1% can be
explained by the fact that here we employ the original homoscedastic PNN, which utilizes

uniform smoothing factor
i

σ for all classes, while the diagonal GMM employed here adjusts

the variance for each class and thus is able to adapt better to the underlying distribution of
the training data.

Number of recurrent
layer weights

N=0 N=1 N=2 N=3 N=4 N=5 N=6 N=7

Top-C=1 3 6 9 12 15 18 21 24

Top-C=2 7 14 21 28 35 42 49 56

Top-C=3 9 18 27 36 45 54 63 72

Table 2. The number of recurrent layer weights to be trained, for different recurrence depth,

,N and different size of the recurrent layer neighbourhood, Top-C

As Fig. 7 presents, the recognition accuracy observed for the PC-LRPNN and the fully
connected LRPNN is superior to the one observed for the GMM and the PNN. Inspecting
the recognition accuracy presented on the figure and the number of weights in the recurrent
layer, presented in Table 2, we can notice that there are some relations among the
performance results for similar number of coefficients. Furthermore, the general trend of
the plots for different neighbourhood size, Top-C, seems to agree with respect to the

www.intechopen.com

 Recurrent Neural Networks

396

increase of the recurrence depth, .N On the present experimental setup, the PC-LRPNN

outperforms entirely the fully connected LRPNN, due to its better capacity to adapt to the

training data. Exception here is the case for recurrence depth 6N = , where the LRPNN

outperforms significantly the partially connected counterpart.
Finally, the significant advantage of the PC-LRPNN and LRPNN over the PNN and GMM
can be summarized as follows:
1. LRPNNs and PC-LRPNNs process the information coming from the competitive classes

(for Top-C > 1) and the target class;
2. the recurrent structures are capable to capture temporal dependences among

subsequent feature vectors, and thus, are capable to exploit the context in which a given
input appears;

3. the recurrent layer is trained in a constructive manner to maximize the probability
generated for the target class and to minimize to probabilities generated by the
competitive classes, which favours resolving ambiguous situations.

The smoothing factor
i

σ , the PC-LRPNN vs. the PNN

Utilizing the experimental setup of the emotion recognition task, and the best performing

locally recurrent neural network, i.e. PC-LRPNN (Top-C=1, N =3), we would like to discuss

an interesting phenomenon concerning the optimal value of the smoothing factor,
i

σ .

Extensive experimentations with the PNN, PC-LRPNNs and fully connected LRPNNs,

demonstrated that the estimation of the smoothing factor
i

σ on the training dataset does not

lead to optimal performance on the test dataset. This was especially topical in the emotion
recognition task. To illustrate this phenomenon, in Fig. 8, we plot the performance of the

PNN and the best performing PC-LRPNN for different values of the smoothing factor,
i

σ .

For comprehensiveness of exposition we computed the recognition accuracy obtained on the
training dataset, presented in the figure with dashed line, and on the test datasets, presented
with solid line.

Fig. 8. Performance of the PNN and PC-LRPNN (Top-C=1, N =3), for different values of

the smoothing factor
i

σ

As the figure presents, for both the PNN and PC-LRPNN there was a significant gap
between the recognition accuracy obtained on the training dataset and on the test data.
Looking at the plots for the PNN, we can see that the trend of this difference in performance
is a relatively smooth monotonically decreasing function. However, for the PC-LRPNN, the

initial difference, for small values of
i

σ , tends to decrease when
i

σ increases. Furthermore,

www.intechopen.com

Partially Connected Locally Recurrent Probabilistic Neural Networks

397

the best performance for the PNN was obtained for
i

σ =0.6, and the best performance for the

various PC-LRPNN and LRPNN in the different experiment was for
i

σ in the range [1.2,

2.0], even though the recognition performance for the training dataset was significantly

lower, when compared to the optimal
i

σ computed through (Cain, 1990), or any other

method. Although the degree of learning for the training dataset varied greatly in the
experiments with different PC-LRPNNs, and mostly ranged between 75% and 100%, the
best performance on the test dataset was observed always for significantly higher values of

i
σ , when compared to the best one for the training dataset. The last indicates that in

challenging problems, for which it is known that there is significant mismatch between the

training and operational conditions, the computation of the value of
i

σ should be

performed on another independent dataset, referred to as development or validation data.
The development data are independent from the training and test datasets and serve for
fine-tuning of the overall performance.

7. Conclusion and future research directions

Although the research on locally recurrent neural networks has a long record of history, the
potential of development has not been exhausted. Moreover, in the last few years, there is a
resumption of interest to the field, and recently some new paradigms appeared. These new
architectures are in anticipation of further in depth studies, and further improvements and
elaboration.
Speaking specifically for the family of LRPNNs, there is a compelling need for further
studies that will investigate comprehensively how the recurrent layer linkage can be
optimized for specific problem on specific dataset. Perhaps, new strategies for automatic
selection of neighbourhood size and the specific neighbours of each recurrent neuron that
arise directly from the training data will appear. It will be particularly interesting to study
new algorithms for developing dynamically varying neighbourhoods, which depend on the
input during operation of the neural network, and which go beyond the predefined during
training look-up tables.
Finally, despite the progress made during the past decades, we deem that the locally
recurrent neural networks still await for their golden time, when they will have significantly
better biological plausibility. The human brain is still a source of inspiration, and we are
looking forward to see how the development of the neuroscience will contribute further for
the progress in the field of recurrent neural networks.

8. References

Aussem, A.; Murtagh, F. & Sarazin, M. (1995). Dynamical recurrent neural networks —
towards environmental time series prediction, International Journal of Neural
Systems, No.6, June 1995, pp.145–170.

Back, A.D. & Tsoi, A.C. (1991). FIR and IIR Synapses, a new neural network architecture for
time series modelling, Neural Computation, Vol.3, 1991, pp.375–385.

Back, A.D. & Tsoi, A.C. (1992). Nonlinear system identification using multilayer perceptrons
with locally recurrent synaptic structure, Proceedings of 1992 IEEE-SP Workshop on
Neural Networks for Signal Processing II, 1992, pp.444–453.

www.intechopen.com

 Recurrent Neural Networks

398

Barbounis, T.G. & Theocharis, J.B. (2007a). A locally recurrent fuzzy neural network with
application to the wind speed prediction using spatial correlation, Neurocomputing,
Vol.70, No. 7–9, 2007, pp.1525–1542.

Barbounis, T.G. & Theocharis, J.B. (2007b). Locally recurrent neural networks for wind speed
prediction using spatial correlation, Information Sciences, Vol. 177, No. 24, December
2007, pp.5775–5797.

Batliner, A. & Huber, R. (2007). Speaker characteristics and emotion classification, In: Speaker
Classification I, LNAI 4343, C. Műller (Ed.), Springer, 2007, pp.138–151.

Cain, B.J. (1990). Improved probabilistic neural network and its performance relative to the
other models, Proceedings of the SPIE, Applications of Artificial Neural Networks,
Vol.1294, 1990, pp.354–365.

Cannas, B.; Celli, G.; Marchesi, M. & Pilo F. (1998). Neural networks for power system
condition monitoring and protection, Neurocomputing, Vol.23, 1998, pp.111–123.

Clerc, M. & Kennedy, J. (2002). The particle swarm - explosion, stability, and convergence in
a multidimensional complex space, IEEE Transactions on Evolutionary Computation,
2002, Vol.6, pp.58–73.

Eberhart, R.C. & Shi, Y. (2000). Comparing inertia weights and constriction factors in
particle swarm optimization, Proceedings of the Congress on Evolutionary Computing,
2000, pp.84–88.

Ganchev, T.; Tasoulis, D.K.; Vrahatis, M.N. & Fakotakis, N. (2003). Locally recurrent
probabilistic neural network for text-independent speaker verification, Proceedings
of 8th European Conference on Speech Communication and Technology, EUROSPEECH
2003, September 1-4, 2003, Vol. 3, pp.1673–1676.

Ganchev, T.; Tasoulis, D.K.; Vrahatis, M.N. & Fakotakis, N. (2004). Locally recurrent
probabilistic neural networks with application to speaker verification, GESTS
International Transaction on Speech Science and Engineering, December 2004, Vol.1,
No.2, pp.1–13.

Ganchev, T.; Tasoulis, D.K.; Vrahatis, M.N. & Fakotakis, N. (2007). Generalized locally
recurrent probabilistic neural networks with application to text-independent
speaker verification, Neurocomputing, Vol.70, No.7–9, 2007, pp. 1424–1438.

Ganchev, T. (in-press-2008). Enhanced training for the locally recurrent probabilistic neural
networks, to apear in International Journal on Artificial Intelligence Tools, 2008.

Georgiou, V.L.; Pavlidis, N.G.; Parsopoulos, K.E.; Alevizos, Ph.D. & Vrahatis, M.N. (2006).
New self-adaptive probabilistic neural networks in bioinformatic and medical
tasks, International Journal of Artificial Intelligence Tools, 2006, Vol. 15, No. 3, pp. 371–
396.

Georgiou, V.L.; Alevizos, Ph.D. & Vrahatis, M.N. (2008). Novel approaches to probabilistic
neural networks through bagging and evolutionary estimating of prior
probabilities, Neural Processing Letters, Vol. 27, No. 2, pp. 153–162.

Janson, S. & Middendorf, M. (2005). A hierarchical particle swarm optimizer and its
adaptive variant, IEEE Transactions on Systems, Man and Cybernetics, Part B:
Cybernetics, Vol.35, No.6, December 2005, pp.1272–1282.

Hennebert, J.; Melin, H.; Petrovska, D. & Genoud, D. (2000). POLYCOST: A telephone-
speech database for speaker recognition, Speech Communication, Vol.31, No.2-3, pp.
265–270.

www.intechopen.com

Partially Connected Locally Recurrent Probabilistic Neural Networks

399

Kasper, K.; Reininger, H.; Wolf, D. & Wust, H. (1995). A speech recognizer based on locally
recurrent neural networks, Proceedings of the International Conference on Artificial
Neural Networks, 1995, Vol. 2, pp.15–20.

Kasper, K.; Reininger, H. & Wust, H. (1996). Strategies for reducing the complexity of a
RNN-based speech recognizer, Proceedings of the IEEE Conference on Acoustics,
Speech, and Signal Processing, ICASSP 1996, Vol.6, pp.3354–3357.

Kennedy, J. (1999). Small worlds and mega-minds: effects of neighborhood topology on
particle swarm performance, Proceedings of the 1999 Congress on Evolutionary
Computation, CEC’99, Vol.3, pp.1931–1938.

Kennedy, J. & Eberhart, R.C. (1995). Particle swarm optimization, Proceedings of the IEEE
International Conference on Neural Networks, ICNN 1995, Vol.4, pp.1942–1948.

LDC (2002). University of Pennsylvania, Linguistic Data Consortium, Emotional prosody
speech and transcripts (LDC2002S28), Available at: www.ldc.uppen.edu/Catalog/
CatalogEntry.jsp?cataloId=LDC2002S28

Liang, J.J.; Qin, A.K.; Suganthan, P.N. & Baskir, S. (2006). Comprehensive learning particle
swarm optimizer for global optimization of multimodal functions, IEEE
Transactions on Evolutionary Computation, 2006, Vol.10, No.3, pp.281–295.

Lin, T.; Horne, B.G. & Giles, C.L. (1998). How embedded memory in recurrent neural
network architectures helps learning long-term temporal dependencies, Neural
Networks, 1998, Vol.11, pp.861–868.

Mak, M.W. & Kung, S.Y. (2000). Estimation of elliptical basis function parameters by the EM
algorithm with application to speaker verification, IEEE Transactions on Neural
Networks, Vol.11, No.4, 2000, pp. 961–969.

McLachlan, G.J. & Krishnan, T. (1997). The EM algorithm and extensions. Wiley Series in
Probability and Statistics. New York: Wiley, 1997.

Meisel, W. (1972). Computer-oriented approaches to pattern recognition. Academic Press, New
York, 1972.

Parsopoulos, K.E. & Vrahatis, M.N. (2002). Recent approaches to global optimization
problems through particle swarm optimization, Natural Computing, Vol.1, No.2-3,
pp.235-306.

Parsopoulos, K.E. & Vrahatis, M.N. (2004). On the computation of all global minimizers
through particle swarm optimization, IEEE Transactions on Evolutionary
Computation, Vol.8, No. 3, pp.211–224.

Parsopoulos, K.E. & Vrahatis, M.N. (2005). Unified particle swarm optimization for tackling
operations research problems, Proceedings of the IEEE Swarm Intelligence Symposium,
SIS 2005, June 2005, pp.53–59.

Parsopoulos, K.E. & Vrahatis, M.N. (2007). Parameter selection and adaptation in unified
particle swarm optimization, Mathematical and Computer Modelling, Vol.46, No.1-2,
pp.198–213.

Slaney, M. (1998). Auditory toolbox. Version 2. Technical Report #1998-010, Interval
Research Corporation.

Specht, D.F. (1988). Probabilistic neural networks for classification, mapping, or associative
memory, Proceedings of the IEEE Conference on Neural Networks, 1988, Vol.1, pp.525–
532.

Specht, D.F. (1990). Probabilistic neural networks, Neural Networks, 1990, Vol.3, No.1,
pp.109–118.

www.intechopen.com

 Recurrent Neural Networks

400

Specht, D.F. (1992). Enhancements to probabilistic neural networks, Proceedings of the IEEE
International Joint Conference on Neural Networks, IJCNN 1992, Vol.1, pp. 761–768.

Specht, D.F. & Romsdahl, H. (1994). Experience with adaptive PNN and adaptive GRNN,
Proceedings of the IEEE International Conference on Neural Networks, ICNN 1994, Vol.2,
pp.1203–1208.

Yang, Z.R. & Chen, S. (1998). Robust maximum likelihood training of heteroscedastic
probabilistic neural networks, Neural Networks, 1998, Vol.11, No.4, pp.739–748.

www.intechopen.com

Recurrent Neural Networks

Edited by Xiaolin Hu and P. Balasubramaniam

ISBN 978-953-7619-08-4

Hard cover, 400 pages

Publisher InTech

Published online 01, September, 2008

Published in print edition September, 2008

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

The concept of neural network originated from neuroscience, and one of its primitive aims is to help us

understand the principle of the central nerve system and related behaviors through mathematical modeling.

The first part of the book is a collection of three contributions dedicated to this aim. The second part of the

book consists of seven chapters, all of which are about system identification and control. The third part of the

book is composed of Chapter 11 and Chapter 12, where two interesting RNNs are discussed, respectively.The

fourth part of the book comprises four chapters focusing on optimization problems. Doing optimization in a way

like the central nerve systems of advanced animals including humans is promising from some viewpoints.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Todor D. Ganchev, Konstantinos E. Parsopoulos, Michael N. Vrahatis and Nikos D. Fakotakis (2008). Partially

Connected Locally Recurrent Probabilistic Neural Networks, Recurrent Neural Networks, Xiaolin Hu and P.

Balasubramaniam (Ed.), ISBN: 978-953-7619-08-4, InTech, Available from:

http://www.intechopen.com/books/recurrent_neural_networks/partially_connected_locally_recurrent_probabilis

tic_neural_networks

© 2008 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

