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1. Introduction

Dementia is a typical symptom of many neurodegenerative diseases. The characteristic feature
of this pathology is preferential loss of cholinergic neurons in the brain septum, that are
responsible for almost all cognitive functions in humans and animals. Alzheimer disease (AD)
is one of the most common neurodegenerative diseases in elderly populations. There are
estimations that 30 million people worldwide are suffering from AD. Incidency of AD
continues to grow, becoming not only a medical but also a socio-economical problem,
especially when number of patients by 2050 will triple in connection with the lengthening of
the human life span. The human brain constitutes only 2% of body weight, but consumes about
20% of the total body energy output under resting conditions. In contrast to other tissues,
glucose is an almost exclusive energy substrate for the brain. In hypoxia or ketonemia brain
may consume certain amounts of lactate and beta-hydroxybutyrate, which, however, cannot
fully replace glucose to meet brain demands for energy. That is due to the fact that neurons,
constituting 10% of all brain cells, produce and consume about 80% of its energy. In addition
they have no capacity to store an inventory of high energy compounds. Therefore, the effective
functioning of neurons is dependent on the continuous supply of equivalent amounts of
glucose and oxygen. Most of the energy produced in the neurons, (60-70%) is consumed for
the maintenance and restoration of the pre-and postsynaptic membrane potentials.

Energy homeostasis of the brain is a very complex process due to the high sensitivity of
neurons to metabolic stress, isolation of the brain due to the existence of the blood brain
barrier, high energy requirements of the brain, and finally due to limited glycogen stores,
as a dynamic source of energy. However the first step in neurodegeneration is mitochondri-
al dysfunction. This appears during some pathologic conditions such as: hypoxia, hypogly-
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cemia, amyloid B accumulation, Zn, Fe, Al excess, free radicals formation and thiamine
deficiency. All these pathologic signals strongly inhibited activity of the key enzymes
engaged in energy metabolism.

In some cholinergic encephalopathies an impairment of brain energy metabolism occurs, a
process known as hypometabolism. Studies of brain PET using [**F] fluorodeoxyglucose reveal
impaired glucose uptake and metabolism in different regions of an encephalopathic brain. The
extent of these deficits correlates with the degree of cognitive impairment in the AD patients.
On the other hand, PET combined with Pittsburgh compound-B application, can specifically
determine the amyloid-f3 accumulation in the patient’s brain. Hence, it is possible to diagnose
the AD in the early stages. Another characteristic feature of neurodegeneration of AD type, is
inhibition of tricarboxylic acid cycle and the respiratory chain enzymes activities. Thus, there
is areduction in the synthesis and utilization of acetyl-CoA resulting from significant decreases
in pyruvate dehydrogenase (PDHC) and a-ketoglutarate dehydrogenase (KDHC) complex
activities. Marked inhibition of aconitase and isocitrate dehydrogenase (IDH) activities was
also reported in brain regions affected by AD pathology. This particular susceptibility of
cholinergic neurons to several neurotoxic signals may be caused by the fact that they use acetyl-
CoA not only to produce energy but also to synthesize acetylcholine. Thus the changes
observed in AD brains concern he loss of several cholinergic markers including choline
acetyltransferase (ChAT), acetylcholine esterase (AChE), high affinity choline uptake system
(HACU), vesicular acetylcholine transporter (VAChT) and resulting from them reductions in
ACh content and its quantal release. As a consequence, an impairment of signal transduction
processes caused by a loss of muscarinic (M, c,z) and nicotinic (N ¢,z) receptors and a decrease
in the acetylcholine level take effect. The decrease of different cholinergic markers and protein
levels were also observed post mortem in affected areas of human brain. It gives rise to a
suggestion that impairment of cholinergic neurons in AD may precede later stages of the
neurodegeneration process. These observations support the idea the key role of cholinergic
dysfunction in triggering the process of AD dementia. It is widely proven that neuroinflam-
mation is a prominent feature in AD brains and that inflammatory responses play a significant
role in progression of the disease. Prolonged and spread activation of microglia in AD brain
correlates with the extent of brain atrophy and cognitive decline. However the role of micro-
Iglia in the development of AD is controversial. There are some data about impairment of
energy metabolism in astrocytes in AD and other neurodegenerative conditions.

Astrocytes play several important functions in the metabolism of the brain including inter-
compartmental turnover of amino acid neurotransmitters and energy substrates. Among
others, these cells provide neurons with lactate, glutamine and aspartate for energy production
as well as with the precursors for neurotransmitter. The end-feet of astrocytes occupy a
strategically special location in brain between capillary endothelial cells and neurons. In
addition, astrocytes as a member of the tripartite synapse remove efficiently neurotransmitters
such as glutamate from the synaptic cleft and have important functions in regulating extrac-
ellular ion homeostasis. Due to the extensive contacts with both blood vessels and neurons
astrocytes play a key role in the control of cerebral energy and transmitter metabolism.
Astrocyte function and astrocyte-neuronal interactions are very important for synaptic
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plasticity. Thus impairment of astrocyte metabolism in various brain pathologies also has its
negative influence on neuronal functions.

2. Brain energy metabolism

Particular cellular compartments of the brain differ markedly in their rates of energy genera-
tion and consumption. Among them, neurons constituting only 10% of the brain cells, consume
up to 80% of its total energy output. Neuronal cells have no capacity to store any meaningful
reserves of high energy compounds. Therefore, the effective functioning of neurons is
dependent on the permanent supply of equivalent amounts of glucose and oxygen. About
60-70% of the energy produced in the neurons is consumed for the maintenance and restoration
of the pre-and postsynaptic membrane potentials after the functional depolarization taking
place with frequency from several to tens of Hz. Furthermore, the synthesis of neurotransmit-
ters, particularly acetylcholine (ACh), also consumes fraction of pyruvate derived acetyl-CoA,
a key substrate for tricarboxylic acid cycle (TCA). Neurotransmission requires a transmem-
brane lipid asymmetry and the constant rearrangement of phospholipids. The amount of
energy consumed in these processes is constitutes about 25% of the total pool [1]. Therefore,
the energy expenditures for maintenance metabolic activity of the brain are very high and can
be a factor limiting the number of neurons that can be fully active at any given time [2].

Glucose from brain vascular compartment is transported across the blood brain barrier and
astrocytes extensions by transporters GLUT1 of high-density and medium affinity for glucose
(Km 5-10 mmol/L). Their expression in endothelium is reduced by chronic hyperglycemia [3].
On the other hand, neurons on their plasma membranes contain high density of transporters
GLUTS3 of high affinity to glucose (Km 1-2 mmol/L), expression of which may increase during
chronic hypoglycemia [3-4]. In turn, astrocytes, take up glucose through the transporter
GLUTT1. The high rate of glucose uptake by neurons and astrocytes makes its concentration in
extracellular spaces of the brain to be one third lower than in the blood plasma. Thus, under
physiological conditions, the transport of glucose into neurons is the maximum a rate of about
6.5 pumol/s in the whole brain [3]. It should be noted that GLUT1 transporters are insensitive
to hypoglycemia, whereas GLUT3 to hyperglycemia [5]. These properties make the transport
of glucose into neurons optimized, which assures a relatively constant supply of this energy
substrate, despite large fluctuations in blood glucose concentrations under physiological and
pathological conditions.

An additional fraction of energy substrates is provided by astrocytes, which by their exten-
sions take up the glucose directly from the circulation and display a high rate of glycolytic cycle.
Therefore, they synthesize and release large amounts of lactate, which may be taken up by
neurons through theirmonocarboxylicacids transporters MCT1and MCT4. Lactateis transport-
ed into neurons serving as a source of pyruvate, the direct precursor of acetyl-CoA [6-7]. There
are claims, that the lactate under certain physiologic and pathologic conditions may provide up
to 25% of the energy inneurons [5,8-10]. Inaddition, high-fat diets, starvation, as well as diabetic
ketoacidosis can activate uptake of BHB, through the beta-hydroxybutyrate dehydrogenase-
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acetoacetyl-CoA synthetase-beta-ketothiolase steps. The level of BHB in extracellular compart-
mentisabout3.4 mmol/L. After being taken up into the cellsby MCT1/MCT4itbecomes asource
of acetyl-CoA independent of pyruvate dehydrogenase complex (PDHC) [4]. Therefore
ketogenic diet is used to treat syndromes of congenital deficiency of PDHC, although the
effectiveness of this treatmentislimited [1,11-13]. Patientsimprovementislimited to the general
conditions including alleviation of seizures. Deep losses of cognitive functions remain uncor-
rected. Hence, neither lactate nor ketoacids can’t completely replace glucose as energy sub-
strate forneurons.In this respect, thereisno explanation why under in vitro conditions pyruvate/
lactate remain better energy/acetyl-CoA sources than the glucose [9,14].

3. Cholinergic neurons and their role in central nervous system

Cholinergic neurons constitute only 1-10% of the total pool of neurons depending on the region
of the brain, but are indispensable for its basic function-cognition. With other transmitter
systems (glutamatergic, GABAergic etc.) they form structural networks for short-and long-
term memory formation as well as multiple associative functions [15]. The cholinergic
neurotransmission is linked with cognition, higher feelings, the analysis of visual stimuli,
olfactory and auditory processes, sustain attention, recall previously stored memory traces
and the regulation of behavior. The cholinergic system regulates cerebral blood flow and
controls the level of activity of the cerebral cortex, including the sleep-wake cycle [30]
[15,17,30]. It also modulates cognitive functions plasticity processes in the brain [16,18].
Cholinergic motor neurons innervating neuro-muscular junctions are indispensable for
contraction of all groups of striated muscles [16,19].

The prevalence of neurodegenerative pathologies increases with age. Many of them, including
Alzheimer’s disease (AD) or Wernicke or hypoxic encephalopathies, are connected with decay
of cholinergic innervation in the regions of brain cortex responsible for diverse cognitive
functions. Post mortem examinations reveal decrease in their number, atrophy, loss of arbori-
zation and the reduction of the level and activity of cholinergic markers such as choline
acetyltransferase (ChAT) vesicular acetylcholine transporter (VAChT) or high affinity choline
uptake system (HACU). They are linked with the impairment of cholinergic neurotranssmi-
tion. They correlate with results of the cognitive status of the patients shortly before their death
in a progressive physiological age-associated memory impairment and cognitive function
[19-20]. Recent reports indicate that accelerated and excessive cholinergic neuron atrophy and
loss of their connections are the main feature of cellular pathology underlying AD [21].
Reductions of the number of septal cholinergic neurons were reported to vary from 10% to
90% [22-23].

4. Selective vulnerability of cholinergic neurons

Cholinergic neurons compared to other types of neurons exhibit significantly higher sensitivity
to various pathogenic agents [7,16,24-26]. Different groups of cholinergic neurons in the central
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nervous system are characterized by the different sensitivity to similar, harmful active signals
and factors. In AD first of all cholinergic neurons of septum are found to be damaged. This
type of neurons have nerve endings in the hippocampus and different regions of cerebral
cortex. On the other hand, cholinergic interneurons in the striatum and motor neurons in
anterior horns of medulla oblongata remain intact, sometimes to the final stages of the disease.
Pathological changes were observed in the cholinergic terminals in medial temporal lobe [27].
Early, selective changes in cholinergic neurons are also observed in the olfactory cortex,
amygdala, CA-1 region and subiculum. Recent studies have shown that early amyloid
overload in the amygdalar regions was associated with appearance of neurofibrillary tangles
inside the neurons. These areas of the brain are known to be responsible for the formation of
declarative and long-term memory [28-30]. Abundant deposits of amyloid-f3 (A{3) also occur
in the frontal, temporal and parietal lobes. In the final stages of AD up to 60-65% losses of
cholinergic neurons in different areas of the hippocampus, and the accumulation of neurofi-
brillary tangles in other neurons have been reported [24]. Abundance of neurofibrillary tangles
correlated with gravity of clinical symptoms of dementia. On the contrary, the presence of
senile plaques was also found in several older patients, who were free from cognitive deficits
[31]. Selective neurodegeneration of specific areas of the hippocampus leads to the functional
isolation and contributes to the short term memory impairment, which can be seen particularly
in the initial stage of the disease. Variable sensitivity of brain regions rich in cholinergic
neurons to neurodegeneration may be due to the influence of other regionally characteristic,
diverse neurotransmitter networks, as well as the variable interactions with astrocytic and
microglial cells. It can also result from phenotypic diversity of individual groups of cholinergic
neurons. The underlying cause of the varying sensitivity of different groups of cholinergic
neurons may be the level of their cholinergic neurotransmission, the presence of different
classes of glutamatergic receptors as well as the frequency of their basic electrophysiological
activity. Studies on different whole brain and cell lines indicate, that particular sensitivity of
cholinergic neurons to cytotoxic stimuli may be due to the fact that they are using acetyl-CoA,
not only, as the other group of neurons, to produce energy, but also for the synthesis of the
neurotransmitter, which is ACh [7,26,32].

5. Alzheimer’s disease

Alzheimer disease (AD) is one of the most common neurodegenerative diseases in elderly
populations. It is estimated that 30 millions people are suffering from AD around the world.
The number of cases of AD continues to grow, it is anticipated that the number of patients by
2050 will triplicate as a result of increasing longevity in modern societies.

AD is characterized by a decrease in the number of neurons and their interconnections, linked
with progressive impairments of memory and cognitive functions, disorientation and the
appearance of neurodegenerative alterations in affected areas of the brain. Disruption of axonal
transport in cholinergic neurons is one of the earliest signs of AD observed both in humans
and in experimental studies using transgenic mice [33]. The typical hallmark of AD is prefer-
ential loss of cholinergic neurons and their extensions in the olfactory bulbs, hippocampus,
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frontal, occipital and parietal lobes [34]. Differential sensitivity of between particular groups
of cholinergic neurons may be due to their highly variable phenotypes as well as functional
status (septal and motor neurons as an example) [35]. Clinical and animal studies demonstrat-
ed thatloss of septal cholinergic neurons occurred well before those of other groups of neuronal
and glial cells. Particular susceptibility of cholinergic neurons may be caused by the fact that
in pathological neurodegenerative conditions, their demand for acetyl units for ACh synthesis
overlaps with inhibition of PDHC [7,26,32]. This conclusion remains in accord with studies on
human AD brains, that revealed a decrease of PDHC, a-ketoglutarate dehydrogenase (KDHC)
and aconitase activities in areas affected by this pathology [7,35-36].

Accumulation of AB/senile plaques in extracellular compartment and hyperphosphorylated
tau protein inside the neurons are characteristic histopathological findings in AD brains [37].

The process of A3 peptide accumulation and its polymerization under favorable conditions is
very slow. It gave rise to the hypothesis that amyloidosis is just an outcome but not the cause
of AD degeneration [38-40]. AP synthesized mainly as 40 amino acid peptide, with minute
fractions of 39, 41 and 43 amino acid peptides, all of none or limited neurotoxicity. The 42
aminoacid A is apparently most toxic peptide in its mono-and oligomeric forms [30,41-42].
Amyloid peptides are formed by proteolytic processing of amyloid precursor protein (APP)
in sequential reactions catalysed by B-and y-secretase, respectively. Amyloid polymers are
thought to disrupt the neuronal cells through formation high flow uncontrollable Ca-cation
channels in their plasma membranes [41-42]. That triggers intensive red-ox processes being
the source of excessive amounts of free radicals. Peroxidation of membrane phospholipids
disrupts ions transport across cell membranes, including calcium homeostasis and causes
changes in the functioning of the cell membrane receptor proteins. Aggregation and polymer-
ization of AB peptide and the accumulation of paired helical filaments in neurons and the
synaptic endings impairs axonal transport leading to degeneration and death of neurons.

Biochemical alterations observed in the AD brains are associated with decreased activities of
enzymes involved in energy metabolism as well as in those responsible for the biosynthesis,
release and breakdown of ACh, such as ChAT, acetylcholine esterase (AChE), HACU or
VAChHT. The impairment of signal transduction processes caused by decreased densities in
muscarinic (M,cng) and nicotinic (Nr) receptors and inhibition of the ACh synthesis and
quantal release were also reported [7,30,42].

AChE is an enzyme present both in the axons and nerve ending of cholinergic neurons and in
postsynaptic neurons in the cerebral cortex. Therefore its activity/level is also decreased in
parallel with the loss of cholinergic neurons taking place in AD and other encephalopathies,
[43-44]. These changes were also accompanied by impaired axonal transport, which is one of
the earliest functional alterations in cholinergic neurons of AD brains [43]. The decrease of
activities/levels different cholinergic markers were also observed post mortem in affected brain
areas [45-46]. It gave rise to the suggestion that impairment of cholinergic neurons in AD may
precede later stages of neurodegeneration process [30]. These observations support the
hypothesis of the pivotal role of cholinergic dysfunction in the pathomechanisms of AD
dementia.
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6. Hypometabolism in Alzheimer’s disease

Energy homeostasis of the brain is a very complex process. This is due to the high sensitivity
of neurons to metabolic stress, existence of the blood brain barrier, high-energy requirements
of the brain, and finally due to limited reserves of energy precursor substrates. In AD an
impairment of brain energy metabolism occurs, a process known as hypometabolism [1,47-48].
Studies with positron emission tomography (PET) using [*F] fluorodeoxyglucose exhibit
impaired glucose metabolism in brain regions of both sides in the temporal, parietal and
cingulate cortex. The extent of these changes correlates with cognitive impairment in the
affected patients. These changes are one of the well established diagnostic criteria for AD. PET
combined with marking Pittsburgh blue (Pittsburgh compound-B) can specifically determine
the AP deposits in the brain, so it is possible to diagnose the AD in its early stages [49-54].
Disturbances in glucose metabolism are associated with the reduction in the density of glucose
transporters GLUT1 and GLUT3 in the neurons. Also activity of phosphofructokinase and
glyceraldehyde-3-phosphate are diminished yielding suppression of the glycolytic metabo-
lism, and facilitation of amyloidogenic transformation of APP and apoptosis [55-56].

However, the most important alteration in AD brains seems to be suppression of acetyl-
CoA synthesis and TCA as well as the respiratory chain proteins. Reductions of PDHC,
KDHC complex activities may be key factor in this pathomechanism due to reduction of
acetyl-CoA synthesis and its utilization in TCA cycle, respectively. Studies of cholinergic
septal neuronal cell lines have shown, that neurotoxins associated with AD pathomechan-
isms caused direct/instant inhibition of aconitase, PDHC, KDHC and suppressed synthe-
sis and utilization of acetyl-CoA in mitochondria yielding increased mortality in septal
cholinergic SN56 neuronal cells with high expression of the cholinergic phenotype [7,32].
One of the main changes observed an early stage of AD is the impairment of oxidative
phosphorylation, which leads to decrease of electron transport in the respiratory chain,
mainly in complex IV, which is associated with inhibition/decreased expression of cyto-
chrome oxidase and ATP synthase. In this way, in the AD brains reduced of ATP level
occurs. At this stage of the disease morphological changes of mitochondria were also
observed. Disturbances in membrane fluidity and structure, reduction of the mitochondri-
al combs, density of mitochondria were also observed [57-59].

7. Pivotal role of acetyl-CoA

The principal, immediate source of acetyl-CoA in the brain is pyruvate formed from the
glycolytic metabolism of glucose. The reaction of the oxidative decarboxylation of pyruvate
supplying acetyl-CoA is catalyzed by PDHC, located in the mitochondria. More than 97% of
acetyl residues via citrate synthase is metabolized to citrate and consumed in TCA cycle to
produce the energy needed to restore the membrane potential during depolarization-repola-
rization cycles of several Hz frequency. Only 3% of the pool of generated acetyl-CoA is used
in the synthesis of ACh, which takes place in the cytoplasmic compartment [60-63]. However,
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under resting conditions acetyl-CoA molecules practically do not pass through the inner
mitochondrial membrane into the cytoplasm. Therefore acetyl moiety for ACh synthesis must
be transported to the cytoplasm through the intermediate metabolites, such as citrate, acetyl-
L-carnitine, for which the inner mitochondrial membrane has a suitable transport systems [64].
In cytoplasm, acetyl-CoA is resynthesized from these compounds. It has been found, that in
brain nerve terminals about 30-50% of acetyl-CoA pool is transported from the mitochondria
to synaptoplasm, as citrate [65-67]. In cholinergic neurons and nerve terminals the metabolic
flow through this pathway is facilitated by the preferential localization of ATP-citrate lyase
(ACL) [67-70].

In various forms of dementia including AD, thiamine deficiency, hypoxia or dialysis evoked
encephalopathies in humans and animal models of dementia, loss of cognitive functions
correlated with preferential deficits of cholinergic markers. Another striking feature in all of
these pathologies was the decrease in energy metabolism in the affected regions of the brain
[7,21,35,57-58,71]. The decreases in glucose metabolism and reduced stores of phosphocreatine
and ATP have been shown during the life of the patients, by PET investigations [51-52,54]. This
is confirmed by post mortem studies, which show that the cause of these changes may be
decreased activity of PDHC, aconitase and KDHC in pathologically altered regions of the
central nervous system [26,71-74]. These changes correlated with both the loss of cholinergic
markers and the degree of degreased cognitive scores, before the death of the patient [19,30,75].
Studies on isolated cholinergic murine septal neuronal cell lines displayed strong inverse
correlations between rates of cell death and PDHC activities or acetyl-CoA levels in their
mitochondrial compartment under various neurodegenerative and neuroprotective condi-
tions [7,40,76-80]. On the other hand, ChAT activity, ACh level and synthesis as well as quantal
release correlated directly with levels of acetyl-CoA in cytoplasmic compartment of the
cholinergic neurons [7,81].

8. Acute and chronic neurotoxicity

Cognitive deficits, the main clinical symptoms of cholinergic encephalopathies may in some
cases combine with motor disability [82]. These changes correlate well with the degree of
functional and structural losses of basal forebrain cholinergic neurons projecting axons to
hippocampus and different cortical areas, motor neurons innervating different groups of
striated muscles [45]. In these cases suppression of energy metabolism, correlates with losses
of cholinergic markers in affected areas of brain cortex or spinal cord segments. Dysfunction
of brain mitochondria is thought to be both the consequence of pathologic insults as well as a
source of signals triggering neurodegeneration. Therefore, alterations in PDHC synthesized
acetyl-CoA metabolism in the cholinergic neurons should be considered both as a source of
disturbances in their transmitter functions and viability (Fig. 1) [7,32]. Several pathologic
disturbances of aging brain cause excessive depolarization and overload of neuronal cells with
Ca?and other divalent cations yielding diverse cytotoxic reactions.
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Figure 1. Putative neurotoxic signals affecting pathways acetyl-CoA and energy metabolism in brain cells and their
specific interactions with cholinergic neurons.

Glutamateric neurotransmitter system constitutes 50% of all brain neurons and synaptic
terminals. Prolonged pathologic depolarization yields an excessive co-release of glutamate and
Zn from brain terminals triggering action potentials through NMDA, AMPA receptors and
other voltage gated Ca channels located on postsynaptic neurons including cholinergic ones
[83-85]. They cause dysfunction of postsynaptic neurons that may lead to apoptosis and
necrosis [86-87]. Energy deficits also inhibit uptake of glutamate by adjacent astrocytes, due
to the down-regulation of EAA, GLAST and GLT1 transporters and inhibition of their
glutamine synthetase [88]. Sustained elevations of glutamate and Zn levels within the synaptic
clefts, yield prolonged depolarization of postsynaptic neurons, as well as astroglial and
microglial cells [89]. The disruption of Ca**homeostasis affects enzymes linked with pathways
involved in energy, neurotransmitter, and NO metabolism. The Ca*excess in the mitochondria
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compartment may lead to PDHC activity inhibition due to activation of PDH kinase. That may
cause acetyl-CoA deficits in subcellular compartments of cholinergic neuronal cells [40,90-91].
During brain hypoxic/ischemic episodes the earliest event is excitotoxic activation caused by
prolonged release of glutamate and Zn from glutaminergic nerve terminals. The excess of
glutamate/Zn in the synaptic cleft results in, through multiple receptors and transporters,
excitotoxic depolarization of postsynaptic neurons and adjacent glial cells as well. These
alterations pave the road to subsequent chronic steps of neurodegeneration yielding charac-
teristic histopathologic picture of amyloidosis-f3 and tauopathy [92-93].

9. Amyloid-f toxicity

It has been found that AD frequently combines with stroke and cerebral vessel thrombosis and
other defects of capilary circulation [94]. Transient hypoxic and hypoperfusion conditions,
frequent in eldery people brains, may also augment A3 accumulation by activation of y and
[-secretases. They catalyze amyloidogenic cleavage of APP and increase A3 accumulation in
extra-and intracellular compartments of the brain [95].

There is a common view that different extra-and intracellular deposits of A{3 are the main cause
of neuronal injury in the course of AD. Neurotoxic properties of A have been demonstrated
in several experimental paradigms. It has been shown, that AB added to the cell cultures
inhibited the key enzymes of TCA cycle, as well as PDHC [77, 92,96]. It resulted in depletion
of acetyl-CoA yielding supression of respiratory chain and ATP levels in affected neuronal
cells [76-77,97]. These alterations could be aggravated by Af-evoked disruption of endogenous
metal homeostasis, including calcium, iron, zinc and copper [98]. Accumulation of these metals
as well as xenobiotic. Espesially aluminium, has been found in AD amyloid lesions. Each of
these metals may aggravate inhibitory effects of A on oxidative/energy metabolism and
cholinergic neurotransmission, yielding increased mortality of cholinergic neurons both in
cultures and in brain tissue in situ [32]. AP fibrilar polymers were reported to form high
conductance Ca-channels in cell plasma membranes, with apparent impairment of energy
metabolism and activation catabolic pathways [99-100]. Subtoxic levels of Af3 were found to
directly inhibit PDHC activity in brain nerve terminals [96]. Accumulation of extracellular
A aggravated suppressive effect of NGF mediated by p75 receptors abundantly expressed in
septal cholinergic neurons, yielding different suppressive and neurotoxic reactions [32,101].
AP also facilitaed inflammatory responses of microglial cells, that promote neurodegenerative
processes through excessive production of inflammatory cytokines [102]. However, a recent
report reveals that A accumulation in sensitive regions of human cortex correlated neither
with loss of cholinergic innervation nor with impairment of respective cognitive functions
[103]. That supports earlier notions that Af3 should be considered rather as an outcome than
the cause of AD encephalopathy. Nevertheless, that does not rule out the possibility that
accumulated A3 may combine with preceding cytotoxic signals, yielding augmentation of
neurodegeneration processes.
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10. Zinc neurotoxicity

Zinc is an essential trace element for living organisms, being the component of active centers
of about 300 enzymes and proteins including: carboxypeptidase, aspartate carbamoyltrans-
ferase, alcohol dehydrogenases, peroxide dismutase, zinc finger structures of transcription
factors and several others [104-105]. It down-regulates the activity of NMDA receptors and
other transporter proteins. As a crucial structural element in zinc-fingers, Zn is a regulator of
transcription and other adaptative reactions of the organism [106-107]. It inhibits the opening
of NMDA channels [108], that during sustained depolarization may take up the excess of this
metal from-the synaptic cleft into the postsynaptic neurons [108].

Zinc concentration in synaptic vesicles of glutaminergic terminals may reach levels of few
hundred mmol/L as it forms complex with L-glutamate to assure isoosmolality of the vesicular
fluid. In accordance with this the highest whole tissue concentration of Zn, about 0.15
mmol/L, was found in the grey matter. During pathologic brain depolarization glutamate is
released with zinc from glutaminergic terminals to synaptic clefts, where it can reach concen-
trations as high as 0.3 mmol/L. Under physiological conditions Zn is quickly cleared from the
synaptic cleft mainly by astrocytes and postsynaptic neurons.

There are three groups of proteins specifically regulating Zn distribution in brain cells. They
include: ZnT1, located in the neuronal plasma membranes; ZnT2 in endoplasmic reticulum
and ZnT3 in synaptic vesicles of nerve terminals [109]. These proteins are activated when zinc
concentration in the cytoplasm is elevated. Apart from that, the neuron-specific membrane
transporters Zip1, 4, 6 participate in zinc turnover [110]. Zip 1 and 4 remove zinc from the cell,
whereas Zip 6 accumulates this cation in the intracellular compartment [111]. It is however
not known how ZnTs functions combine with various Ca-channel/transporter activities in the
regulation of Zn levels and compartmentalization in the neuronal cells.

Several pathologic conditions cause excessive release of zinc from presynaptic glutamatergic
vesicles. High amounts of free Zn are taken-up by postsynaptic neurons and adjacent glial
cells. There is no evidence whether large amounts of Zn can be released from other locations
apart synaptic vesicles. There was increasing Zn*’accumulation in degenerating neurons after
excitotoxic stimulation of transgenic mice, lacking ZnT3 transporter that results in no zinc
accumulation in vesicles [112]. Our earlier study revealed that high zinc accumulation in
cultured neurons caused inhibition of key enzymes of energy metabolism [40,80]. Namely,
Zn*directly inhibited PDHC and KDHC as well as aconitase activities which led to reduction
of acetyl-CoA and ATP levels [40,80]. These Zn/glutamate induced energy deficits along with
sustained depolarization along may cause Ca and free radical overloads. That triggers
excessive synthesis of nitric oxide (NO), by nNOS and iNOS present in adjacent postsynaptic
neuronal and glial cells, respectively. As a result excess of highly toxic peroxynitrite radicals
accumulate in affected area. NO excess was reported to cause irreversible inhibition of
aconitase and isocitrate dehydrogenase and the reversible one PDHC and KDHC [32,77,98].
These effects apparently aggravated cytotoxic effects of Zn, triggering vicious cycle of
cholinergic neurodegeneration [76,80-81]. There are evidences that aberrant Zn homeostasis
is involved in the pathogenesis of AD [113]. Zn may be directly involved in the process of
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amyloidogenesis as APP protein was found to contain Zn binding motif [113] located within
the cysteine-rich region of its ectodomain. This points out that Zn may play a role in yet
unknown functions of APP.

High dietary intake of Zn significantly increased the Zn and APP levels in transgenic APP/P1
mouse brains. It also enhanced amyloidogenic cleavage of APP protein both under in vivo and
in vitro conditions [114]. In mouse brain Zn inhibited a-sectetase activity, elevating the 3 and
v-secretase activities promoting accumulation of AB(1-40), the main component of A3 plaques
[108,115]. There was accompanied by the impairment of learning capacity in the Morris water
maze test [114]. Zinc cytotoxic effects were observed not only in AD but also in several other
brain pathologies including: epilepsy, mechanical trauma, ischemic stroke, hypoglycemia,
hypoxia, thiamine deficits and other inherited or acquired metabolic blocks [115].

Besides, chronic pathological conditions may down-regulate expression of different classes of
ZnT in astrocytes. In the same conditions Zn may be released to perisynaptic compartments
[116]. Hence, Zn excitotoxicity would not be caused by overall increase of its concentration in
the brain, but by its aberrant redistribution between different extra-and intracellular compart-
ments of the brain [117].

Increased Zn concentrations in extracellular space may induce oligomerization of A(3, aggra-
vating its cytotoxic effect in AD brains. That is why short-time elevation of Zn concentrations
in extracellular fluid (ECF) might trigger the long-term amyloidogenetic process. These signals
were found to exert negative influence on cholinergic neurons that are responsible for cognitive
functions and short-time memory formation [32]. It seems that high expression of the choli-
nergic phenotype in neurons (SN56) of septal origin makes them particularly susceptible to
Zn-cytotoxic signaling [7,40,80].

There was also reported that xenobiotic metal Al may also accumulate in the brains in age-
dependent manner [118-119]. It could inhibit calcium channels and Na/Ca exchanger in
mitochondrial membranes what might increase mitochondrial and decrease cytoplasmic
calcium levels in nerve terminals and cholinergic neuronal cells [32,74]. All these pathogens
either alone or in combination were found to cause the decrease acetyl-CoA synthesis in
neuronal mitochondria and reduction of energy production yielding increased cholinergic
neuron susceptibility to degeneration [32,80]. In addition, lowering the cytoplasmic level of
calcium could reduce direct transport of acetyl-CoA from mitochondria to cytoplasm through
permeability transition pores (PTP) [32,74]. Shortages of acetyl-CoA in cytoplasmic compart-
ment cause inhibition of acetylcholine synthesis and release [40].

On the other hand, primary or secondary Zn deficits could also induce neurodegenerative
brain injury. Such conditions were found in the elderly people who maintained themselves on
Zn-deficient diet [41]. Some life periods such as intensive growth, pregnancy, lactation,
intensive physical exercises increase demand for Zn facilitating appearance of its deficits. That
is why numerous therapeutical and schedules recommend taking supplements that contain
Zn organic complexes: zinc bisglicine, or zinc bisaspartate. They are claimed to be safer in use
than nonchelatable inorganic Zn salts. However, there is no convincing data that would
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support this claim. Zn deficits in experimental animals were reported to cause to have
increased oxidative stress and/or had greater rate of lipid peroxidation [120].
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Figure 2. Differential neurotoxicities in nondifferentiated and differentiated cholinergic SN56 neuroblastoma cells.
Recalculated from: [32,40,81,158-159].

11. NO excess

Glutamate-Zn evoked increases of [Ca*']/[calmodulin-Ca] in cytoplasmic compartments of
postsynaptic neurons and adjacent glial cells activated nNOS and iNOS, respectively. It seems
however, that only increased expression of Ca-independent iNOS in the microglial/astroglial
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cells may contribute significantly to neurodegeneration. It has been demonstrated, that only
iNOS-dependent activation may elevate the NO levels in the brain up to low micromolar,
pathologically relevant, concentrations [121]. In fact, bacterial lipopolysaccharides could
induce several-fold increase of NO synthesis by microglia [121]. On the other hand, fraction
of NO produced by nNOS/eNOS may reach levels two orders of magnitude lower, and is likely
to play a physiologic roles of “volume transmitter” and guanyl cyclase activator [89]. Perox-
ynitrite radicals were found to react with wide range of intracellular biomolecules linked with
energy and glycolytic metabolism and several regulatory and transport or neurotransmitter
pathways, as well as with antioxidant systems. Excess of endogenous NO exerts rapid but
reversible inhibition of cytochrome c oxidase and less potent one for other proteins of respi-
ratory chain and ATP-synthetase, as well [122]. However, NO may also inhibit earlier steps of
energy metabolism including: PDHC, aconitase, isocitrate NADP-dehydrogenase, as well as
KDHC [40,76,77]. Other enzymes of TCA cycle: succinate dehydrogenase, fumarase, and
malate dehydrogenase were not affected by these conditions. That could cause deficits of
acetyl-CoA and ATP in NO/ONOO-exposed neuronal [32,76]. Cholinergic neurons with
residual expression of the cholinergic phenotype appeared to be more resistant to NO
neurotoxicity than those with high expression of the cholinergic phenotype, apparently due
to negligible demand for acetyl-CoA to support ACh synthesis in the former.

Lipoic acid or acetyl-L-carnitine were found to exert positive effects on viability in NO or Zn-
exposed cholinergic SN56 cells through preservation of acetyl-CoA availability in their
mitochondrial and cytoplasmic compartments [32,77]. However, delay in cytoprotectant
application markedly diminished their efficacy, apparently due to instant, irreversible
inactivation of aconitase by Zn and NO/ONOOT40,123]. ChAT appeared to be resistant to
direct, acute exposition to NO-excess. However, its expression was adaptatively down-
regulated by chronic cytotoxic conditions decreasing acetyl-CoA provision into cytoplasmic
compartment [124].

12. Thiamine deficiency

Thiamine pyrophosphate (TPP) is a cofactor for E1 subunits of PDHC and KDHC, that are key
rate limiting steps regulating acetyl-CoA synthesis and its metabolic flux through TCA cycle,
respectively [61,71,118,125-126]. Activities of these enzymes in the brain mitochondria are
several times higher than in nonneuronal tissues, due to high demand for energy in this tissue.
Therefore, thiamine pyrophosphate deficits (TD) evoked by chronic alcoholism, starvation or
thiamine depleting diets caused dramatic clinical symptoms of motor, cognitive and metabolic
disturbances in the form of Wernicke-Korsakoff encephalopathy, muscular dystonia, edema
and lactic acidosis, with frequently fatal outcomes [125,127-128]. On the other hand, early
supplementation of TPP deficient subjects with thiamine, reversed symptoms of these
pathologies [129]. The majority of TD-evoked neurologic and cognitive disturbances may be
explained by the impairment of cholinergic neurotransmission. In TD brains there are two
major mechanisms that are responsible for dysfuctioning and loss of cholinergic neurons: the
primary limitation of acetyl-CoA provision and excytotoxic Zn overload. The first one is caused



Energy-Dependent Mechanisms of Cholinergic Neurodegeneration
http://dx.doi.org/10.5772/58339

B
500 A 401 r=0.759
_ r=0.893 . 50025
S p<0.001 S p<0.
o 401 °
) * 7n T 307
> (&)
2 g 2
3 20 E
3 SNP+LA+AB 4
& N g 104
% 104 SNP+LA® & Zn+LA %
— AMP 1 2\ control (= SNP+LA & @ ApRLLA
0- Al+AB o LA 0 control ¢ LA
40 60 80 100 120 30 60 90 120
Pyruvate dehydrogenase Mitochondrial acetyl-CoA
(relative activity %) (relative activity %)
1101 C 1209 D
ALC ¢
100+ Control * —~ 1004 control ¢
* Ap+ALC * L A
2 901 Pb* Zn+LA S g0l Al0.001
] [
% § 80 AB+LA . %
2 ® "SNP+LA £ 60-
S 70{ Po#p SNP+AB+LA s
g Al SNPAR+ S
= < 40
60- 7n 8NP e Brg
. AB r=0.737 . r=0.935
50- SNP+AB p<0.002 20- Zn0.15 p<0.0001
20 40 60 80 100 120 140 10 3 60 8 110
Cytoplasmic acetyl-CoA (% control) Cytoplasmic acetyl-CoA (% control)

Figure 3. Existence of significant correlations between: intramitochondrial acetyl-CoA metabolism and cholinergic
neuronal cell injury (AB) and cytoplasmic acetyl-CoA levels and transmitter functions (CD) of cholinergic neuronal cells
of septal origin. Data collected from: [32,40,81,124].

by the impaired synthesis of acetyl-CoA by PDHC, what strightly leads to the excytotoxic
release of glutamate-Zn from energy depleted glutamatergic neurons [108]. In whole brain and
cellular models of TD, the reduction of mitochondrial levels of acetyl-CoA correlated with
losses of cholinergic markers and viability of the neurons [81,119,130-131].

The decreases of cytoplasmic acetyl-CoA in amprolium-induced TD SN56 cells and brain nerve
terminals, from pyrythiamine treated rats, resulted from limited synthesis of this metabolite
in the mitochondrial compartment by TD-deficient PDHC. In consequence, lower rates of ACh
synthesis and its quantal release in TD cholinergic neurons positively correlated with de-
creased concentration of acetyl-CoA in their cytoplasmic compartment [81,130]. These findings
fit to a general rule that the rate of ACh synthesis/release depends on the availability of acetyl-
CoA in cytoplasmic/synaptoplasmic compartment of cholinergic neurons, irrespective of the
type of neurotoxic signal [7,32]. However, unlike for AD or other neurotoxic conditions, acute
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TD altered ChAT activity neither in pyrithiamine-rat brain synaptosomes nor in amprolium-
SN56 cells [132]. These data prove that, at least in early stages of TD, the structure of cholinergic
neurons remained well preserved and that inhibition of ACh quantal release is exclusively due
to the inhibition of acetyl-CoA provision to the site of its synthesis.

13. Glia and neurotoxicity

Astrocytes play several important functions in the metabolism of the brain including inter-
compartmental turnover of aminoacid neurotransmitters and energy substrates. They supply
neurons with lactate, glutamine and aspartate for energy production neurotransmitter
synthesis [133]. The end-feet of astrocytes occupy a strategic sites between capillary endothelial
cells and neurons. In addition, astrocytes as a member of the tripartitie synapse remove
efficiently neurotransmitters such as glutamate from the synaptic cleft and have important
functions in maintenance of ion homeostasis in the extracellular compartments of the brain
[134]. Due to the extensive contact with both blood vessels and neurons, astrocytes play the
key role in the control of cerebral energy and transmitter metabolism. Astrocyte viability and
astrocyte-neuronal interactions take part in processes of synaptic plasticity. Thus impairment
in astrocyte metabolism in various brain pathologies also has its negative influence on neuronal
functions.

There are some data about impairment of energy metabolism in astrocytes in AD and other
neurodegenerative diseases [135]. However, most of them have been collected using isolated
astroglial cells or whole brain models without taking into account subcellular distribution of
energy metabolism. Therefore, like in the neuronal cells [7] putative aberrations of acetyl-CoA
metabolism in the cytoplasmic and mitochondrial compartments of astrocytes, should be
investigated in different models of AD and other cholinergic encephalopathies. The main role
of astrocytes is to protect and support neurons. Astrocytes are capable to produce net lactate,
L-glutamine and accumulate glycogen. They consume about 15-20% of the glucose in the brain
[136,137]. Thanks to this they can deliver lactate to neurons, through monocarboxylate
transporters MCT1, MCT 2. Lactate, after conversion to pyruvate may serve as an alternative
to glucose source of acetyl-CoA under hypoglycaemic or hypoxic conditions. During physio-
logic activation of glutamatergic endings Na*dependent transport of glutamate into astrocytes
by GLT1 and GLAST transporters was found to be enhanced. Subsequently glutamate was
converted there to L-glutamine [136]. There are no Zip transporters on the surface of astrocyte’s
cellular membrane. Therefore uptake of zinc from synaptic cleft occurs through high density
divalent metal transporters: DMT1. Except of Zn ions astrocytes may take up also iron and
copper [138]. Apart from that, astrocytes contain high levels of metalothioneins (MTs). In
consequence they can take up Zn from synaptic cleft and bind it forming complexes with MTs
[139]. That is why impairment of astrocytes under cytotoxic conditions may limit their
neuroprotective functions and indirectly facilitate neurodegenerative processes.

There are several therapeutic and preventive approaches to AD and other cholinergic ence-
phalopathies of advanced age. However, now days only cholinomimetics and GABA-
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antagonists are approved for treatment of AD and related dementive disorders. They, however
neither prevent nor slow down the progress of cognitive loses [102]. Other, therapeutic
approaches such as choline supplementation, provision of acetyl-CoA precursors, or free
radical scavengers, neurotrophin supply, antiinflamatory drugs application, inhibition of A3
synthesis or reduction of its overload appeared to be ineffective.

Neuroinflammation is one of principal pathomechanisms of AD which significantly contrib-
utes to the progress of the disease [102]. Prolonged and widely spread activation of microglia
in AD brain correlates with the extent of brain atrophy and cognitive decline. However, the
role of microlglia in the development of AD is a subject of discrepant reports. On one hand,
microglial fagocytosis of AP is belived to be a protective mechanism againts neurodegenera-
tion [140]. Both atrocytes and microglia release both pro-and anti-inflammatory cytokines and
prostaglandins, as well as oxygen, nitrosyl radicals. Cytokines through TLR-4 receptors were
found to stimulate variety of intracellular signaling pathways that have been implicated in
neuronal damage in AD. Therefore, people taking chronically nonsteroid anti-inflammatory
drugs displayed lower prevalence of this pathology [141]. Microglial activation by many
endogenous and signaling compounds such as L-glutamate, ATP, 7-ketocholesterol, cAMP
were reported to cause inhibition of several enzymes of their energy metabolism [32,141]. Both
Zn and AP oligomers are capable of microglia activation. This results in release of soluble
neurotoxic compounds that compromise integrity of neurons and synapses [142]. Also Zn in
rather low concentrations (30-50 micromol/L) activates microglia through mechanism de-
pendent on activation of transcription factor NF-kappaB [143]. Simultaneously active com-
pounds derived from activated microglia augment Zn release from glutamatergic neuronal
endings what may accelerate neurodegenerative processes [144].

The activation of both astrocytes and microglial cells is associated with the induction of major
proinflammatory pathways [145]. Gene expression profile analysis confirmed the prominent
upregulation of genes associated with the immune/inflammatory pathways, including several
chemokines and pro-inflammatory cytokines [146]. Activation the IL-1f3 pathway has been
revealed both, in glial as well as in neuronal cells in brains of chronically epileptic rats [147].
Both the complement pathway and the plasminogen system are also activated within the
hippocampus affected by multiple-sclerosis [148-149]. Both IL-1p, complement components
and plasminogen activators were found to increase the permeability of the blood brain barrier
(BBB) [150,151]. Toll-like receptor (TLR) signaling pathways in brains affected by various
pathologies such as epilepsy, ischemia or AD, may contribute to neuronal injury [152].
Moreover microRNAs (miRNA) also play a role in the regulation of the innate and adaptive
immune responses. In particular, miR-146a, which can be induced by different pro-inflamma-
tory stimuli such as IL-13 and TNF-a, has been shown to critically modulate innate immunity
through regulation of TLR signaling and cytokine responses [153]. Interestingly, this miRNA
is upregulated in TLR as well as in experimental models of epilepsy. These observations
suggest miRNA as potential targets to modulate inflammatory pathways.

Moreover activation of microglia is the well known source of nitric oxide and other reactive
oxygen species (ROS) [154]. There are data showing that NO produced by activated microglia
inhibits the activity KDHC [155].
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Numberous data proved that prolonged activation of microglia leads to excessive secretion of
NO, ROS and proinflamatory cytokines [156]. Lypopolysacharide (LPS) derived from bacteria
exerts the capacity to activate microglial cells. In such conditions the cells secrete augmented
levels of II-13, 11-6, TNF-a. TNF-a in nonactivated microglia is produced in insignificant
concentration whereas in LPS-activated cells the level of its release is several times expanded
[157]. Microglia may be also stimulated by AP what in consequence conducts to excessive
release of TNF-a, that becomes the neurotoxic factor. However some data reports that low
I1-1B concentrations may have positive effect on highly differentiated cholinergic neurons by
increasing the ChAT expression and activity in cholinergic neurons treated by neurotoxic
concentrations of A3 [124]. In consequence the level of ACh was also elevated. Moreover these
data also proved that added II-1(3 reversed the inhibitory effect of cytotoxic factors on acetyl-
CoA level in cytoplasmic compartment. These changes in cholinergic phenotype correlated
well with cell viability and morphology. From the other hand Il-13-activation was completely
inhibited by IL-6 or TNF-a.

The other data proves that in the cocultures of neuronal cells with microglial cells the last ones
protect neurons from death caused by some cytotoxic factors such as elevated Zn or NO levels
(Gul-Hinc et al. unpublished). The cytoprotective effect may be caused by the restoration by
microglia the proper level of I1-6 in cholinergic neurons and restoration of the high activity of
PDHC and acetyl-CoA level. From the other hand LPS-induced excessive release of TNF-a by
microglia exerts the cytotoxic effect that is independent on acetyl-CoA level.

14. Conclusions

There is some data concerning the mechanism of cholinergic encephalopathies in particular
Alzheimer disease. They are mainly focused on disturbances in A metabolism and only little
of them reflect changes in energy metabolism particularly after various cytotoxic factors.
However there is the existence of significant correlation between components of pyruvate-
acetyl-CoA-acetycholine pathway. Cytotoxic insults that are responsible for AD such as: Ap,
Zn, Al, NOO, TD directly or indirectly inhibits the activity of PDHC and KDHC what leads
to acetyl-CoA synthesis. Consequently, there is inhibition of activity of three carboxylic acid
cycle what causes the development of neurodegenerative changes in brain. Characterictic
feature of some neurodegenerative diseases in preferential loss of cholinergic neurons what
correlates with the degree of energy metabolism inhibition. Some data proved that survival of
cholinergic neurons is limited by the level of acetyl-CoA in mitochondrial compartment.
Moreover it is independent in the reason. The particular susceptibility of cholinergic neurons
to various cytotoxic insults is triggered by relative shortage of this metabolite in mitochondria
and used for acetylcholine synthesis. That is why it might be said that PDHC activity strait
determine acetyl-CoA level in mitochondria what limits its utilization for energy production
and acetylcholine synthesis under cytotoxic insults.
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