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1. Introduction

A general mixed-integer nonlinear programming problem (MINLP) is formulated as follows:

(Pn) : min Sl
: 1)
h

subject to (z) =0 and g(z) <0,

where z = (x, y)Te Z;x € RVand y € D" are, respectively, bounded continuous and discrete

variables; f(z) is a lower-bounded objective function; g(z) = (g1(z),.... g/z))T is a vector of r
inequality constraint functions;2and h(z)= (h1(z), ..., hn(z))Tis a vector of m equality constraint

functions. Functions f(z), g(z), and h(z) are general functions that can be discontinuous, non-
differentiable, and not in closed form.

Without loss of generality, we present our results with respect to minimization problems,
knowing that maximization problems can be converted to minimization ones by negating
their objectives. Because there is no closed-form solution to P,,, we develop in this chapter
efficient procedures for finding locally optimal and feasible solutions to P,, demonstrate
that our procedures can lead to better solutions than existing methods, and illustrate the
procedures on two applications. The proofs that our procedures have well-behaved
convergence properties can be found in the reference [27], We first define the following
terms.

1 Research supported by the National Science Foundation Grant IIS 03-12084 and a
Department of Energy Early Career Principal Investigator Grant.

2 Given two vectors Viand V5 of the same dimension, V1= V> means that each element of V;
is greater than or equal to the corresponding element of V»; V1> V> means that at least one
element of Vi is greater than the corresponding element of V> and the other elements are
greater than or equal to the corresponding elements of V>.

Source: Simulated Annealing, Book edited by: Cher Ming Tan, ISBN 978-953-7619-07-7, pp. 420, February 2008, I-Tech Education and
Publishing, Vienna, Austria
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156 Simulated Annealing

Definition 1. A mixed neighborhood N ,,(z) for z = (x, y)Tin the mixed space R” x D" is:

No(e) = { @) | eNeto)} U { @) | € Natw ®

where N ((x) = {x' : kx' — xk < € and € — 0} is the continuous neighborhood of x, and the discrete
neighborhood N 4(y) is a finite user-defined set of points {y' € D} such thaty' € N 4(y) &y €
N 4(y') [1]. Here, ¢ — 0 means that € is arbitrarily close to 0.

Definition 2. Point z of P, is a feasible point iff h(z) = 0 and g(z) < 0.

Definition 3. Point z* is a constrained local minimum (CLM,,) of P, iff z* is feasible, and f(z*) <
f(z) with respect to all feasible z €N ,,(z*).

Definition 4. Point z* is a constrained global minimum (CGM,,) of P iff z* is feasible, and

f(z*) £ f(2) for every feasible z € Z. The set of all CGM , of P, is Zopt.
Note that a discrete neighborhood is a user-defined concept because it does not have any
generally accepted definition. Hence, it is possible for z = (x, y)T to be a CLM,, to a

neighborhood N 4(y) but not to another neighborhood N.«;,('y). The choice, however, does
not affect the validity of a search as long as one definition is consistently used throughout.
Normally, one may choose N 4(y) to include discrete points closest to z, although a search
will also be correct if the neighborhood includes “distant” points.

Finding a CLM,, of P, is often challenging. First, f(z), g(z), and h(z) may be non-convex and

highly nonlinear, making it difficult to even find a feasible point or a feasible region.
Moreover, it is not always useful to keep a search within a feasible region because there may
be multiple disconnected feasible regions. To find high-quality solutions, a search may have

to move from one feasible region to another. Second, f(z), g(z), and h(z) may be

discontinuous or may not be differentiable, rendering it impossible to apply existing
theories based on gradients.

A popular method for solving P,, is the penalty method (Section 2.1). It transforms P,, into
an unconstrained penalty function and finds suitable penalties in such a way that a global
minimum of the penalty function corresponds to a CGM, of P,. Because it is
computationally intractable to look for global minima when the penalty function is highly
nonlinear, penalty methods are only effective for finding CGM,, in special cases.

This chapter is based on the theory of extended saddle points in mixed space [25, 29]
(Section 2.2), which shows the one-to-one correspondence between a CLM,, of P, and an
extended saddle point (ESP) of the corresponding penalty function. The necessary and
sufficient condition allows us to find a CLM, of P, by looking for an ESP of the

corresponding penalty function.

One way to look for those ESPs is to minimize the penalty function, while gradually
increasing its penalties until they are larger than some thresholds. The approach is not
sufficient because it also generates stationary points of the penalty function that are not
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CLM, of Pr. To avoid those undesirable stationary points, it is possible to restart the search

when such stationary points are reached, or to periodically decrease the penalties in order
for the search to escape from such local traps. However, this simple greedy approach for
updating penalties may not always work well across different problems.

Our goals in this chapter are to design efficient methods for finding ESPs of a penalty

formulation of P, and to illustrate them on two applications. We have made three

contributions in this chapter.
First, we propose in Section 3.1 a constrained simulated annealing algorithm (CSA), an

extension of conventional simulated annealing (SA) [18], for solving P,. In addition to

probabilistic descents in the problem-variable subspace as in SA, CSA does probabilistic
ascents in the penalty subspace, using a method that controls descents and ascents in a
unified fashion. Because CSA is sample-based, it is inefficient for solving large problems. To
this end, we propose in Section 3.2 a constraint-partitioned simulated annealing algorithm
(CPSA). By exploiting the locality of constraints in many constraint optimization problems,
CPSA partitions P, into multiple loosely coupled subproblems that are related by very few

global constraints, solves each subproblem independently, and iteratively resolves the
inconsistent global constraints.

Second, we show in Section 4 the asymptotic convergence of CSA and CPSA to a
constrained global minimum with probability one in discrete constrained optimization
problems, under a specific temperature schedule [27]. The property can be proved by
modeling the search as a strongly ergodic Markov chain and by showing that CSA and
CPSA minimize an implicit virtual energy at any constrained global minimum with
probability one. The result is significant because it extends conventional SA, which
guarantees asymptotic convergence in discrete unconstrained optimization, to that in
discrete constrained optimization. It also establishes the condition under which optimal
solutions can be found in constraint-partitioned nonlinear optimization problems.

Last, we evaluate CSA and CPSA in Section 5 by solving some benchmarks in continuous
space and by demonstrating their effectiveness when compared to other dynamic penalty
methods. We also apply CSA to solve two real-world applications, one on sensor-network
placements and another on out-of-core compiler code generation.

2. Previous work on penalty methods

Direct and penalty methods are two general approaches for solving P,. Since direct

methods are only effective for solving some special cases of P,, we focus on penalty
methods in this chapter.
A penalty function of P, is a summation of its objective and constraint functions weighted

by penalties. Using penalty vectors & € R"and S € R’, the general penalty function for P, is:

Ly((z, (},_.-i’)’)’"-) = f(2) + o' P(h(2)) + BT Q(g(2)). (3)

where P and Q are transformation functions. The goal of a penalty method is to find

suitable o* and f* in such a way that z* that minimizes (3) corresponds to either a CLM,, or a

www.intechopen.com



158 Simulated Annealing

CGM,, of P,. Penalty methods belong to a general approach that can solve continuous,

discrete, and mixed constrained optimization problems, with no continuity, differentiability,
and convexity requirements.

When P(g(z)) and Q(h(z)) are general functions that can take positive and negative values,
unique values of o* and A+ must be found in order for a local minimum z* of (3) to
correspond to a CLM,, or CGM,, of P,,. (The proof is not shown.) However, the approach of

solving P, by finding local minima of (3) does not always work for discrete or mixed
problems because there may not exist any feasible penalties at z*. (This behavior is

illustrated in Example 1 in Section 2.1.) It is also possible for the penalties to exist at z* but

(3) is not at a local minimum there. A special case exists in continuous problems when
constraint functions are continuous, differentiable, and regular. For those problems, the
Karush-Kuhn-Tucker (KKT) condition shows that unique penalties always exist at

constrained local minima [21]. In general, existing penalty methods for solving P, transform

g(z) and h(z) in (3) into non-negative functions before finding its local or global minima. In

this section, we review some existing penalty methods in the literature.

2.1 Penalty methods for constrained global optimization
Static penalty methods. A static-penalty method [21, 22] formulates P,, as the minimization of

(3) when its transformed constraints have the following properties: a) P(h(z)) 2 0 and Q(g(2))
2 0; and b) P(h(z)) = 0 iff h(z) = 0, and Q(g(z)) = 0 iff g(z) < 0. By finding suitable penalty
vectors « and f, an example method looks for z* by solving the following problem with
constant p > 0:

e

(Py) : min L, ((z,a,4)") = min | f(2) + Za-,- |hi(2)]? + Z;‘ij} (9;())", @
: - i=1 j=1

where gij(z)* = max(0, gj(2)), and g(z)* = (g1(z)*, . . ., g(2))T.

Given z*, an interesting property of P1is that z* is a CGM,, of P, iff there exist finite a* > 0
and f* 2 0 such that z* is a global minimum of Ls((z, a**, p*)r) for any a** > o* and fe* >
p+. To show this result, note that ; and fin P1 must be greater than zero in order to penalize
those transformed violated constraint functions | A;(z) |” and (gj(z)*)”, which are non-negative

with a minimum of zero. As (4) is to be minimized with respect to z, increasing the penalty

of a violated constraint to a large enough value will force the corresponding transformed
constraint function to achieve the minimum of zero, and such penalties always exist if a

feasible solution to P, exists. At those points where all the constraints are satisfied, every
term on the right of (4) except the first is zero, and a global minimum of (4) corresponds to a
CGM,, of P,
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Example 1. Consider the following simple discrete optimization problem:

0 ify=>0
min  f(y) =< vy ify=-1,-2 subject to y = 0. (5)
ye{—3,—-2, ) o
-1,0,1,2} -4 ify=-3

Obviously, y* = 0. Assuming a penalty function L,((y, @)T) = f(y)* ay and N 4(y) = {y—1,
y+1}, there is no single a* that can make L,((y, a*)T) a local minimum at y* = 0 with respect

to y = £1. This is true because we arrive at an inconsistent a* when we solve the following
inequalities:

0= L,((0,a")7") < Ly((-1,0")") = f(=1) —a" = —1-a"

_ a* < -1 wheny=—1
= - L =
Lﬂ,((l.u"'l]’_] =f(l)+a*=0+a" a®* =0 when iy = 1.

On the other hand, by using Ls((y, @)T) = f(y) + @ |y| and by setting o = — , the CGM, of

W |~

(5) corresponds to the global minimum of L((y, a**)T) for any a** > ax. [
A variation of the static-penalty method proposed in [16] uses discrete penalty values and
assigns a penalty value «;(hi(z)) when h;(z) exceeds a discrete level ¢; (resp., Bi(gj(z)) when gj(z)*
exceeds a discrete level ¢), where a higher level of constraint violation entails a larger
penalty value. The penalty method then solves the following minimization problem:

m r

(Py) : 1112111Lﬁ.({:.n,;i}?}:111:in F(2)+ ) ailhi(2)) h';’(:)+Z.-i_I-r_glj-(_z))(g_j{:)*_}z . (6)
i=1

=1

A limitation common to all static-penalty methods is that their penalties have to be found by
trial and error. Each trial is computationally expensive because it involves finding a global
minimum of a nonlinear function. To this end, many penalty methods resort to finding local
minima of penalty functions. However, such an approach is heuristic because there is no

formal property that relates a CLM,, of P, to a local minimum of the corresponding penalty
function. As illustrated earlier, it is possible that no feasible penalties exist in order to have a
local minimum at a CLM, in the penalty function. It is also possible for the penalties to exist

at the CLM,, but the penalty function is not at a local minimum there.

Dynamic penalty methods. Instead of finding o** and f+* by trial and error, a dynamic-
penalty method [21, 22] increases the penalties in (4) gradually, finds the global minimum z*
of (4) with respect to z, and stops when z* is a feasible solution to P,. To show that z* is a
CGM,, when the algorithm stops, we know that the penalties need to be increased when z* is

a global minimum of (4) but not a feasible solution to P,. The first time z* is a feasible

solution to P,, the solution must also be a CGM,,. Hence, the method leads to the smallest
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o+ and f+* that allow a CGM,, to be found. However, it has the same limitation as static-

penalty methods because it requires computationally expensive algorithms for finding the
global minima of nonlinear functions.

There are many variations of dynamic penalty methods. A well-known one is the non-
stationary method (NS) [17] that solves a sequence of minimization problems with the
following in iteration t:

T

(P3):  minL, ((z,0,8)") = min | f(z) + Z a;(t) |hi(2)]? + Z,’ij[t) (9;()7)"| @)
) i i=1 i=1

where a;(t + 1) = ai(t) + C - [hi(2())],  Bj(t+1) = B;(t) + C - g;(=(8))*.

Here, C and p are constant parameters, with a reasonable setting of C = 0.01 and p = 2. An

advantage of the NS penalty method is that it requires only a few parameters to be tuned.
Another dynamic penalty method is the adaptive penalty method (AP) [5] that makes use of a
feedback from the search process. AP solves the following minimization problem in
iteration t:

(Py) : min Ly ((z, @, 8)") = min | f(z) + im(f} hi(z)? + 2=3;‘[1}(."!_;'{_3_}'_)2 )
) - i=1 j=1
where () is, respectively, increased, decreased, or left unchanged when the constraint

hi(z) = 0 is respectively, infeasible, feasible, or neither in the last ¢ iterations. That is,
% if h;(2(i)) = 0 is feasible in iterations ¢ — £+ 1,... ¢
a;(t + 1) = < Ay - ai(t) if hi(2(i)) = 0 is infeasible in iterations ¢ — £ +1,... ¢ )

a;(t) otherwise,

where (¢ is a positive integer, A1, A2 > 1, and A\ # A2 in order to avoid cycles in updates. We
use ¢ =3, \y=1.5, and X\ =1.25 in our experiments. A similar rule applies to the updates of
BO).

The threshold penalty method estimates and dynamically adjusts a near-feasible threshold ¢;(¢)

(resp., ¢j (t)) for each constraint in iteration ¢. Each threshold indicates a reasonable amount

of violation allowed for promising but infeasible points during the solution of the following
problem:

T

(Ps) : min Li((z,a,8)") = min {f(:.) + a(t) [z (i}‘;:;)‘ + Z (ﬁ;f;])l >-] } - (10)
o j=1 v Y

i=1

There are two other variations of dynamic penalty methods that are not as popular: the
death penalty method simply rejects all infeasible individuals [4]; and a penalty method that
uses the number of violated constraints instead of the degree of violations in the penalty
function [20].
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Exact penalty methods. Besides the dynamic penalty methods reviewed above that require
solving a series of unconstrained minimization problems under different penalty values, the
exact penalty methods are another class of penalty methods that can yield an optimal solution
by solving a single unconstrained optimization of the penalty function with appropriate
penalty values. The most common form solves the following minimization problem in
continuous space [35, 6]:

11.1311 Le((z, (r}T) = 111@11 [f{;[.?) + c( Z lhi(z)| + Z gj(;{:}Jr)] . (11)

i=1 j=1

It has been shown that, for continuous and differentiable problems and when certain

constraint qualification conditions are satisfied, there exists ¢* > 0 such that the x* that
minimizes (11) is also a global optimal solution to the original problem [35, 6]. In fact, c

needs to be larger than the summation of all the Lagrange multipliers at x*, while the
existence of the Lagrange multipliers requires the continuity and differentiability of the
functions.

Besides (11), there are various other formulations of exact penalty methods [11, 12, 10, 3].
However, they are limited to continuous and differentiable functions and to global
optimization. The theoretical results for these methods were developed by relating their
penalties to their Lagrange multipliers, whose existence requires the continuity and
differentiability of the constraint functions.

In our experiments, we only evaluate our proposed methods with respect to dynamic
penalty methods P3 and P4 for the following reasons. It is impractical to implement P4
because it requires choosing some suitable penalty values a priori. The control of progress in
solving P is difficult because it requires tuning many (¢- (m+r)) parameters that are hard to

generalize. The method based on solving Psis also hard to generalize because it depends on

choosing an appropriate sequence of violation thresholds. Reducing the thresholds quickly
leads to large penalties and the search trapped at infeasible points, whereas reducing the
thresholds slowly leads to slow convergence. We do not evaluate exact penalty methods
because they were developed for problems with continuous and differentiable functions.

2.2 Necessary and sufficient conditions on constrained local minimization
We first describe in this section the theory of extended saddle points (ESPs) that shows the

one-to-one correspondence between a CLM,, of P, and an ESP of the penalty function. We

then present the partitioning of the ESP condition into multiple necessary conditions and the
formulation of the corresponding subproblems. Because the results have been published
earlier [25, 29], we only summarize some high-level concepts without the precise formalism
and their proofs.

Definition 5. For penalty vectors « € R"and f € R’, we define a penalty function of P, as:

m

Lin((z:0,8)") = f(2) + T |h(2)| + BTg(2)" = f(2) + Y _aulhi2)| + > Bigi(2)*. (12
i=1 Jj=1
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162 Simulated Annealing

Next, we informally define a constraint-qualification condition needed in the main theorem
[25]. Consider a feasible point z' = (x', y")Tand a neighboring point z" = (x'+ p , y )Tunder an
infinitely small perturbation along direction p €X in the x subspace. When the constraint-
qualification condition is satisfied at z', it means that there is no p such that the rates of
change of all equality and active inequality constraints between 7" and z' are zero. To see
why this is necessary, assume that f(z) at z' decreases along p and that all equality and
active inequality constraints at z' have zero rates of change between 7" and 7'. In this case, it
is not possible to find some finite penalty values for the constraints at 7" in such a way that
leads to a local minimum of the penalty function at 7' with respect to z". Hence, if the above
scenario were true for some p at z/, then it is not possible to have a local minimum of the
penalty function at z'. In short, constraint qualification at z' requires at least one equality or
active inequality constraint to have a non-zero rate of change along each direction p atz'in
the x subspace.

Theorem 1. Necessary and sufficient condition on CLM,, of P, [25]. Assuming z* € Z of P,

satisfies the constraint-qualification condition, then z* is a CLM,, of P, iff there exist some

finite o > 0 and S+ 2 0 that satisfies the following extended saddle-point condition (ESPC):
Lin((z" . 8)") < Lin((z",0™,5™)7) < Lin((z,07,8™)7) (13)

for any o** > o* and f** > f* and for all zeN ,,(z*), e R", and pe R".

Note that (13) can be satisfied under rather loose conditions because it is true for a range of
penalty values and not for unique values. For this reason, we call (z¥, o**, f*)T an extended
saddle point (ESP) of (12). The theorem leads to an easy way for finding CLM,,. Since an ESP
is a local minimum of (12) (but not the converse), z* can be found by gradually increasing
the penalties of those violated constraints in (12) and by repeatedly finding the local minima
of (12) until a feasible solution to P, is obtained. The search for local minima can be
accomplished by any existing local-search algorithm for unconstrained optimization.
Example 1 (cont’d). In solving (5), if we use L.((y, @)7) =f(y) + a|y| and choose o* =1 we
have an ESP at y* = 0 for any &** > o*. This establishes a local minimum of L,,((y, a)T)at y* =
0 with respect to N 4(y) = {y = 1, y + 1}. Note that the ¢* that satisfies Theorem 1 is only

required to establish a local minimum of L,,((y, )T) at y* = 0 and is, therefore, smaller than

4
the o* (=—) required to establish a global minimum of L,((y, @)T )in the static-penalty
3

method. [
An important feature of the ESPC in Theorem 1 is that it can be partitioned in such a way
that each subproblem implementing a partitioned condition can be solved by looking for
any &** and f** that are larger than o* and f*.
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Consider P, a version of P,, whose constraints can be partitioned into N subsets:

(F) - min f(z)
subject to R (z(#)) =0, ¢W(2(t)) <0 (local constraints) (14)
and H(z) =0, G(z) <0 (global constraints).
Each subset of constraints can be treated as a subproblem, where Subproblem 1, ¢t =1, ..., N,
has local state vector z(t) = (z1(t),. .., zy,(t))T of u; mixed variables, and U;_|~(?‘)

Here, z(#) includes all the variables that appear in any of the m; local equality constraint

- ?IH

-
functions j(t) — ( p Ut } j” !-') and the r; local inequality constraint functions

T
g = (g?},---e f};“ }) . Since the partitioning is by constraints, z(1), . . . , z(N) may

overlap with each other. Further, z(g) includes all the variables that appear in any of the p
global equality constraint functions H = (Hy, . . . ,Hp)Tand the g global inequality constraint
functions G = (G4, . . ., Gy)T.

We first define N ,,(z), the mixed neighborhood of z for P;, and decompose the ESPC in (13)

into a set of necessary conditions that collectively are sufficient. Each partitioned ESPC is
then satisfied by finding an ESP of the corresponding subproblem, and any violated global
constraints are resolved by finding some appropriate penalties.

Definition 6. Np” (z), the mixed neighborhood of z for P; when partitioned by its constraints,

is:

N
pn }_UN”} ) U{gf

=1 t=1

Z'(t) € N,,,'(z(i)) and 2z = z; Vz; ¢ Ml,rr‘]} (15)

where Np, (2(t))is the mixed neighborhood of z() (see Definition 2).
Intuitively, N ( (t))is separated into N neighborhoods, where the t neighborhood only

perturbs the variables in z(¢) while leaving those variables in z\ z(f) unchanged.

Without showing the details, we can consider P;as a MINLP and apply Theorem 1 to derive
its ESPC. We then decompose the ESPC into N necessary conditions, one for each
subproblem, and an overall necessary condition on the global constraints across the
subproblems. We first define the penalty function for Subproblem t.
Definition 7. Let ®((z,7,7)") =~"|H(z)|+ 71" G(z)" be the sum of the transformed
global constraint functions weighted by their penalties, where
Y= (1,--7)" € R and 5 = (m,...,n,) are the penalty vectors for the global
constraints. Then the penalty function for P;in (14) and the corresponding penalty function
in Subproblem f are defined as follows:

Lo ((z, 0, 8,7,m)" —|—Z{ TR (z(6)] + B(t)T (¢ (2(t))) i }—HI‘J{ 2,17, (16)
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164 Simulated Annealing

Ton((2,a(t), B(1),7,mT) = £(2) + a()" 1RO (z(6)] + BT (9P (2()) " + (2,7, m)7), (17)

where a(t) = (ai(t),..., an, (1) € R™ and B(t) = (Bi(t),.... B, (t)" € R" are the
penalty vectors for the local constraints in Subproblem ¢.
Theorem 2. Partitioned necessary and sufficient ESPC on CLMm of Pt [25]. Given N, (z), the

ESPC in (13) can be rewritten into N + 1 necessary conditions that, collectively, are

sufficient:
Lz, 00). 80,7 1)) < T((2 0™ B0 v ™))
< I'm ({:3? Uf(”*x ) j(”** ’ f:"*x ’ ’f** }T ) (18)
L., ((:x (}**?.!,3**?”!.?_”)'1'“) < L, ((:m.arf“jmr,}‘nr. ?!4‘]{);) (19)

for any af(t)™ > a(t)" = 0, B(t)*™ > p(t)* =2 0, v > ~* = 0, and ™ > n* = 0,

and forall z € Ny (%), a(t) e R™, B(t) eR", veR", peR",and t = 1,...,N.

Theorem 2 shows that the original ESPC in Theorem 1 can be partitioned into N necessary
conditions in (18) and an overall necessary condition in (19) on the global constraints across
the subproblems. Because finding an ESP to each partitioned condition is equivalent to
solving a MINLP, we can reformulate the ESP search of the t condition as the solution of
the following optimization problem:

(P") min  f(z) + " |H(z)| + 0" G(2)*
2(t) | (20)
subjectto A'Y(2(f)) =0 and ¢ (z(t)) <0,

The weighted sum of the global constraint functions in the objective of (20) is important
because it leads to points that minimize the violations of the global constraints. When 4T and

nT are large enough, solving P" will lead to points, if they exist, that satisfy the global

constraints. Note that P is very similar to the original problem and can be solved by the

same solver to the original problem with some modifications on the objective function to be
optimized.

In summary, we have shown in this section that the search for a CLM,, of P,, is equivalent to
finding an ESP of the corresponding penalty function, and that this necessary and sufficient
condition can be partitioned into multiple necessary conditions. The latter result allows the
original problem to be decomposed by its constraints to multiple subproblems and to the
reweighting of those violated global constraints defined by (19). The major benefit of this
decomposition is that each subproblem involves only a fraction of the original constraints
and is, therefore, a significant relaxation of the original problem with much lower
complexity. The decomposition leads to a large reduction in the complexity of the original
problem if the global constraints is small in quantity and can be resolved efficiently. We
demonstrate in Section 5 that the number of global constraints in many benchmarks is
indeed small when we exploit the locality of the constraints. In the next section, we describe
our extensions to simulated annealing for finding ESPs.
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3. Simulated annealing for constrained optimization

In this section, we present three algorithms for finding ESPs: the first two implementing the
results in Theorems 1 and 2, and the third extending the penalty search algorithms in
Section 2.1. All three methods are based on sampling the search space of a problem during
their search and can be applied to solve continuous, discrete, and mixed-integer

optimization problems. Without loss of generality, we only consider P,, with equality
constraints, since an inequality constraint gj(z) < 0 can be transformed into an equivalent

equality constraint gj(z)* = 0.

3.1 Constrained simulated annealing (CSA)
Figure 1 presents CSA, our algorithm for finding an ESP whose (z*, o**)7 satisfies (13). In

addition to probabilistic descents in the z subspace as in SA [18], with an acceptance

probability governed by a temperature that is reduced by a properly chosen cooling
schedule, CSA also does probabilistic ascents in the penalty subspace. The success of CSA
lies in its strategy to search in the joint space, instead of applying SA to search in the
subspace of the penalty function and updating the penalties in a separate phase of the
algorithm. The latter approach would be taken in existing static and the dynamic penalty
methods discussed in Section 2.1. CSA overcomes the limitations of existing penalty
methods because it does not require a separate algorithm for choosing penalties. The rest of
this section explains the steps of CSA [30, 28].

1. procedure CSA
2. set starting point z « (z, )" and initialize o « 0;

3. set starting temperature T' « T and cooling rate 0 < k < 1;
4. set Ny +— number of trials per temperature;

5. while stopping condition is not satisfied do

6. for k — 1 to Ny do

7 generate trial point 2’ € N,,,(z) using G(z,2');

8. if z’ is accepted according to Ar(z,z') then z — 2z’
9. end_for

10. reduce temperature by 7' — & T,

11. end_while

12. end_procedure

Figure 1. CSA: Constrained simulated annealing (see text for the initial values of the
parameters). The differences between CSA and SA lie in their definitions of state z,

neighborhood N ,,(z), generation probability G(z, z') and acceptance probability Ar(z, z').

Line 2 sets a starting point z < (z, )T, where z can be either user-provided or randomly
generated (such as using a fixed seed 123 in our experiments), and « is initialized to zero.
Line 3 initializes control parameter temperature T to be so large that almost any trial point z'

will be accepted. In our experiments on continuous problems, we initialize T

by first randomly generating 100 points of x and their corresponding neighbors
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¥ € Nx) in close proximity, where |x'—x;| < 0.001, and then setting
T= 1r!1§;>§{|L-J,, (2, 1)) =Ly ((z, 1)), |h,-[.r)|}. Hence, we use a large initial T if the function
is rugged (|Ly ((«',1)T) = L., ((x,1)7)lis large), or the function is not rugged but its
constraint violation (| 4i(x) | ) is large. We also initialize « to 0.95 in our experiments.

Line 4 sets the number of iterations at each temperature. In our experiments, we choose N1+«

¢ (20n + m) where ¢ « 10(n + m), n is the number of variables, and m is the number of

equality constraints. This setting is based on the heuristic rule in [9] using n +m instead of n.
Line 5 stops CSA when the current z is not changed, i.e., no other z' is accepted, in two
successive temperature changes, or when the current T is small enough (e.g. T <107°).

Line 7 generates a random point z' € N y(2z) from the current z € § = Z x A, where

A = R"™is the space of the penalty vector. In our implementation, N (z) consists of (z', a)r

and (z, a')r, where z'e N, (2) (see Definition 1), and o' € Ny, () is a point neighboring to o
when A(z) # 0:

Npn(z) = {(;"cr}'{ € 8 where 2’ € le(:—:}} U {[:?cr’)T € 8§ where o € :N‘rrrztf,l}} (21)
and Ny, (o) = {rr" € A where (a) < a; or a; > a; if hi(2) # 0) and (o) = o if hi(z) = U}}. (22)
According to this definition, ¢;is not perturbed when #;(z) = 0 is satisfied.
G(z, Z'), the generation probability from z to z' eN ,,(z), satisfies:
0>G(z,2z')<1 and Z G(z.2') = 1. (23)
2" ENm (z)

Since the choice of G(z Z') is arbitrary as long as it satisfies (23), we select z' in our
experiments with uniform probability across all the points in N ,,(z), independent of T':
1

¢=7) = o @9

As we perturb either z or a but not both simultaneously, (24) means that z' is generated
either by choosing z' € Ny, (z) randomly or by generating “uniformly in a predefined range.
Line 8 accepts z' with acceptance probability At (z z') that consists of two components,

depending on whether z or « is changed in z":

\r(z,2) exp (— LmlZ)-Lm(@)” if 2/ = (2, )7
ATs 2 )= o (2 N (25)
exp (— L@ Lm (=) if 2 = (z,a/)7T.
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The acceptance probability in (25) differs from the acceptance probability used in
conventional SA, which only has the first case in (25) and whose goal is to look for a global

minimum in the z subspace. Without the o subspace, only probabilistic descents in the z

subspace are carried out.

Constraints: h'Y(2(1)) =0 h'3(z(2)) =0 AV (2(N)) =0
Variables: z(1) z(2) z(N)
Penalties: a(l) a(2) a(N)
t=1 t = t=N

z =Ny (z) z = N (z) 2 =N, (z)

() | ° N
N \ \

Constraints: H(z) = 0 /,_A i N+1
Variables: z(g) ( 7z = NY(z) )
Penalties: ~ N

Figure 2. CPSA: Constraint-partitioned simulated annealing.

In contrast, our goal is to look for an ESP in the joint Z x A space, each existing at a local
minimum in the z subspace and at a local maximum in the a subspace. To this end, CSA
carries out probabilistic descents of Lm ((3 , ﬁ')TI) with respect to z for each fixed «. That is,
when we generate a new 7' under a fixed a, we accept it with probability one when
0, = Ly, ((3#, n:}'f') — Ly (( ca)t )1s negative; otherwise, we accept it with probability
¢~ 9:/T. This step has exactly the same effect as in conventional SA; that is, it performs
descents with occasional ascents in the z subspace.

However, descents in the z subspace alone will lead to a local/global minimum of the
penalty function without satisfying the corresponding constraints. In order to satisfy all the
constraints, CSA also carries out probabilistic ascents of Ly, ((z, r}:]"r) with respect to a for
each fixed z in order to increase the penalties of violated constraints and to force them into
satisfaction. Hence, when we generate a new ¢ under a fixed z, we accept it with probability
one when o, = L,,,{(z,a-")"‘-) = L,,,((:_,n:)-"') is positive; otherwise, we accept it with
probability e~ 0a/T
ascents with occasional descents in the o subspace. Note that when a constraint is satisfied,
the corresponding penalty will not be changed according to (22).

. This step is the same as that in conventional SA when performing

Finally, Line 10 reduces T by the following cooling schedule after looping Nrtimes at given 7

T «— k-T where the cooling-rate constant x « 0.95 (typically 0.8 < x <0.99). (26)
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At high T, (25) allows any trial point to be accepted with high probabilities, thereby
allowing the search to traverse a large space and overcome infeasible regions. When T is
reduced, the acceptance probability decreases, and at very low temperatures, the algorithm
behaves like a local search.

3.2 Constraint-Partitioned Simulated Annealing (CPSA)

We present in this section CPSA, an extension of CSA that decomposes the search in CSA
into multiple subproblems after partitioning the constraints into subsets. Recall that,
according to Theorem 2, P; in (14) can be partitioned into a sequence of N subproblems
defined in (20) and an overall necessary condition defined in (19) on the global constraints
across the subproblems, after choosing an appropriate mixed neighborhood. Instead of
considering all the constraints together as in CSA, CPSA performs searches in multiple
subproblems, each involving a small subset of the constraints. As in CSA, we only consider
Pywith equality constraints.

Figure 2 illustrates the idea in CPSA. Unlike the original CSA that solves the problem as a

whole, CPSA solves each subproblem independently. In Subproblem ¢, t =1, ...,N, CSA is
performed in the (z(¢), o(t))T subspace related to the local constraints h(®)(z(r)) = 0. In
addition, there is a global search that explores in the (z(g),7)T subspace on the global
constraints H(z) = 0. This additional search is needed for resolving any violated global

constraints.

1. procedure CPSA
2

set starting point z « (2, ,7)" and initialize @ = v « 0;

3. set starting temperature T« TV and cooling rate 0 < k < 1;
4, set Np < number of trials per temperature;

D. while stopping condition is not satisfied do

6. for k£ — 1 to Ny do

7. set ¢ to be a random integer between 1 and N + 1;

8. if 1 <t <N then

9. generate z' € Ny (z) using G*)(z,2');

10. if z' is accepted according to Ay (z,2z’) then z — 2z';
11. else ¥t =N+1%/

12. generate z' € Ny (z) using G (z,2'):;

13. if z' is accepted according to Ar(z,2z') then z — 2/,
14. end_if

15. end _for

16. reduce temperature by T «— k T

17. end_while

18. end_procedure

Figure 3. The CPSA search procedure.

Figure 3 describes the CPSA procedure. The first six lines are similar to those in CSA.

To facilitate the convergence analysis of CPSA in a Markov-chain model, Lines 7-14
randomly pick a subproblem for evaluation, instead of deterministically enumerating the
subproblems in a round-robin fashion, and stochastically accept a new probe using an
acceptance probability governed by a decreasing temperature. This approach leads to a
memoryless Markovian process in CPSA.

www.intechopen.com



Theory and Applications of Simulated Annealing for Nonlinear Constrained Optimization 169

Line 7 randomly selects Subproblem i, i =1...,N +1, with probability Ps(f), where P(t) can
be arbitrarily chosen as long as:

N+1

ZP(f}_landP()>U 27)

When t is between 1 and N (Line 8), it represents a local exploration step in Subproblem t. In

this case, Line 9 generates a trial point 2z’ € N}f}{z) from the current point
z=(z,a,7)" €8 using a generation probability Gt)(z, z') that can be arbitrary as long as the
following is satisfied:

0<GY(z,2)<1 and Z GW(z,2') = 1.

2Ny (z)

(28)

The point is generated by perturbing z(r) and «(t) in their neighborhood N},” (z):
NP(z) = {(Z.a(t).y) €8] e NI)(2)} U {(z.0/(t),7) € §|'(t) € N} (a(t))} (29)

”} (l{f’ = {a'(t) € A where (a(t) < a;(t) or al(t) > a;(t) if hi(z(t)) # 0) (30)
and (o (t) = a;(t) if hi(z(t)) = 0)},

and N.Ej!}(z) is defined in (15) and Al®) = R™t This means that Z' e :NL” (z) only differs
from z in z(¢) or o(t) and remains the same for the other variables. This is different from CSA
that perturbs z in the overall variable space. As in CSA, ¢;is not perturbed when h;(z()) = 0

is satisfied. Last, Line 10 accepts z' with the Metropolis probability AT (z, z') similar to that in
(25):

(7 — + . -
1 ( I'} E‘X.I) _{Lm(Z }T!“n{z_}) ]f z; — (z,?(kt '})‘;
AT\E, 2 ) = 4 . - - (31)
exp ey ';J’”(z - if 2 = (z, &-’,‘}')! orz' = (z,a, ‘}"I);.

When t = N + 1 (Line 11), it represents a global exploration step. In this case, Line 12
generates a random trial point z’ € Ni;q}(z} using a generation probability G®(z, 2z

that satisfies the condition similar to that in (28). AssumingN m (z(g)) to be the mixed
neighborhood of z(g) and A® = R?, z' is obtained by perturbing z(g) and v in their

neighborhood Ny (z):
T\"gf")(z_} = {(z,a,7)" € 8 where 2’ € J\’j(;‘;')(z)} U {(z,a.7)" € 8 where 7' € ”N[”} 1} (32)

Ng’:) (z) = {7 where 2'(g) € Ny, (2(9)) and 2} = 2 Vz; ¢ z(g) } (33)
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N (y) = {7 €AY where (7} < or 7} > if Hi(2) #0) and (7] = if Hi(z) = 0)}. (34)

Again, Z' is accepted with probability At (z z') in (31) (Line 13). Note that both N}:‘V} (z) (2)

and :'\"Ef"}{z): ensure the ergodicity of the Markov chain, which is required for achieving
asymptotic convergence.

When compared to CSA, CPSA reduces the search complexity through constraint
partitioning. Since both CSA and CPSA need to converge to an equilibrium distribution of
variables at a given temperature before the temperature is reduced, the total search time
depends on the convergence time at each temperature. By partitioning the constraints into
subsets, each subproblem only involves an exponentially smaller subspace with a small
number of variables and penalties. Thus, each subproblem takes significantly less time to
converge to an equilibrium state at a given temperature, and the total time for all the
subproblems to converge is also significantly reduced. This reduction in complexity is
experimentally validated in Section 5.

3.3 Greedy ESPC Search Method (GEM)
In this section, we present a dynamic penalty method based on a greedy search of an ESP.

Instead of probabilistically accepting a probe as in CSA and CPSA, our greedy approach
accepts the probe if it improves the value of the penalty function and rejects it otherwise.
One simple approach that does not work well is to gradually increase o** until &** > o,
while minimizing the penalty function with respect to z using an existing local-search
method. This simple iterative search does not always work well because the penalty
function has many local minima that satisfy the second inequality in (13), but some of these
local minima do not satisfy the first inequality in (13) even when o** > o*. Hence, the search
may generate stationary points that are local minima of the penalty function but are not
feasible solutions to the original problem.

To address this issue, Figure 4 shows a global search called the Greedy ESPC Search Method
[32] (GEM). GEM uses the following penalty function:

T

) 1 N
L((2,0)7) = f(2) + Y ailha(2)| + S |R(2)I%. (35)
=1 =

Lines 5-8 carries out Ng iterative descents in the z subspace. In each iteration, Line 6
generates a probe 7' € :'\.'",,,][::] neighboring to z. As defined in (24) for CSA, we select 7' with
uniform probability across all the points in Ny, (). Line 7 then evaluates L , ((z', @) ) and
accepts z' only when it reduces the value of L , . After the N, descents, Line 9 updates the

penalty vector « in order to bias the search towards resolving those violated constraints.
When &** reaches its upper bound during a search but a local minimum of L, does not

correspond to a CLM,, of P,;, we can reduce o** instead of restarting the search from a new
starting point. The decrease will change the terrain of L, and “lower” its barrier, thereby
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allowing a local search to continue in the same trajectory and move to another local
minimum of L g In Line 10, we reduce the penalty value of a constraint when its maximum

violation is not reduced for three consecutive iterations. To reduce the penalties, Line 11
multiplies each element in & by a random real number uniformly generated between 0.4 to
0.6. By repeatedly increasing o** to its upper bound and by reducing it to some lower
bound, a local search will be able to escape from local traps and visit multiple local minima
of the penalty function. We leave the presentation of the parameters used in GEM and its
experimental results to Section 5.

1. procedure GEM

2 set o to be a positive real constant;

3. set starting point z « (z,a)? and initialize o

4 repeat

5 for k — 1 to N, /* N, < 20, a positive integer in our experiments */
6. generate random trial point 2z’ € le(,z]:

7. if (Ly((z,0)") > Ly((2',a)")) then z' « z; end_if

8. end _for

9. update a «—— a + plh(2)|;

10. if (condition to decrease « is satisfied) then

11. reduce « in order to allow the search to escape from local traps;
12. end_if

13. until stopping conditions are satisfied;

14. end_procedure

Figure 4. Greedy ESPC search method (GEM).

4. Asymptotic convergence of CSA and CPSA

In this subsection, we show the asymptotic convergence of CSA and CPSA to a constrained
global minimum in discrete constrained optimization problems. Without repeating the
definitions in Section 1, we can similarly define a discrete nonlinear programming problem

(P4), a discrete neighborhood (N 4(y)), a discrete constrained local minimum (CLMy), a
discrete constrained global minimum (CGM;), and a penalty function in discrete space (Ly).

4.1 Asymptotic convergence of CSA
We first define the asymptotic convergence property. For a global minimization problem, let
Q be its search space, Q; be the set of all global minima, and o(j) € ©,j=0,1, ..., bea

sequence of points generated by an iterative procedure 1 until some stopping conditions
hold.

Definition 8. Procedure 1 is said to have asymptotic convergence to a global minimum, or
simply asymptotic convergence [2], if 1) converges with probability one to an element in Q;
that is, 1}5{,} P(w(j) e Q) =1, independent of ® (0), where P(w) is the probability of event w.
In the following, we first state the result on the asymptotic convergence of CSA to a CGM, of

P;with probability one when T approaches 0 and when T is reduced according to a specific
cooling schedule. By modeling CSA by an inhomogeneous Markov chain, we show that the
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chain is strongly ergodic, that the chain minimizes an implicit virtual energy based on the
framework of generalized SA (GSA) [24, 23], and that the virtual energy is at its minimum at
any CGM,. We state the main theorems without proofs [27] and illustrate the theorems by
examples.

CSA can be modeled by an inhomogeneous Markov chain that consists of a sequence of
homogeneous Markov chains of finite length, each at a specific temperature in a cooling
schedule. Its one-step transition probability matrix is Pr= [Pr(y, y')], where:

Gly.y" ) Ar(y.y') if y' € Na(y)
I 1 _ I " Arr(v. v : r—
Pr(y.y) =11 y”gmc(y-y JAr(y.y") ify =y 36)
0 otherwise.

Example 2. Consider the following simple discrete minimization problem:

o

min - f(y) = -y

y 7 (37)
subject to h(y) = |(y — 0.6)(y — 1.0)| =0,

wherey € Y ={0.5, 0.6,..., 1.2}. The corresponding penalty function is:

La((y,0)") = =y + a - |(y — 0.6)(y — 1.0)|. (38)
By choosing @ € A = {2, 3, 4, 5, 6}, with the maximum penalty value amax at 6, the state
space is 8 = {(y,a)” € Y x A} with [§| = 8 -5 = 40 states. Aty = 0.6 or y = 1.0 where
the constraint is satisfied, we can choose o = 1, and any o** > ¥, including amax, would

satisfy (13) in Theorem 1.
In the Markov chain, we define N 4(y) as in (21), where Ny (¥) and Ny (@) are as follows:

Na(y) = {y—-01Ly+01/06<y<11}U{y+0.1y=05U{y—0.1y=12} (39

Nyfa) = {a-la+1/3<a<5, y#0.6andy#1.0}U{a—-1] a=6,

40
y#06andy#10}U{a+1a=2, y+#0.6 and y # 1.0}. (40)

Figure 5 shows the state space S of the Markov chain. In this chain, an arrow from y to y’
eN 4(y) (where y = (', a@)Tor (y, d)T) means that there is a one-step transition from y to y
whose Pr(y, y) > 0. Fory = 0.6 and y = 1.0, there is no transition among the points in the a
dimension because the constraints are satisfied at those y values (according to (22)).

There are two ESPs in this Markov chain at (0.6, 5)Tand (0.6, 6)T, which correspond to the
local minimum at y = 0.6, and two ESPs at (1.0, 5)Tand (1.0, 6)T, which correspond to the
local minimum aty =1.0. CSA is designed to locate one of the ESPs at (0.6, 6)Tand (1.0, 6)T.
These correspond, respectively, to the CLM?at y* = 0.6 and y* = 1.0. ]
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yinax )'f’

£

y" € Yopt }, and N; be the maximum of the minimum number

Let Yaopt = {(y*!(
of transitions required to reach y,p: from all y €S. By properly constructing N 4(y), we state
without proof that Pr is irreducible and that N; can always be found. This property is
illustrated in Figure 5 in which any two nodes can always reach each other.

Let N1, the number of trials per temperature, be Nr. The following theorem states the strong
ergodicity of the Markov chain, where strong ergodicity means that state y of the Markov
chain has a unique stationary probability nr (y). (The proof can be found in the reference
271,

y = 0.6 y=0
y = 0.5 y = 0.7
o = 6 - 1-.-! A . -
e .
L)
a=>5 - @ - - ==
'
T L) L]
ox = 4 - - - o o=
i i i G
1 1 v
Py N @ T o W o WL o VI o VIS o WENNY o VY
' i ]

Figure 5. The Markov chain with the transition probabilities defined in (36) for the example
problem in (37) and the corresponding penalty-function value at each state. The four ESPs
are shaded in (a).

Theorem 3. The inhomogeneous Markov chain is strongly ergodic if the sequence of
temperatures {Ty, k=0, 1, 2, ...} satisfies:

- INWAYS
I, > ————,
F = loge(k+ 1) (41)
where T > Tpyq, lim T =0, and Ay =2 max {|L{;{y’] - L—t;(y)|}.
k—o0 yES,y' eNaly)
Example 2 (cont’d). In the Markov chain in Figure 5, A = 0.411 and N; = 11. Hence, the
Markov chain is strongly ergodic if we use a cooling schedule 7}, > ﬁ Note that the

cooling schedule used in CSA (Line 10 of Figure 1) does not satisfy the condition.

Our Markov chain also fits into the framework of generalized simulated annealing (GSA) [24,
23] when we define an irreducible Markov kernel Pr(y, ¥') and its associated communication
cost v(y, y'), where v: 8§ x § — [0, +oc]| and y' € Ny(y):

o(y,y’) = {(Ldm — La(y))* ify' = (v, )" )

(La(y) — La(y"))*™ ify' = (y,")".

Based on the communication costs over all directed edges, the virtual energy W(y) (according
to Definition 2.5 in [23, 24]) is the cost of the minimum-cost spanning tree rooted at y:

W(y) = min V(g),
(y) = min V(g), 43)
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where G(y) is the set of spanning trees rooted at y, and V (g) is the sum of the
communication costs over all the edges of g.

The following quoted result shows the asymptotic convergence of GSA in minimizing W (i):

Proposition 1 “(Proposition 2.6 in [14, 23, 24]). For every T > 0, the unique stationary
distribution 71 of the Markov chain satisfies:

, W (i) — W(E) |
7, (i) — exp | —— T — 0, (44)
T
where W (i) is the virtual energy of i, and W (E) = min W (i).”
ie8
o 1.2 T T T T -: 1.2 T I
= CSA —— s
- random search | — B — ]
08 / 008
T sk ya 4 =206/
= / =
£ 04t / - £ 04f/
= 0.2 / =024 CSA
= | E f random search
:; ] 1 1 1 - 1] 1 (— 1 1 L
50 100 150 200 250 - 10 200 30 40 50 60 7O 80 90100
Number of Iterations & Number of [terations k

a) Virtual energy W (y)

b) Convergence prob. at (1, 6)T c) Reachability prob. at (1, 6)T

Figure 6. Virtual energy of the Markov chain in Figure 5a and the convergence behavior of
CSA and random search at (1.0, 6)T.

In contrast to SA that strives to minimize a single unconstrained objective, CSA does not
minimize Li((y, @)T). This property is illustrated in Figure 5b in which the ESPs are not at

the global minimum of Li((y, @)T). Rather, CSA aims to implicitly minimize W (y) according
to GSA [24, 23]. That is, y*€Y opt corresponds to y* = (y*, amax)Twith the minimum W (y), and

W((y*, ama)T) < W((y, a)T) for all y # y* and @ € A and for all y = y* and a # amax. The
following theorem shows that CSA asymptotically converges to y* with probability one. (See
the proof in the reference [27].)
Theorem 4. Given the inhomogeneous Markov chain modeling CSA with transition
probability defined in (36) and the sequence of decreasing temperatures that satisfy (41), the
Markov chain converges to a CGM, with probability one as k — .
Example 2 (cont'd). We illustrate the virtual energy W(y) of the Markov chain in Figure 5a
and the convergence behavior of CSA and random search.
One approach to find W(y) that works well for a small problem is to enumerate all possible
spanning trees rooted at y and to find the one with the minimum cost. Another more
efficient way adopted in this example is to compute W(y) using (44). This can be done by
first numerically computing the stationary probability 7r (y) of the Markov chain at a given
T using the one-step transition probability Pr(y, ¥) in (36), where 7revolves with iteration k
as follows:

P = P pp

. e - 1
for any given initial convergence probability vector P!, (45)
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until ||PF+1 — PF|| < £, In this example, we set ¢ = 10716 as the stopping precision. Since
Tp = ﬁlll{;lc R’-{', independent of the initial vector P, we set R‘.’(-i) = ﬁ fori=1,---,[8].
Figure 6a shows W ((y, a)T) of Figure 5a. Clearly, L4((y, &)T) # W((y, )T ). For a given y,
W((y, @)T)is non-increasing as & increases. For example, W ((0.6, 3)T) =4.44 > W ((0.6, 4)T) =
4.03, and W((0.8, 2)T) =4.05= W((0.8, 6)T) =3.14. We also have W((y, @)T) minimized aty =
1.0 when o = gmax=6: W((0.6, 6)T) =3.37 2 W((0.8, 6)T) =3.14 > W((1.0, 6)T) = 0.097. Hence,
W((y, @)T) is minimized at (y*, ema)T = (1.0, 6)T , which is an ESP with the minimum
objective value. In contrast, Li((y, @)T) is non-decreasing as « increases. In Figure 5b, the
minimum value of Ly((y, )T)is at (1.2, 2)T, which is not a feasible point.

To illustrate the convergence of CSA to y* = 1.0, Figure 6b plots R‘f"(}’*) as a function of k,

where y* = (1.0, 6)T. In this example, we set To= 1.0, Nr=5, and « = 0.9 (the cooling schedule
in Figure 1). Obviously, as the cooling schedule is more aggressive than that in Theorem 3,
one would not expect the search to converge to a CGM,; with probability one, as proved in
Theorem 4. As T approaches zero, W(y*) approaches zero, and PH(y™) monotonically
increases and approaches one. Similar figures can be drawn to show that P*(y), y # y*,
decreases to zero as T is reduced. Therefore, CSA is more likely to find y* as the search
progresses. In contrast, for random search, Pf‘ (¥*)is constant, independent of k.

Note that it is not possible to demonstrate asymptotic convergence using only a finite
number of iterations. Our example, however, shows that the probability of finding a CGM,
improves over time. Hence, it becomes more likely to find a CGM,; when more time is spent
to solve the problem.

Last, Figure 6¢c depicts the reachability probability P¥(y*) of finding y* in any of the first k

iterations. Assuming all the iterations are independent, / 2k (y*) is defined as:

Py ) =1- H(l — P(y* found in the i*" itm‘ariml)). (46)

i=0

The figure shows that CSA has better reachability probabilities than random search over the
100 iterations evaluated, although the difference diminishes as the number of iterations is
increased.

It is easy to show that CSA has asymptotic reachability [2] of y*; that is, glim Pj“{_y*) = 1.

Asymptotic reachability is weaker than asymptotic convergence because it only requires the
algorithm to hit a global minimum sometime during a search and can be guaranteed if the
algorithm is ergodic. (Ergodicity means that any two points in the search space can be
reached from each other with a non-zero probability.) Asymptotic reachability can be
accomplished in any ergodic search by keeping track of the best solution found during the
search. In contrast, asymptotic convergence requires the algorithm to converge to a global
minimum with probability one. Consequently, the probability of a probe to hit the solution
increases as the search progresses.
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4.2 Asymptotic convergence of CPSA
By following a similar approach in the last section on proving the asymptotic convergence

of CSA, we prove in this section the asymptotic convergence of CPSA to a CGM40f P.

CPSA can be modeled by an inhomogeneous Markov chain that consists of a sequence of
homogeneous Markov chains of finite length, each at a specific temperature in a given
cooling schedule. The state space of the Markov chain can be described by state

y = (y,ev,v)T, where y € D%, where y €D wis the vector of problem variables and « and
7 are the penalty vectors.
According to the generation probability G()(y, y') and the acceptance probability AT (y, ¥'),

the one-step transition probability matrix of the Markov chain for CPSA is PT = [PT (y, ¥')],
where:

(P, ()G (y, y) Ar(y,y') ify e NV(y), t=1,...,N
Pi(N 4+ 1)G9(y,y") Ar(y,y") if y' € Ny (y)
Prv. no_ .'\_" . , . . 47
ryY)I=11-2| T Py)|- S Py’ ify =y 47)
t=1hynenity) ¥y eN (y)
L0 otherwise.

Let Yopt = {(y*,Q“I““;‘,;I““""j'f| y* € Yopt }, and N; be the maximum of the minimum
number of transitions required to reach yp from all y € §. Given {Ty, k =0, 1, 2, ...} that
satisfy (41) and Nt , the number of trials per temperature, be N, a similar theorem as in
Theorem 3 can be proved [8]. This means that state y of the Markov chain has a unique
stationary probability 7r (y).

Note that A; defined in Theorem 3 is the maximum difference between the penalty-function
values of two neighboring states. Although this value depends on the user-defined
neighborhood, it is usually smaller for CPSA than for CSA because CPSA has a partitioned
neighborhood, and two neighboring states can differ by only a subset of the variables. In
contrast, two states in CSA can differ by more variables and have larger variations in their
penalty-function values. According to (41), a smaller A; allows the temperature to be
reduced faster in the convergence to a CGM,.

Similar to CSA, (47) also fits into the framework of GSA if we define an irreducible Markov

kernel PT (y, y') and its associated communication cost v(y, y'), where v: § x § — [0, +o0]:

') — La(y)™ ify' = (t/,0,7)7
f(yy’) — {{Lu’(y} }rd(y)} fy (.f. t, .} (48>

(La(y) — La(y')" ify = (y,e,7)! ory' = (y,0,%")".

In a way similar to that in CSA, we use the result that any process modeled by GSA
minimizes an implicit virtual energy W(y) and converges to the global minimum of W (y)
with probability one. The following theorem states the asymptotic convergence of CPSA to a

CGM,. The proof in the reference [27] shows that W (y) is minimized at (y*, omax, ymax)T for

some gmaxand ymax,
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Theorem 5. Given the inhomogeneous Markov chain modeling CPSA with transition
probability defined in (47) and the sequence of decreasing temperatures that satisfy (41), the
Markov chain converges to a CGM,; with probability one as k — oo.

Again, the cooling schedule of CPSA in Figure 3 is more aggressive than that in Theorem 5.

5. Experimental results on continuous constrained problems

In this section, we apply CSA and CPSA to solve some nonlinear continuous optimization
benchmarks and compare their performance to that of other dynamic penalty methods. We
further illustrate the application of the methods on two real-world applications.

5.1 Implementation details of CSA for solving dontinuous problems
In theory, any neighborhoods N 4 (x) and N & (@) that satisfy (21) and (22) can be used. In

practice, however, appropriate neighborhoods must be chosen in any efficient
implementation.

In generating trial point X = (x', )T from x= (x, @)Twherex' ¢ N 4 (x), we choose x' to differ

from x in the i" element, where i is uniformly distributed in {1, 2,..., n}:

!

g = z+0®er = x+ (rer,bze10,...,00e1,)" (49)

and ® is the vector-product operator. Here, e; is a vector whose i element is 1 and the other

elements are 0, and 0 is a vector whose i element 0 ; is Cauchy distributed with density

- i
" iy

fax )= 1 Uf” and scale parameter ;. Other distributions of 0 ; studied include uniform
and Gaussian [30]. During the course of CSA, we dynamically update c; using the following
modified 1-to-1 rate rule [9] in order to balance the ratio between accepted and rejected

configurations:

7y ll “"{”(I—’i — Pu J]

I—pu if Pi = Py
rT-’

T if p; <y (50)

unchanged otherwise,

0 —

where p;is the fraction of x' accepted. If p;is low, then too many trial points of X are rejected,

and ¢; is reduced; otherwise, the trial points of X are too close to x, and o; is increased. We

set fo=7, f =2, p,= 0.3, and p, = 0.2 after experimenting different combinations of

parameters [30]. Note that it is possible to get somewhat better convergence results when
problem-specific parameters are used, although the results will not be general in that case.

Similarly, in generating trial point X' = (x, )T from x = (x, )T where o €N & (), we

choose ' to differ from « in the j element, where j is uniformly distributed in {1, 2, ...,m}:

. R .
o =a+vRes=a+ (V1e21,12€22,. ..\ Vim,€2.m)" . (51)
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Here, the ji, element of e;is 1 and the others are 0, and the v is uniformly distributed in [-4¢),

¢ ]. We adjust ¢ according to the degree of constraint violations, where:
O =w @ h(x) = (w h(x),wahae(z),. .., wyh, (:;')}T. (52)

When £;(x) = 0 is satisfied, ¢ = 0, and o; does not need to be updated. Otherwise, we adjust ¢
by modifying w;according to how fast 4;(x) is changing;:

Tio Wy if h.;(.’l'} = ol
wi —— {1 Wi if hi(z) <nT (53)

unchanged otherwise,

where 79 = 1.25, 11=0.95, np = 1.0, and 71 = 0.01 were chosen experimentally. When #;(x) is
reduced too quickly (i.e., hi(x) < 71T is satisfied), h(x) is over-weighted, leading to a possibly
poor objective value or difficulty in satisfying other under-weighted constraints. Hence, we
reduce ¢;'s neighborhood. In contrast, if hi(x) is reduced too slowly (i.e., hi(x) > 7o is
satisfied), we enlarge ¢;'s neighborhood in order to improve its chance of satisfaction. Note
that w; is adjusted using 7 as a referenc because constraint violations are expected to
decrease when T decreases. Other distributions of ¢ studied include non-symmetric

uniform and non-uniform [30].

Finally, we use the cooling schedule defined in Figure 1, which is more aggressive than that
in (41). We accept the X or X' generated according to the Metropolis probability defined in
(25). Other probabilities studied include logistic, Hastings, and Tsallis [30]. We set the ratio

of generating X and X' from x to be 20n to m, which means that x is updated more

frequently than o.
Example 3. Figure 7 illustrates the run-time behavior at four temperatures when CSA is
applied to solve the following continuous constrained optimization problem:

2

min f(z) =10n + Z (;1:}'} — 10 .;-.(_}s(zm-,:}) where z = (z1,22)" (54)
L1, L2

i=1

subject to [(z; —3.2)(z; +3.2)| =0, i=1,2.

The objective function f(x) is very rugged because it is made up of a two-dimensional Rastrigin
function with 117 (where n = 2) local minima. There are four constrained local minima at the
four corners denoted by rectangles, and a constrained global minimum at (-3.2,-3.2).

Assuming a penalty function L.((x, @)T)=f(x)+a1 | (x1=3.2)(x1+3.2) | + 2| (x2—3.2)(x2+3.2) | and
that samples in x are drawn in double-precision floating-point space, CSA starts from x = (0,
0)T with initial temperature 7o = 20 and a cooling rate x = 0.95. At high temperatures (e.g. 7o
= 20), the probability of accepting a trial point is high; hence, the neighborhood size is large

according to (50). Large jumps in the x subspace in Figure 7a are due to the use of the
Cauchy distribution for generating remote trial points, which increases the chance of getting
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out of infeasible local minima. Probabilistic ascents with respect to a also help push the
search trajectory to feasible regions. As T is reduced, the acceptance probability of a trial

point is reduced, leading to smaller neighborhoods. Finally, the search converges to the

constrained global minimum at x*= (-3.2,-3.2)T. ]

e

s
o

(@) T =20

!_.._ | o

- (©@T=819%2 . (@T=045

Figure 7. Example illustrating the run-time behavior of CSA at four temperatures in solving
(54).
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Figure 8. Strongly regular constraint-variable structures in some continuous optimization
problems. A dot in each graph represents a variable associated with a constraint.
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5.2 Implementation details of CPSA for solving continuous problems

We have observed that the constraints of many application benchmarks do not involve
variables that are picked randomly from their variable sets. Invariably, many constraints in
existing benchmarks are highly structured because they model spatial and temporal
relationships that have strong locality, such as those in physical structures, optimal control,
and staged processing.

Figure 8 illustrates this point by depicting the regular constraint structure of three

benchmarks. It shows a dot where a constraint (with unique ID on the x axis) is related to a

variable (with a unique ID on the y axis). When the order of the variables and that of the
constraints are properly arranged, the figure shows a strongly regular constraint-variable
structure.

In CPSA, we follow a previously proposed automated partitioning strategy [26] for
analyzing the constraint structure and for determining how th constraints are to be
partitioned. The focus of our previous work is to solve the partitioned subproblems using an
existing solver SNOPT [15]. In contrast, our focus here is to demonstrate the improvement of
CPSA over CSA and on their asymptotic convergence property.

Based on P, with continuous variables and represented in AMPL [13], our partitioning
strategy consists of two steps. In the first step, we enumerate all the indexing vectors in the
AMPL model and select one that leads to the minimum R, which is the ratio of the
number of global constraints to that of all constraints. We choose R as a heuristic metric
for measuring the partitioning quality, since a small number of global constraints usually
translates into faster resolution. In the second step, after fixing the index vector for
partitioning the constraints, we decide on a suitable number of partitions. We have found a
convex relationship between the number of partitions (N) and the complexity of solving P,,.
When N is small, there are very few subproblems to be solved but each is expensive to
evaluate; in contrast, when N is large, there are many subproblems to be solved although
each is simple to evaluate. Hence, there is an optimal N that leads to the minimum time for
solving P,. To find this optimal N, we have developed an iterative algorithm that starts from
a large N, that evaluates one subproblem under this partitioning (while assuming all the
global constraints can be resolved in one iteration) in order to estimate the complexity of
solving P,,, and that reduces N by half until the estimated complexity starts to increase. We
leave the details of the algorithm to the reference [26].

Besides the partitioning strategy, CPSA uses the same mechanism and parameters described

in Section 5.1 for generating trial points in the x, o, and  subspaces.

5.3 Implementation details of GEM for solving continuous problems
The parameter in GEM were set based on the package developed by Zhe Wu and dated

08/13/2000 [32]. In generating a neighboring point of x for continuous problems, we use a
Cauchy distribution with density falz;) = {# for each variable x;, i =1,..., n, where oc;
is a parameter controlling the Cauchy distribution. We initialize each o;to 0.1. For the last 50
probes that perturb x;, if more than 40 probes lead to a decrease of L,,, we increase o; by a
factor of 1.001; if less than two probes lead to a decrease of L,,, we decrease c; by a factor of
1.02. We increase the penalty o; for constraint h; by «; = a; + p;|hi(x)|, where g;is set to

0.0001 in our experiments. We consider a constraint to be feasible and stop increasing its
penalty when its violation is less than 0.00001.
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5.4 Evaluation results on continuous optimization benchmarks

Using the parameters of CSA and CPSA presented in the previous subsections and
assuming that samples were drawn in double-precision floating-point space, we report in
this section some experimental results on using CSA and CPSA to solve selected problems
from CUTE [7], a constrained and unconstrained testing environment. We have selected
those problems based on the criterion that at least the objective or one of the constraint
functions is nonlinear. Many of those evaluated were from real applications, such as
semiconductor analysis, chemical reactions, economic equilibrium, and production
planning. Both the number of variables and the number of constraints in CUTE can be as
large as several thousand.

Table 1 shows the CUTE benchmark problems studied and the performance of CPSA, CSA
GEM in (35), P;in (7), and P4in (8). In our experiments, we have used the parameters of P3
and P, presented in Section 2.2. For each solver and each instance, we tried 100 runs from
random starting points and report the average solution found (Quy), the average CPU time
per run of those successful runs (T,y), the best solution found (Qest), and the fraction of runs
there were successful (Psucc). We show in shaded boxes the best Qg and Qpess among the five
solvers when there are differences. We do not list the best solutions of Pz and P4 because they
are always worse than those of CSA, CPSA, and GEM. Also, we do not report the results on
those smaller CUTE instances with less than ten variables (BT*, AL*, HS*, MA*, NG*, TW¥,
WO*, ZE*, ZY*) [30] because these instances were easily solvable by all the solvers studied.
When compared to P3, P4, and GEM, CPSA and CSA found much better solutions on the
average and the best solutions on most of the instances evaluated. In addition, CPSA and
CSA have a higher success probability in finding a solution for all the instances studied.

The results also show the effectiveness of integrating constraint partitioning with CSA.
CPSA is much faster than CSA in terms of Ty, for all the instances tested. The reduction in
time can be more than an order of magnitude for large problems, such as ZAMB2-8 and
READINGS6. CPSA can also achieve the same or better quality and success ratio than CSA
for most of the instances tested. For example, for LAUNCH, CPSA achieves an average
quality of 21.85, best quality of 9.01, and a success ratio of 100%, whereas CSA achieves,
respectively, 26.94, 9.13, and 90%.

The nonlinear continuous optimization benchmarks evaluated in this section are meant to
demonstrate the effectiveness of CSA and CPSA as dynamic penalty methods. We have
studied these benchmarks because their formulations and solutions are readily available and
because benchmarks on nonlinear discrete constrained optimization are scarce. These
benchmarks, however, have continuous and differentiable functions and, therefore, can be
solved much better by solvers that exploit such properties. In fact, the best solution of most
of these problems can be found by a licensed version of SNOPT [15] (version 6.2) in less than
one second of CPU time! In this respect, CSA and CPSA are not meant to compete with
these solvers. Rather, CSA and CPSA are useful as constrained optimization methods for
solving discrete, continuous, and mixed-integer problems whose constraint and objective
functions are not necessarily continuous, differentiable, and in closed form. In these
applications, penalty methods are invariably used as an effective solution approach. We
illustrate in the following section the effectiveness of CSA for solving two real-world
applications.
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Table 1. Experimental results comparing CPSA, CSA, GEM, P;, and Py in solving selected
nonlinear continuous problems from CUTE. Each instance was solved by a solver 100 times

from random starting points. The best Quug (resp. Qrest) among the five solvers are shown in

shaded boxes. '-'means that no feasible solution was found in a time limit of 36,000 sec. All

runs were done on an AMD Athlon MP2800 PC with RH Linux AS4.
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5.5 Applications of CSA on two real-world applications

Sensor-network placement optimization. The application involves finding a suitable
placement of sensors in a wireless sensor network (WSN) [31, 33]. Given N sensors, the
problem is to find their locations that minimize the false alarm rate, while maintaining a
minimum detection probability for every point in a 2-D region A [34]:

min Pr

55
subject to Pp(z,y) = 3, V(z,y) € A, (55)

where Pp(x, y) denotes the detection probability of location (x, y), and Pr denotes the false
alarm rate over all locations in A. To compute Pp and Pr, we need to first compute the local
detection probability P, and the local false alarm rate P, for each sensor i, i = 1,...,N, as

follows:

oQ

1 22
Pr = ——exp| — —= |dz, 56

Pp,(z,y) = / cxp( — ){fz‘ (57)
J b

2t 202

The probabilistic model is based on a Gaussian noise assumption [34], where b;, 6, a, and e
are constants, and (x;, y;) is the coordinates of the i sensor. After all the local decisions have

been sent to a fusion center, the center will find that an event happens at (x, y) if a majority
of the sensors have reported so. Therefore, we have the following equations:

Pp(z,y) = Z H (1= Pp,(z,y)) H Pp, (z,y), (58)
|.‘\'||}|H|]| 1=8Sp JES
Pro= > TTa-Pe)[] Pr. (59)
|S1]>]Sa| €50 JES

where Soand S1 denote the set of nodes that, respectively, detect or do not detect an event.
The functions in the above formulation are very expensive to evaluate. In fact, the cost for
computing Pp(x, y) is ©(2,), since we need to consider all combinations of Spand S1. The cost

is so expensive that it is impossible to directly compute Pp(x, y) or its derivatives. Thus, the
problem has no closed form and without gradient information. Instead, a Monte-Carlo
simulation is typically used to estimate Pp(x, y) within reasonable time [34]. Previous work

in WSN have solved this problem using some greedy heuristic methods that are ad-hoc and
suboptimal [34].

We have applied CSA to solve (55) and have found it to yield much better solutions than
existing greedy heuristics [34]. In our approach, we find the minimum number of sensors by
a binary search that solves (55) using multiple runs of CSA. For example, in a 20 x20 grid,
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CSA can find a sensor placement with only 16 sensors to meet the given thresholds of Pp >

95% and Pr < 5%, while a previous heuristic method [34] needs 22 sensors. In a 40x40 grid,

CSA can find a sensor placement with only 28 sensors to meet the same constraints, while
the existing heuristic method [34] needs 43 sensors.

Synthesis of out-of-core algorithms. A recent application uses CSA to optimize the out-of-
core code generation for a special class of imperfectly nested loops encoding tensor
contractions that arise in quantum chemistry computation [19]. In this task, the code needs
to execute some large, imperfectly nested loops. These loops operate on arrays that are too
large to fit in the physical memory. Therefore, the problem is to find the optimal tiling of the
loops and the placement of disk I/O statements.

Given the abstract code, the loop ranges, and the memory limit of the computer, the out-of-
core code-generation algorithm first enumerates all the feasible placements of disk
read/write statements for each array. To find the best combination of placements of all
arrays, a discrete constrained nonlinear optimization problem is formulated and provided
as input to CSA.

The variables of the problem include tile sizes and the placement variables. The constraints
include the input-array constraints, which specify that the read statement for an input array
can only be placed for execution before the statement where it is consumed. They also
include the input-output-array constraints, which specify that the write statement for an
output array can only be placed after the statement where it is produced. Lastly, there are a
number of other intermediate-array constraints.

Experimental measurements on sequential and parallel versions of the generated code show
that the solutions generated by CSA consistently outperform previous sampling approach
and heuristic equal-tile-size approach. When compared to previous approaches, CSA can
reduce the disk I/O cost by a factor of up to four [19].

6. Conclusions

We have reported in this chapter constrained simulated annealing (CSA) and constraint-
partitione simulated annealing (CPSA), two dynamic-penalty methods for finding
constrained global minima of discrete constrained optimization problems. Based on the
theory of extended saddle points (ESPs), our methods look for the local minima of a penalty
function when the penalties are larger than some thresholds and when the constraints are
satisfied. To reach an ESP, our methods perform probabilistic ascents in the penalty
subspace, in addition to probabilistic descents in the problem-variable subspace as in
conventional simulated annealing (SA). Because both methods are based on sampling the
search space of a problem during their search, they can be applied to solve continuous,
discrete, and mixed-integer optimization problems without continuity and differentiability.
Based on the decomposition of the ESP condition into multiple necessary conditions [25], we
have shown that many benchmarks with highly structured and localized constraint
functions can be decomposed into loosely coupled subproblems that are related by a small
number of global constraints. By exploiting constraint partitioning, we have demonstrated
that CPSA can significantly reduce the complexity of CSA.

We have shown the asymptotic convergence of CSA and CPSA to a constrained global
minimum with probability one. The result is theoretically important because it extends SA,
which guarantees asymptotic convergence in discrete unconstrained optimization, to that in
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discrete constrained optimization. Moreover, it establishes a condition under which optimal
solutions can be found in constraint-partitioned nonlinear optimization problems.

Lastly, we illustrate the effectiveness of CSA and CPSA for solving some nonlinear
benchmarks and two real-world applications. CSA and CPSA are particularly effective
when the constraint and objective functions and their gradients are too expensive to be
evaluated or are not in closed form.

7. References

E. Aarts and J. Korst. Simulated Annealing and Boltzmann Machines. ]J. Wiley and Sons, 1989.

S. Anily and A Federgruen. Simulated annealing methods with general acceptance
probabilities. Journal of Appl. Prob., 24:657-667, 1987.

A. Auslender, R. Cominetti, and M. Maddou. Asymptotic analysis for penalty and barrier
methods in convex and linear programming. Mathematics of Operations Research,
22:43-62,1997.

T. Back, F. Hoffmeister, and H.-P. Schwefel. A survey of evolution strategies. In Proc. of the
4th Int’l Conf. on Genetic Algorithms, pages 2-9, 1991.

J. C. Bean and A. B. Hadj-Alouane. A dual genetic algorithm for bounded integer programs.
In Tech. Rep. TR 92-53, Dept. of Industrial and Operations Engineering, The Univ. of
Michigan, 1992.

D. P. Bertsekas and A. E. Koksal. Enhanced optimality conditions and exact penalty
functions. Proc. of Allerton Conf., 2000.

I. Bongartz, A. R. Conn, N. Gould, and P. L. Toint. CUTE: Constrained and unconstrained
testing environment. ACM Trans. on Mathematical Software, 21(1):123-160, 1995.

Y. X. Chen. Solving Nonlinear Constrained Optimization Problems through Constraint
Partitioning. Ph.D. Thesis, Dept. of Computer Science, Univ. of Illinois, Urbana, IL,
September 2005.

A. Corana, M. Marchesi, C. Martini, and S. Ridella. Minimizing multimodal functions of
continuous variables with the simulated annealing algorithm. ACM Trans. on
Mathematical Software, 13(3):262-280, 1987.

J. P. Evans, F. J. Gould, and J. W. Tolle. Exact penalty functions in nonlinear programming.
Mathematical Programming, 4:72-97, 1973.

R. Fletcher. A class of methods for nonlinear programming with termination and
convergence properties. In J. Abadie, editor, Integer and Nonlinear Programming.
North-Holland, Amsterdam, 1970.

R. Fletcher. An exact penalty function for nonlinear programming with inequalities. Tech.
Rep. 478, Atomic Energy Research Establishment, Harwell, 1972.

R. Fourer, D. M. Gay, and B. W. Kernighan. AMPL: A Modeling Language for Mathematical
Programming. Brooks Cole Pub. Co., 2002.

M. L. Freidlin and A. D. Wentzell. Random perturbations of dynamical systems. Springer, 1984.

P. E. Gill, W. Murray, and M. Saunders. SNOPT: An SQP algorithm for large-scale
constrained optimization. SIAM ]. on Optimization, 12:979-1006, 2002.

A. Homaifar, S. H-Y. Lai, and X. Qi. Constrained optimization via genetic algorithms.
Simulation, 62(4):242-254, 1994.

J. Joines and C. Houck. On the use of non-stationary penalty functions to solve nonlinear
constrained optimization problems with gas. In Proc. of the First IEEE Int’l Conf. on
Evolutionary Computation, pages 579-584, 1994.

www.intechopen.com



186 Simulated Annealing

S. Kirkpatrick, C. D. Gelatt, Jr.,, and M. P. Vecchi. Optimization by simulated annealing.
Science, 220(4598):671-680, May 1983.

S. Krishnan, S. Krishnamoorthy, G. Baumgartner, C. C. Lam, J. Ramanujam, P. Sadayappan,
and V. Choppella. Efficient synthesis of out-of-core algorithms using a nonlinear
optimization solver. Technical report, Dept. of Computer and Information Science,
Ohio State University, Columbus, OH, 2004.

A. Kuri. A universal eclectric genetic algorithm for constrained optimization. In Proc. 6th
European Congress on Intelligent Techniques and Soft Computing, pages 518-522, 1998.

D. G. Luenberger. Linear and Nonlinear Programming. Addison-Wesley, Reading, MA, 1984.

R. L. Rardin. Optimization in Operations Research. Prentice Hall, 1998.

A. Trouve. Rough large deviation estimates for the optimal convergence speed exponent of
generalized simulated annealing algorithms. Technical report, LMENS-94-8, Ecole
Normale Superieure, France, 1994.

A. Trouve. Cycle decomposition and simulated annealing. SIAM Journal on Control and
Optimization, 34(3):966-986, 1996.

B. Wah and Y. X. Chen. Constraint partitioning in penalty formulations for solving temporal
planning problems. Artificial Intelligence, 170(3):187-231, 2006.

B. W.Wah and Y. X. Chen. Solving large-scale nonlinear programming problems by
constraint partitioning. In Proc. Principles and Practice of Constraint Programming,
LCNS-3709, pages 697-711. Springer-Verlag, October 2005.

B. W. Wah, Y. X. Chen, and T. Wang. Simulated annealing with asymptotic convergence for
nonlinear constrained optimization. J. of Global Optimization, 39:1-37, 2007.

B. W. Wah and T. Wang. Simulated annealing with asymptotic convergence for nonlinear
constrained global optimization. In Proc. Principles and Practice of Constraint
Programming, pages 461-475. Springer-Verlag, October 1999.

B. W. Wah and Z. Wu. The theory of discrete Lagrange multipliers for nonlinear discrete
optimization. In Proc. Principles and Practice of Constraint Programming, pages 28-42.
Springer- Verlag, October 1999.

T. Wang. Global Optimization for Constrained Nonlinear Programming. Ph.D. Thesis, Dept. of
Computer Science, Univ. of Illinois, Urbana, IL, December 2000.

X. Wang, G. Xing, Y. Zhang, C. Lu, R. Pless, , and C. Gill. Integrated coverage and
connectivity configuration in wireless sensor networks. In Proc. First ACM Conf. on
Embedded Networked Sensor Systems, pages 28-39, 2003.

Z. Wu. The Theory and Applications of Nonlinear Constrained Optimization using Lagrange
Multipliers. Ph.D. Thesis, Dept. of Computer Science, Univ. of Illinois, Urbana, IL,
May 2001.

G. Xing, C. Lu, R. Pless, , and Q. Huang. On greedy geographic routing algorithms in
sensing-covered networks. In Proc. ACM Int’l Symp. on Mobile Ad Hoc Networking
and Computing, pages 31-42, 2004.

G. Xing, C. Lu, R. Pless, and J. A. O’Sullivan. Co-Grid: An efficient coverage maintenance
protocol for distributed sensor networks. In Proc. Int’l Symp. on Information
Processing in Sensor Networks, pages 414-423, 2004.

W. L. Zangwill. Nonlinear programming via penalty functions. Management Science, 13:344-
358, 1967.

www.intechopen.com



Simulated Annealing
Edited by Cher Ming Tan

Simulated:
Annealing’ ~

ISBN 978-953-7619-07-7

Hard cover, 420 pages

Publisher InTech

Published online 01, September, 2008
Published in print edition September, 2008

This book provides the readers with the knowledge of Simulated Annealing and its vast applications in the
various branches of engineering. We encourage readers to explore the application of Simulated Annealing in
their work for the task of optimization.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following:

Benjamin W. Wah, Yixin Chen and Tao Wang (2008). Theory and Applications of Simulated Annealing for
Nonlinear Constrained Optimization, Simulated Annealing, Cher Ming Tan (Ed.), ISBN: 978-953-7619-07-7,
InTech, Available from:
http://www.intechopen.com/books/simulated_annealing/theory_and_applications_of_simulated_annealing_for_
nonlinear_constrained_optimization

INTECH

open science | open minds

InTech Europe InTech China

University Campus STeP Ri Unit 405, Office Block, Hotel Equatorial Shanghai

Slavka Krautzeka 83/A No.65, Yan An Road (West), Shanghai, 200040, China

51000 Rijeka, Croatia FE BHIERARKESS _HiBEFR R ARG I AE4058TT
Phone: +385 (51) 770 447 Phone: +86-21-62489820

Fax: +385 (51) 686 166 Fax: +86-21-62489821

www.intechopen.com



© 2008 The Author(s). Licensee IntechOpen. This chapter is distributed
under the terms of the Creative Commons Attribution-NonCommercial-
ShareAlike-3.0 License, which permits use, distribution and reproduction for
non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same
license.




