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1. Introduction

Epilepsy is a neurological disorder that changes the observable behavior of an individual to
the point of inducing complete loss of consciousness. Pharmaceutical drugs may reduce or
eliminate the problems of epilepsy, but not all people respond to pharmaceuticals favorably,
and some may find the side effects undesirable. EEG-based epilepsy prediction may offer an
acceptable alternative or complementary treatment to pharmaceuticals. Invasive, intra-cranial
EEG provides signals that are directly from the brain, without the muscular activity that infests
non-invasive, scalp EEG. However, intra-cranial EEG requires surgery, which increases risk
and cost of health care, while reducing the number of people able to receive medical attention.
Algorithms to predict the seizure event—the ictal state—may lead to new treatments for
chronic epilepsy. Finding solutions that involve non-invasive procedures may result in
treatments for the largest section of the population.

2. Background

Epilepsy prediction is greater than 1 minute of forewarning before there is any visible
indication that a seizure will occur. The physician does not label the pre-ictal periods that
precede the seizure—states that may indicate a seizure is near. Event characterization only
labels the start time of the seizure. Consequently, labeled data for the pre-ictal state is non-
existent, but is necessary to train a Support Vector Machine (SVM). Other researchers address
this problem by assuming that the pre-ictal phase occurs immediately prior to a seizure [1];
see Figure 1 for an example.

© 2014 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Figure 1. EEG with a seizure (ictal) event and potential class labels [1].

The labeling scheme of Figure 1 results in better than random predictions [1] under the
assumption that the pre-ictal region immediately precedes the seizure and may be exploited
for epilepsy prediction. This SVM approach provides the most obvious way to label the
training and testing data without any extra information being available about the EEG.

Assuming pre-ictal dynamics occur within an hour of the seizure has the added benefit of
being more likely to satisfy caregivers’ requests to have forewarning within an hour of the
seizure event. Netoff et al. achieve a specificity of 77% in classifying the pre-ictal region with
no false positives with the above approach [1]. This level of accuracy is not high enough for a
marketable prediction algorithm, but suggests that indicators of a seizure occur within an hour
prior to a typical seizure. Netoff et al. use a “5 minute prediction horizon” where they label
the pre-ictal region. They classify preictal as being within 5 minutes of the seizure and calculate
specificities according to that labeling scheme. They assert that the short time frame makes the
computational difficulty of the algorithm much more manageable than algorithms that have
fewer restrictions on where the pre-ictal region is. They have a second stage of processing as
well in which they look for 3 out of 5 pre-ictal indicators in a concentrated bundle in order to
achieve prediction [1].

The assumption of pre-ictal indications near the event seems sound because a seizure resem‐
bles a dynamical phase transition. More specifically, the brain activity changes from some
“normal” phase of brain activity into hyper-synchronous activity. The present work assumes
that the brain dynamics within an hour of the seizure are approaching a phase transition,
corresponding to measureable change in the scalp EEG. A simple example of a phase transition
is liquid water becoming steam due to changes in pressure and temperature. However, scalp
EEG exhibits nonlinear, chaotic features that are extremely difficult to predict over long periods
and are extremely sensitive to initial conditions. Consequently, seizure prediction in a very
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complex system like the brain is very difficult. Indeed, Stacey et al. [2] find that no algorithm
provides better-than-chance prediction of seizures in statistical tests to date.

One must also choose whether to use monopolar (single channel) or bipolar EEG (difference
between two monopolar channels). Mirowski et al. assert that epilepsy can be predicted more
effectively with bipolar features [3] because of changes in the brain’s ability to synchronize
regions during a seizure. Mirowski et al. consider their pre-ictal period to be 2 hours. They
assert, “[most] current seizure prediction approaches can be summarized into (1) extracting
features from EEG and (2) classifying them (and hence the patient’s state) into pre-ictal or inter-
ictal”. They go on to enumerate more specifically on the bipolar feature set in Figure 2.

Figure 2. Approach to using bivariate features in epilepsy prediction [3].

Figure 2 enumerates a feature set from all unique channel pairs [3]. After the enumeration,
they use a grid search to find appropriate parameters with their SVM with a Gaussian kernel.
Mirowski et al. use intra-cranial EEG data and obtain 100% accuracy for patient-specific
machine learning models. However, no single model provides 100% accuracy for all patients
[3], so they choose from among a variety of algorithms to achieve high accuracy on a patient
specific basis.

By contrast, the present work uses non-invasive, scalp EEG. Moreover, the present work uses
a SVM to extract seizure forewarning from the entire patient population. The goal is high
accuracy. The long-term objective (not addressed in the present work) is lower health-care cost
by using one algorithm for all patients to analyze scalp EEG on a smartphone.

Previous work by Hively et al. has used bipolar, scalp EEG and found the best seizure
forewarning by using electrodes in the right frontal lobe [4, 5] in the 10-20 system; see Figure
3. The present work uses this same bipolar channel. Additionally, scalp EEG from one bipolar
channel facilitates a simple, ambulatory device with two electrodes, which is far more
manageable than an EEG headset with many channels. Our hypothesis is that the right-frontal
region acts as a filter for pre-ictal condition change—a phase transition in the brain dynamics
[6] that can be induced by noise [7]. Pittau et al. [8] reviewed the recent technical literature on
sound-induced (musicogenic) seizures, which activate the fronto-temporo-occipital area.
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Conversely, soothing music (e.g., Mozart’s double piano sonata K.448) decreases the intensity
and frequency of epileptic seizures [9].

Figure 3. system (EEG) [10].

3. Phase-space analysis

We use one bipolar channel of scalp EEG (F8 – FP2) in the 10-20 system, as a measure of the
noisy dynamics in cortical neurons over an area of roughly 6 cm2. Our earlier work obtained
channel-consistent forewarning across nineteen EEG channels [11]. The garbage-in-garbage-
out syndrome is avoided by rejecting data of inadequate quality [12].

These data were uniformly sampled in time, ti, at 250 Hz, giving N time-serial points in an
analysis window (cutset), ei = e(ti). Data acquisition was under standard human-studies
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protocols from 41 temporal-lobe-epilepsy patients (ages from 4 to 57 years; 36 datasets from
females, and 24 datasets from males). The datasets range in length from 1.4 to 8.2 hours
(average = 4.4 hours). Data characterization included patient activity. Forty datasets had
seizures, and twenty had no event [13].

A patented zero-phase, quadratic filter enables analysis of scalp EEG by removing electrical
activity from eye blinks and other muscular artifacts, which otherwise obscure the event
forewarning. This filter retains the nonlinear amplitude and phase information [14]. The filter
uses a moving window of 2w + 1 points of ei-data that are fitted to a parabola in a least-squares
sense, yielding N – 2w points of artifact data, fi. Essentially no low-frequency artifacts occur in
the artifact-filtered signal, gi = ei - fi. The value, w, is a parameter that specifies the width in
points sampled of the eye blink filter; the value, N, represents the number of points in a cutset,
which is represented by a graph; the value, g, is the artifact filtered set of points with eye blinks
removed; the value, e, is the set of raw EEG data points; and the value, f, is the set of artifact
filter points used to subtract out eye blinks.

A trade-off is required between coarseness in the data to exclude noise, and precision in the
data to accurately follow the dynamics. Thus, the artifact-filtered data (gi) are symbolized into
S discrete values, si, that are uniformly distributed between the maximum (gx) and minimum
(gn) in the first base case cutset. Uniform symbols are generated by the form in Eq. (1).

0 ≤si =  INT S
gi -  gn

gx -  gn
≤  S –  1 (1)

Here, INT converts a decimal number to the closest lower integer. Takens’ theorem [15] gives
a smooth, non-intersecting dynamical reconstruction in a sufficiently high dimensional space
by a time-delay embedding. The symbolized data from Eq. (1) are converted into unique
dynamical states by the Takens’ time-delay-embedding vector, yi:

yi =  si,  si+L ,  . . . ,  si+(d–1)L (2)

Takens’ theorem allows the yi-states to capture the topology (connectivity and directivity) of
the underlying dynamics. The time-delay lag is L, which must not be too small (making si and
si+L indistinguishable) or too large (making si and si+L independent by long-time unpredictabil‐
ity). The embedding dimension is d, which must be sufficiently large to capture the dynamics,
but not too large to avoid over-fitting.

The states from Eq. (2) are nodes. The process flow, yi → yi+M, forms state-to-state links. The
nodes and links give a formal, diagrammatic construction, called a “graph.” This form gives
topologically-invariant measures that are independent of any unique labeling of individual
nodes and links [16]. Figure 4 depicts the algorithmic steps to: extract the analysis window
from the stream of EEG data; remove the artifacts from scalp EEG; symbolize the artifact-
filtered data; and construct the graph nodes and links [4]. The parameter space in Figure 4
enumerates the parameters used to generate the phase space graphs.
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Figure 4. Nonlinear phase space construction [4].

The value, B, is the number of base cases, which establishes a normal range of activity for the
patient. The value, N, is the number of sampled points that are in a cutset and graph, The value,
w, as mentioned previously is the half-width of the eye-blink filter in sampled point units. The
value, S, is the number of bins that the EEG is discretized into in order to create the base-s
number represented by the vector y(i) in Figure 4. The value, d, is number of numerals in the
base-s number or elements in the d dimensional vector, y(i). L is a time delay embedding that
specifies the interval between points sampled in order to create a node. M is a second time
delay embedding that specifies the interval between two connected nodes. The parameters
mentioned are all used to generate the phase space graphs illustrated in Figure 4.

The dissimilarity measures involve counting unique nodes and links (those not in common
between the two graphs): (1) nodes in graph A but not in B; (2) nodes in B but not in A; (3)
links in A but not in B; and (4) links in B but not in A. Nodes and links in common between
graphs do not indicate change and are not useful. These measures sum the absolute value of
differences, which is better than traditional measures that use a difference of averages. Each
measure is normalized to the number of nodes (links) in A (for A not in B) or in B (for B not in
A). This feature vector, V, is used to classify the EEG as pre-ictal or inter-ictal. The analysis
obtains a vector of mean dissimilarities, V, and matching standard deviations,σ, by comparison
among the B(B–1)/2 combinations of the B base-case graphs, as shown in Fig. 4. Subsequent
test-case graphs are then compared to each of the B base-case graphs to get an average
dissimilarity vector, v. Our previous approach to obtain forewarning was several successive
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instances (K) above a threshold (UT) for each of J features, U (V
_

)=
|v – V

_
|

σ . This normalization

allows regions of the feature space to be found that forewarn for many patients. Because the
graphs are diffeomorphic to the underlying dynamics (from Takens’ theorem), changes in the
scalp EEG are captured by changes in the graph measures.

The present work uses a SVM approach to obtain forewarning from the normalized dissimi‐
larity measures—namely, we find nonlinear regions in the feature space using a SVM. Figure
5 shows the calculation of the dissimilarity measures [4]. The frequency of nodes and links is
not used because Takens’ theorem guarantees topology, but not density—meaning Takens’
theorem doesn’t guarantee useful information in the repetition of nodes or links.

Figure 5. Normalized Graph dissimilarity measures, based on [4].

The dissimilarity measures in Figure 5 capture topology changes between two graphs. While
node and link differences are basic graph measures, they quantify the hypothesis in a very
simple and general way. Less commonality of nodes and links between two graphs produces
larger dissimilarity measures, which are used to capture changes in topology. Topology change
is a necessary, but not sufficient condition for a phase transition [17]. Our results show that
changes in topology over extended periods indicate a higher likelihood of observing a phase
transition as an indicator of an impending seizure. Additionally, the four graph dissimilarity
measures from nodes and links rely on two concepts from set theory and Venn diagrams. Node
dissimilarity and link dissimilarity are broken into two measures of dissimilarity each.
Comparing two graphs (A and B) results in differences in nodes, as well as links. The dissim‐
ilarity measures are used as SVM features (for a total of 4 features in the Stage-1 SVM described
below), and include the nodes in graph A that are absent from graph B, links in graph A that
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are absent from B, nodes in graph B has that are absent from graph A, and links in graph B
that are absent from graph A. All four dissimilarity measures are normalized and vary with
cutset. Figure 6 shows these dissimilarity measures varying with time and how each cutset
results in features and labels (“+” for pre-ictal, and “–“ for inter-ictal).

Figure 6. Cutset labels (+/-) and features (four dissimilarity measures).

Analysis of graph dissimilarity measures by a SVM allows quantification of the change in
topology over time by determining how dissimilar the graphs must be to predict an epileptic
event. The details of the forewarning algorithm are in Section 5—with a brief overview of
Support Vector Machines in Section 4.

4. SVM with RBF kernels

SVMs are one of the most commonly used supervised learning tools. The SVM approach was
originally designed as a two-class (binary) classifier, but has been expanded to single and
multiple classes. A SVM without a kernel function performs linear classification by finding a
hyper-plane in the feature space that best maximizes a margin of separation between two
classes with a given list of features.

SVM kernels define the similarity between two points in the feature space. For example, with
a radial-basis-function (RBF) kernel, two points are said to be similar when they are proximate
to one another in the feature space. The RBF kernel function for two points in a feature space
evaluates to 1 when the distance between the two points approaches zero. The RBF, Gaussian
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kernel function evaluates to 0 as the distance between the two points becomes very large. The
region where the kernel function evaluates to zero is parameterized by the value of gamma
(γ), which is inversely proportional to the width of a multi-dimensional Gaussian function.
SVMs with RBF kernels transform the decision boundary from a hyper-plane into much more
amorphous decision boundary in the feature space. Figure 7 shows the difference in bounda‐
ries found by linear and RBF kernels for a representative SVM example in two dimensions.

Figure 7. Types of boundaries found with two main SVM kernel types.

Each point in Figure 7 is equivalent to one instance of a class. Positive class values are denoted
by positive signs and negative class values are denoted by negative signs. The Cartesian
dimensions are the feature values—such as a dissimilarity measure. More than two features
(two dimensions) can be used with a SVM, but it is more difficult to visualize when more than
3 dimensions (features) are involved. The main requirement of a RBF kernel is that the training
set has a representative sample of the data that will be observed in the future and enough
features to make distinctions between classes. Additionally, the range and scale of each feature
has a large effect on the value of γ, the results, and the accuracy of predictions. Given a SVM
model, future points are likely to be labeled as the class, to which they are most similar in the
feature space. Similarity is defined by the kernel function as closeness between points of one
class in the feature space. In essence, points from the training set are stored along with a weight
associated with that point. A weighted sum of inner products is computed to evaluate how
similar a new point is to all of the training data. The SVM training phase minimizes a cost
function of several parameters, one of which is a vector, θ, of weights. Eq. (3) [18] gives the
SVM cost function to be minimized with a kernel.

min
θ C∑

i=1

m (y(i)cost1(θTf(i)) + (1 - y(i))cost0(θTf(i))) + 1
2 θ 2 (3)
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Here, y (i) is the class label of a training point i (positive or negative one); f (i) is the feature
vector of the point (i), which compares a single point with the other points in the training set.
Cost is an input parameter to the SVM and is a penalty for being in one class or the other.

Once the vector θ is found through the minimization, it can be used to determine the classes
of new points. The method of determining the label of new points is shown in Eq. (4) [18].

class label of new point=  {Predict class 1 when θTf(i) >0
Predict class - 1 when θTf(i) <0

(4)

Once the vector θ is obtained from training, it can be used to determine whether a new point
in the feature space is of one class or another as given by Eq. (4). For each new point of index
i in a test set, a vector f(i) is computed. The vector f(i) is a function of the kernel and the points
in the training set. Each row in the vector f(i) is the value of the kernel function when the test
set point and the training set points are inputs. The Gaussian kernel function in Eq. (5) will
evaluate to 1 for points that are close together in the feature space and to zero when they are
not. Eq. (5) gives the kernel function comparing a test set point xi to a landmark training set

point, l (k ) [18].

f k
(i) =exp (-γ xi - l (k ) 2) (5)

Without a kernel, the vector θ has n+1 dimensions for n features. With a kernel, the cardinality
of θ and f(i) is m+1 for m training points. Often, this comparison to known points in the training
set with a kernel function is referred to as mapping the feature space into a higher dimensional
space. Indeed, the dimensionality of f i and θ increases from approximately the number of
features without a kernel to roughly the number of training points with a kernel. The kernel
results in linearly separable classes in the higher dimensional space, where the classes are not
linearly separable in the feature space. The above description applies to binary classification
with a RBF kernel and is intended to give the reader intuition on the types of boundaries that
are found in the feature space as illustrated in Figure 7.

LIBSVM makes the details of the linear algebra of the training and testing transparent to the
user and is easily used with the intuitions given in this Section [19]. The effect of a RBF kernel
is that points proximate to one another will be labeled as belonging to the same class. Multi-
class classification is treated as several binary classifications and is beyond the scope of the
present work.

5. SVM forewarning algorithm using graph dissimilarity features

Labeling training data as pre-ictal or inter-ictal requires assumptions that must be sound.
Current epilepsy prediction algorithms offer guidance about acceptable assumptions. The goal

Epilepsy Topics38



is enough forewarning to stop or mitigate an event. Patients and caregivers [20] suggested 1-6
hours for safety, planning the day, and “driving myself to the hospital.” Non-parent caregivers
preferred 25 minutes to 1 hour for travel to the patient’s location. Others gave 3-5 minutes,
because longer forewarning was seen as more stressful to the patient. These requirements—
as well as previous research indicating that these constraints are a reasonable request—led to
the labeling scheme used for pre-ictal indications for a SVM. For epileptic event data sets, the
pre-ictal region is labeled as being anywhere from 3.3 minutes to 70 minutes before the seizure.
Each epileptic patient is labeled as being pre-ictal for the same length of time prior to the
seizure. Each plus and minus sign in Table 1 represents a 3.3 minute window (consistent with
a cutset length of 49716 points, sampled at 250 Hz). The number of pluses is determined by a
parameter (p) that is varied during cross validation. Figure 6 shows how the signs in Table 1
relate to graphs, features, cutsets, and dissimilarity measures.

Patient data type 3.3 minute labeling 70 minute labeling

Event data set -----------------------------------+ --------------------------+++++++++++++++++++++

Non-event data set ------------------------------------- --------------------------------------------------------------

Value of p 1 21

Table 1. Effect of variable p (number of + values) on Stage-1 pre-indication labeling of training data.

The input labeling (e.g., Table 1) assumes only approximate correctness and uses class weights
to vary the correctness likelihood. The SVM methodology is implemented in three Stages with
10-fold cross validation. Stage-1 constructs a classifier that can label the pre-ictal state indica‐
tors. Stage-2 determines how long a patient must exhibit pre-ictal indicators in order to be
certain of a seizure. Stages 1 and 2 establish cross validation accuracy and error. The SVM
forewarning algorithm and previous voting method algorithm [4] both imply that patients
must be in abnormal states a higher portion of the time before they are likely to have a seizure.
Datasets without seizures can have infrequent abnormal states as well. Stage-3 obtains two
models that can be used for seizure prediction in an ambulatory setting. Cross validation
results in k different classifiers that leave out disjoint sets of data to establish an off-training-
set error (OTS error) to avoid overconfidence in accuracy. However, k slightly handicapped
classifiers result in either less accuracy than is possible or more complexity in creating an
ensemble. Stage-3 avoids this unnecessary choice by performing cross validation to create a
final SVM model that includes all of the available data. Accuracy and error rates are statistically
stronger, when they are reported from cross validation. The statistical claims are less robust,
when one trains and tests on the same data. SVM with a RBF kernel is particularly susceptible
to over-fitting—implying the need for cross validation. Figure 8 shows an outline of this three-
Stage algorithm.
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I. Stage-1 

a. Obtain 4 dissimilarity measures from phase space analysis (for each cutset in 

a patient data set). These dissimilarity measures become the features of the 

RBF kernel; 

b. Labels 

i. Labels for +1: p cutsets immediately before an event; 

ii. Labels for -1: all other cutsets. See Table 1; 

c. Divide datasets into 10 sets of patients: each set contains 4 event patients and 

2 non-event patients; 

d. Train RBF Model on 9 sets of patients – obtain SVM model (see Figure 9); 

e. Predict on the remaining, 10th set with RBF Model from (1d) ; 

f. Scan the results from (1e) for max # of contiguous +1. See Table 4-5. 

g. Repeat 1d-1f (and save results): 10 predicted sets. See Table 4-5. 

II. Stage-2 

a. Label each patient’s feature set from (1g) 

i. Event data sets are labeled as +1; 

ii. Non-event data sets are labeled as -1; 

b. Train on 9 sets of max contiguous pre-ictal indicators from (1g): linear 

kernel (see Table 5); 

c. Predict on 1 set of max contiguous indicators from (1g): via linear model 

from (2b); 

d. Get false positive rate (FP) and false negative rate (FN) from (2c); 

e. Get ܦ௜ ൌ ටቀி௉ଶ ቁଶ ൅ ቀிேସ ቁଶ (We use stratified cross validation); 

f. Repeat (2b) – (2e) 10 times; 

g. Get the average over ܦ௜ (average cross validation OTS error rate); 

III. Stage-3 

a. Use D(average)=(Average prediction distance) from (2g); 

b. If D(average) < 0.7 create models to use in future via 3c-g; 

c. Use results (see Table 4-5) from all 60 data sets from (1g); 

d. Retrain linear model (similar to Stage-2, but with all 60 patients’ max 

successive indicators) to get the number of successive occurrences to trigger 

forewarning (see Table 5); 

e. Use data from (1b) to retrain RBF model on all 60 patients’ cutsets (a total of 

4244 cutsets) to obtain the RBF model (see Figure 10); 

f. Use RBF Model (3e) result to predict +/- on data from (1b); see Table 7; 

g. Use linear model from (3d) to do event forewarning on all 60 patients (see 

Table 4-5, Table 7, Figure 9, Figure 10) and get ܦ௙௜௡௔௟ ௠௢ௗ௘௟௦ (represents an 

optimistic over-fit); 

Figure 8. Steps in the three stages for cross validation and final model construction. 

	௠௢ௗ௘௟௦	௙௜௡௔௟ܦ
Figure 8. Steps in the three stages for cross validation and final model construction.

Figure 9 shows how Stages 1 and 2 flow together. Stage-3 involves training the RBF Model on
all of the Stage-1 cutsets (4244 rows, instead of approximately 90% of it) and training the linear
model on the all of the Stage-2 results (60 rows, instead of 90% of it). Then, one predicts on the
training data to verify that the model is working as expected to produce D final models .

Figure 9 shows that event datasets are labeled in Stage-1 as pre-ictal (+) in a window of p cutsets
prior to the seizure and inter-ictal (-) outside of this window. All cutsets in non-seizure datasets
are labeled as inter-ictal (-). A cost sensitive SVM is used to account for the uncertainty in the
pre-ictal and inter-ictal labeling. The motive for this labeling scheme is the caregiver’s desire
to have forewarning within an hour of the event. Indicators are assumed to be near the event,
and the time window is varied by the parameter (p) that is tested during cross validation. The
assumption behind the design choice is that the pre-ictal state is a rare occurrence. Because
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there may be similar points in the feature space outside the hour time-frame being labeled as
pre-ictal and inter-ictal, the variable for class weights are varied via a Monte-Carlo search over
the parameter space during cross validation to determine how to tie-break. Other parameters
are also varied randomly during the Monte-Carlo search, as shown in Table 2. To compensate
for labeling uncertainty, the cost sensitive SVM adjusts a weight on the class labels to indicate
how certain the labeling scheme is for the pre-ictal and the inter-ictal classes. The labeling
scheme combined with the features, training set, class weights, and gamma creates regions in
the feature space that will be associated with one class or another. Additionally, we use
stratified cross validation—maintaining a ratio of 4 event patients and 2 non-event patients in
each strata of cross validation. Cross validation is performed on 90% of the patients—54
patients in each training set and 6 patients in each test set—having varying numbers of cutsets
due to having varying length observations. This process is repeated 10 times with disjoint sets
of patients in each test set.

Successive, contiguous occurrences of pre-ictal indicators trigger an alert (prediction of an
event). Non-event datasets have more inter-ictal indicators labeled with negative symbols,
while event patients have fairly dense pre-ictal indicators—labeled with plus symbols. A single
pre-ictal indicator is usually not enough to make accurate predictions.

The accuracy of the assumptions is reflected in the success rate of the predictions during cross
validation. The parameters that appear to be uncertain are left as search variables, recognizing
that more free parameters create a more computationally complex search. Too many variables
result in a computational explosion in the CPU time to explore the search space. Each point in
the parameter space corresponds deterministically with a cross-validation error rate. Assump‐
tions about the certainty of the training or testing example’s labels are represented by class

Event patient----------------------------------------------------------------+++++++

---------------------------------------------------------------------------

60 patients produce 4244 cutsets (rows)

Non-event patient

----------------------------------+-----------------+++--++++----+++++

--------------+------------------

Event prediction

Non-event prediction

Stage 1 Label Stage 1 Feature 
1

Stage 1 Feature 
2

Stage 1 Feature 
3

Stage 1 Feature
4

+1.0 -1.63347602 2.48750567 -0.61728311 2.61945629

+1.0 1.00212920 -0.71793008 1.17944241 -0.61776310

Train on 9/10ths of the 60 patients’ cutsets and then 
predict on 1/10th to produce the following (repeat 10 
times)

Stage 2 label Stage 2 Feature
(max contiguous +)

+1.0 5.0

-1.0 1.0

Train on 9/10ths of the 60 stage 2 rows and then predict 

on 1/10th to obtain accuracies (repeat 10 times to get 

Cross validation average prediction distance)

Predicting with stage 1 models on 6 patients 10 times produce 60 Stage 2 rows

• Cutsets equate to Stage 1 

training rows

• Cutset labels from predictions 

when lain out temporally  yield 

strings with distinct patterns

Figure 9. Stage-1 and 2 flow (each + or – represents a 3.3 minute cutset).
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weights in a cost sensitive SVM. Table 2 shows the variables for the SVMs that were searched
during the research for this paper.

γ crbf weigh t+ weigh t- clinear p

Sets the radius of

the contribution of

a single point to

the decision

boundary

Adjusts the

pliability of the

Stage-1

decision boundary

given additional

points

Weighs how

powerfully the +

class influences the

decision boundary

Weighs how

powerfully the –

class influences the

decision boundary

Adjusts the

pliability of the

Stage-2 decision

boundary given

additional points

Number of cutsets

prior to the event

that are labeled as

being in the

positive class.

Table 2. Parameters for the SVM portion of analysis.

Figure 4 and Table 3 lists other variables that might be searched in addition to those of the
SVM. Those parameters were fixed in the present analysis because Takens’ theorem is
sufficiently powerful to show significant changes in topology with many sets of parameters
when those topological changes are normalized properly. The dissimilarity measures for a
patient reflect relative differences in graph topology. The parameter values for the phase-space
graph generation are shown in the Table 3. Recall that these parameters were described near
and are contained in Figure 4. Throughout the entire analysis, the parameters to generate the
phase space graphs were kept fixed. These values were found in our prior work [4] to give
good forewarning using ensemble voting methods mentioned in the background section.

B D L M N S W

12 7 56 77 49716 3 29

Table 3. Parameters used in generation of phase space graphs [4].

Statistical validation of forewarning requires measures of success. One measure is the number
of true positives (TP) for known event datasets (Ev), to yield the true positive rate (sensitivity)
of TP/Ev. A second measure is the number of true negatives (TN) for known non-event datasets
(NEv). The true negative rate is TN/NEv (specificity). The goal is a sensitivity and specificity
of unity. Consequently, minimizing the distance from ideal (D = prediction distance) is an
appropriate objective function for any event type:

D =  1 –  ( TP
Ev ) 2 +  1 – ( TN

NEv ) 2 (6)

Eq. (6) is the objective function to be minimized for the OTS error rate and over-fit error rate.
The OTS error rate is found from 10-fold cross validation from Stages 1 and 2. The over-fit
error rate verifies that the final models in Stage-3 can correctly predict the training examples.
Excessive false positives (inverse of a true negative) will cause real alarms to be ignored and
needlessly expend caregiver resources. False negatives (inverse of a true positive) provide no
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forewarning of seizure events. A Monte-Carlo search is used over variables in Table 2 because
the prediction distance has very irregular, fractal behavior—with sparse parameters generat‐
ing good predictions and the gradients of the parameter space being highly irregular with
many local maxima and minima [4].

The algorithm for forewarning is done in two Stages of processing after producing diffeomor‐
phic graphs and their dissimilarity measures for each graph. Stage-1 uses a cost sensitive SVM
type (CSVC) from LIBSVM [19] with a RBF kernel. For each iteration of the cross validation,
the algorithm labels event data sets as having pre-ictal indicators within a one-hour window
prior to the seizure; see Table 1. The length of this window (p cutsets) is part of the Monte
Carlo search. All other values—non-event data and event data far away from the seizure
(outside the variable window)—are labeled as inter-ictal indicators. The analysis trains on k-1
sets, then predicts on a single, left-out set; this analysis is repeated k times in a k-fold cross
validation (with k being 10). Table 4 shows a small sample of Stage-1 predictions for two patient
outputs, but in actuality there are 60 sets of predictions—like Table 7 in the results section.

Common prediction

output

Example predictions from Stage-1 Maximum

Successive

occurrences of +

Event Data set --------------------+--------------------+-----++-++----------+++E 53 3

Non Event Data set -------------------------------------------------------NE no prediction 0

Table 4. Representative predictions from Stage-1 (E=event; NE=no event).

After making the six predictions on six patients for one of ten cross validation runs, one creates
a new set of cross validation folds (representing sets of patients) for the Stage-2 analysis out
of the Stage-1’s predictions on the omitted set (similar to the middle column of Table 4). For
the Stage-2 single feature, one scans each of the predictions made by the Stage-1 for the
maximum number of contiguous occurrences of pre-ictal indicators. Specifically, the third
column of Table 4 is obtained from scanning the second column of Table 4. Stage-2 of the
algorithm has training and testing files that follow the format of the second and third columns
of Table 5.

Label meaning Label Single Feature (Maximum Successive occurrences of +)

Event Data set +1.0 3

Non Event Data set -1.0 0

Table 5. Training/Testing set format for Stage-2.

The analysis labels the Stage-2 training and testing values as either event or non-event data
sets. In general, there are fewer pre-ictal indicators (+ in Table 4) in the non-event data sets on
successful cross validation runs. One determines the cross validation average prediction
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distance by training on values of maximum contiguous, pre-ictal indicators from k-1 subsets
at the Stage-2, making k predictions on the omitted subset, and then taking the average of the
prediction distances.

Stage-3 obtains the cross-validation prediction distance via two models that predict on the
basis of all of the data available instead of 90% of it. Specifically, Stage-3 takes the 4244 cutsets
labeled in Stage-1 and the sixty predictions from Stage-2 to create two SVM models for
predicting on future patients. Stage-3 involves retraining both the RBF model (from Stage-1)
and linear model (from Stage-2). Figure 10 illustrates the flow in Stage-3 after optimal param‐
eters have been discovered via cross validation. Once the two models are obtained, they are
used to predict on the original data sets to verify the model’s validity.

Figure 10. Stage-3 process (builds on Stages 1 and 2).

6. Representative results

From Eq. (6), the scenario of a classifier never getting the answer correct is

D =  (1)2 + (1)2≈1.41. A random number generator that is guessing each class with equiprob‐

ability will have a prediction distance over time, D =  ( 1
2 )2 + ( 1

2 )2≈0.7. A perfectly ideal
classifier will have an average prediction distance (OTS error rate) of 0 during cross validation.
A Monte-Carlo search over the parameters for the SVM attempts to find the set of parameters
and corresponding SVM models that minimize the prediction distance at Stage-2 for classifi‐
cation of each dataset as an event or a non-event. Cross validation on Stage-2 leads to k
prediction distances that are averaged. The average is minimized and corresponding “ideal”
parameters for the SVM are found. Once the Monte-Carlo search has found parameters
associated with an acceptable OTS error rate, one retrains the Stage-1 model on all of the data.
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One then retrains the Stage-2 model on all of the predictions from Stage-1. The retraining
process results in two SVM models—one for Stage-1 and one for Stage-2. With these models,
one can make predictions on new data.

Table 6 shows representative SVM parameter values (from the Monte Carlo search) and results.
NOCC  is the number of contiguous, pre-ictal indicators (+ labels) that must be present before
forewarning occurs and is found by training the Stage-2 SVM model (and Stage 3g). A value
of Nocc of 2 implies that dynamics over a 6.6 minute period must be observed to be abnormal
for prediction. Nocc of 1 implies that dynamics over a 3.3 minute period must be observed to
be abnormal to have forewarning. D(AVG) is the average OTS error rate during cross valida‐
tion runs; D(AVG)<0.7 indicates that the algorithm is performing more accurately than random
guessing and simple heuristics. D(final) is a value verifying that the final models in Stage-3
have the capability of accurately classifying the training data. D(final) represents an over-fit,
but is valuable in narrowing the Monte-Carlo search and determining whether the algorithm
has any merit.

Table 6 shows that the best cross validation accuracy with an average prediction distance of
0.287 and a final model prediction distance of 0.056. Table 6 shows additional representative
cross validation averages—D(Avg)—and final model prediction distances—D(final). Hun‐
dreds of runs resulted in cross validation prediction distances of <0.5. The best cross validation
accuracy of.287 achieved thus far also has a fairly decent over-fit error rate of 0.056—which

has a value of the objective function, D = ( 1
20 )2 + ( 1

40 )2≈ .056, corresponding to one false
positive and one false negative in the final model’s ability to predict the original training data.
Although, due to the fact that the number of events and non-events was unbalanced, the
probability of having a false negative was twice as likely as false positive, which is still
desirable.

Ex# γ crbf weigh t+ weigh t- NOCC clinear D(AVG) D(final)

size of +

label

window

1 3.929 9.732 19.160 24.860 1 3.723 0.287 0.056 21

2 2.640 87.825 32.867 81.832 1 2.945 0.342 0.025 22

3 2.860 10.022 85.200 50.843 2 8.033 0.374 0.075 18

4 0.964 85.719 71.740 33.237 2 9.259 0.396 0.125 19

5 7.709 2.587 28.705 26.903 2 2.347 0.413 0.050 20

6 2.207 75.920 52.493 36.102 2 8.994 0.438 0.125 18

7 6.783 18.035 49.974 30.441 2 6.985 0.456 0 21

Table 6. Summary of typical best results to date.
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Example 7 in Table 6 has an average cross validation accuracy of.456 with D(final)=0 (perfect
prediction). Cross validation average accuracy or error rate is the more valid statistical claim.
The best cross validation accuracy represented in Table 6 is in the same realm of accuracy as
Netoff et al.’s intracranial methodology. Recall that Netoff et al. claim a specificity of 77.8%
with no false positives, which is approximately a prediction distance of approximately.22

(DNetoff ≈ (1 - .78)2 + (0)2≈ .22) [1]. Our best cross validation accuracy is of the same order of
magnitude. Given that we are using scalp EEG, and Netoff et al. are using intra-cranial EEG,
this is a statistically significant result that cannot be said to be an over fit. Mirowski et al. claim
100% accuracy, which would be a prediction distance of zero (DMirowski =0). However, Mirowski
et al. are making patient specific machine learning models that are tailored to individual
patients. We are creating a novel algorithm that can be applied to a group of patients with non-
invasive EEG. Very little research is being done to advance non-invasive EEG prediction
algorithms in this way. Furthermore, comparing cross validation accuracies and error rates
dispels any arguments of overconfidence due to over-fitting.

Figure 11 shows a plot of forewarning times (typically less than 1.5h) for the final-model of
Example 7. The number of successive contiguous indicators to trigger forewarning was found
to be 2 successive + values. Table 7 shows the Stage-1 predictions (Stage-3g of Figure 8 for all
60 patients) to produce the distribution of forewarning times in Figure 11. See Table 7 for the
cutset indications (+ or -) that correspond to the parameters in Example 7 from Table 6.

Figure 11. Distribution of forewarning times for Example #7 in Table 6.
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Patient                                                                                                ------------------------------------NE no prediction 

1                                                                                                ------------------------------------NE no prediction 

2                                                                                          ------------------------------------------NE no prediction 

3                                                                 -------------------------------------------------------------------NE no prediction 

4                -+--------------+--------------------------------------------------------------------+------------------------------NE no prediction 

5                          ----------------------------------------------------------------------------------------------------------NE no prediction 

6                                                                                                   ---------------------------------NE no prediction 

7                                                                                                ------------------------------------NE no prediction 

8                                                                                                ------------------------------------NE no prediction 

9                                                                                                   ---------------------------------NE no prediction 

10                                                                                                           -------------------------NE no prediction 

11                                                                       ------------------------------------+------------------------NE no prediction 

12                                   -----------------------------------------+----------------+--------------------------+-----------NE no prediction 

13                                                                                                       -------+-----------+----+----NE no prediction 

14 -----------------------------------------------------------------------------------------------------------------------------------NE no prediction 

15                                                                                                           -------------------------NE no prediction 

16                                   ----------------------+---------------------------------+----------------------------------------NE no prediction 

17                 ------------------+------------------------------------------------------------------------------------------------NE no prediction 

18                                                                   ---------------+-------------------------------------------------NE no prediction 

19                            ----------+----------------------+-----------------------------------------------------+----------------NE no prediction 

20                                             ---------------------------+-----------------------------------------------------------NE no prediction 

21                                                              --+----------------+-----------------------------+++++++++++++++++++++E 62 

22                                                                     ------------------------------------------+++---++--+-+++-+--++E 62 

23                                                    ----------------------------+------------------------------+++++++++++++++++++++E 62 

24                                                                                  -----------------------------+-++++++++++-++-+++++E 56 

25                                                                   -------------------------+----------------+--+---++-++++++++++-++E 46 

26                                                                            ---------------+---------------+-+-+-++-++++++++++++++++E 56 

27                                                                          -------------------------------------+-++--++++++-++--+-++E 56 

28                                                  ------------------------+-------+----------+-----------------++--++++-+-+++-+-++++E 62 

29                                                                          ----------------------+-------+--------+----++-+++++++++++E 39 

30                                                                           ---------------------------------+--+-+++++++++++++++++++E 56 

31                                           --------------------------+-----------------------+-----------------+++++++-++++++++-+-++E 62 

32                                            ---------------+---+-+-----------------------+---------------------+++++++++++---+++++++E 62 

33                                                                               ---------------------------+-+-+++++++++-++++-++-+--+E 66 

34                                                                               --------------------------------+++++++++++++--++++++E 62 

35                     -------------------------------------------------------------------------------------------------++++--+-++-+++E 39 

36                                                                -------------+---------------------------------+++-++++++-----+--+--E 62 

37                               --------------------------------------------------------------------------------+++++++++++++++++++--E 62 

38             ---------------------------+-----------------++---------------+-----+++++-------------------------++++++++-++++++++++-+E 238 

39                                       ----------------------------------------+-------------------------------++++-+++++++++++++++-E 62 

40                                             ------------++----------------+-----------------+---+-------------++++++++++++++++++++-E 241 

41                                                                                   ----------------------------+++-+++++++++-+++-+++E 62 

42                                                                         ------------------------------------++++++-+++++++-+---++++E 69 

43                                                                                     -----------------+--------+++++++++++++++++++++E 62 

44                              --------------------------------------+------------------------------------------++-++++++++-+++++++++E 62 

45                                                                  ---------------------------------------------++-++-+++++++-+--++++E 62 

46                                                                                 --------------------------+---+-++-+-++-+-+-++-+++-E 56 

47                                                                        --------------------+++----+----+++++++++++++++-+--+++++++++E 125 

48           -------------------------------------------------------+-------+-----------------------+-----+--------++----++----++-----E 56 

49                                                          -----------------------------------------------------+++++++++++++++++++++E 62 

50                                                                                -------------++--+++--+-+-----++++++++-++-+-++++++++E 122 

51                                                        ----------------------------+---------------------------+++---++++-+++-+--++E 59 

52                                                               ---------------------+----------+---------+--+--+-++-++-++-++++++----E 56 

53                                                                                  --------++-------------------++-++++++-++++++++++-E 132 

54                                          --------------------------+-------------------------+-++++--+-----+-+++-++++++++++++++++++E 112 

55                                                              ----------------+--------------------------------+++++-++++++++++++++-E 62 

56                                                                       -------------+-----+-----++----++++-----+++++++++-+-+++++++++E 112 

57                                       ------------------------------------------------------------------------+++++++++++++++++++++E 62 

58                                                                   --------------------------------------------++++++++++++++++++++-E 62 

59                                                                            -------------------------++-------+++++++++++++++++--+++E 96 

60                                         ----------------------------------------------------------------------+++++++++++++++++++++E 62 

 

Table 7. Stage-3g predictions on all 60 patients for Example 7 in Table 6 (E=event; NE=no event; number following
“E”=forewarning time in minutes).
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In Figure 11, the solid black line is the occurrence frequency (arbitrary units) in half-hour bins.
The blue line is the cumulative distribution of forewarning versus time. The red H-bar with
the star in the middle indicates the mean value of the forewarning times (approximately 1
hour) and the sample standard deviation. The result in Example 7 of Table 6 is better than
random guessing or biased heuristics with D(final)=0, despite poorer cross validation accuracy
than other examples. This example shows most of the forewarning times of ≤1.5 hours with a
statistically significant accuracy. One can visually make a prediction by scanning Table 7 from
left to right and looking for 2 contiguous plus values. When 2 values are found, the seizure is
highly likely to occur. One may be tempted to reduce the forewarn time by increasing the value
of positive values that trigger a forewarning, but that would likely result in bad OTS error,
which is why it is not the value found by the second and third stage SVMs.

7. Discussion

Ideally, we would like to achieve an average cross validation OTS prediction distance of zero,
final model prediction distance of zero, and all forewarning times <1 hour. In order to achieve
this goal, additional features will need to be explored that exploit topology and the distance
metric that Takens’ theorem guarantees. Some modifications for Stage-2 improve the results
(e.g., the choice of p cutsets prior to the event as a variable, and use of a RBF kernel instead of
a linear one). More search parameters in Stage-1 (e.g., those in Table 3) should lead to better
results with enough CPU time. Additional graph dissimilarity measures may be helpful. We
have discovered more features for Stage-1 that may be of use. More data is needed for a robust
statistical validation of the model.

The choice of optimal features is very difficult. Theorems guide the choice of parameters,
features, and the algorithm. Some combination of theorem-based feature selection and
occasional intuition derived from experimentation is the only way to keep the cost of the
research initiative practical. Feature selection is one of many hard problems involved in
epilepsy prediction. When one adds features, one often needs more data to make meaningful
statistical assertions. Other important choices involve the type of kernel and the thresholding
strategy. Linear kernels and thresholding strategies may perform well while Radial Basis
Function (RBF) kernels perform poorly and vice versa. Our previous work [4] used a voting
method that performed well. There is no guarantee that a set of features will behave similarly
with different kernels and strategies to determine the threshold. Other measurement functions
are possible under Takens’ theorem to create the phase-space states. Use of a single-class or
multi-class SVM could also prove fruitful.

The results in Tables 6-7 and Figure 11 are encouraging, despite several limitations, which are
discussed next. (1) We analyzed 60 datasets, 40 with epileptic events and 20 without events.
Much more data (hundreds of datasets) are needed for strong statistical validation. (2) These
data are from controlled clinical settings, rather than an uncontrolled (real-world) environ‐
ment. (3) The results depend on careful adjustment of training parameters. (4) Only physician-
selected portions of the EEG are available, rather than the full monitoring period. (5) The
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present approach uses retrospective analysis of archival data on a desktop computer. Real-
world forewarning requires analyst-independent, prospective analysis of real-time data on a
portable device. (6) The results give forewarning times of 4 hours or less. A time-to-event
estimate is needed. (7) All EEG involved temporal lobe epilepsy; other kinds of epilepsy need
to be included. (8) A prospective analysis of long-term continuous data is the acid test for any
predictive approach. Prospective data were unavailable for the present analysis. Clearly, much
work remains to address these issues.

8. Conclusions

The present work uses Support Vector Machine analysis to extend earlier work by Hively et
al. [4] for forewarning of epileptic seizures. The previous work obtained a prediction distance
of 0.0559 and a maximum forewarning time of 5.1 hours. The present analysis divides the
continuous data stream from one bipolar channel of scalp EEG into contiguous, non-overlap‐
ping windows; removes the muscular artifacts with a novel zero-phase quadratic filter;
converts the artifact-filtered data into discrete symbols; applies the time-delay-embedding
(Takens’) theorem to create unique phase-space states that capture the brain dynamics; forms
a graph from the nodes (phase-space states) and links (dynamical state-to-state transitions);
extracts dissimilarity measures by pair-wise comparison of graphs (e.g., nodes in graph A that
are not in B); uses these dissimilarity measures as features for a novel Support Vector Machine
to classify the data as forewarning of a seizure event or not (i.e., not characteristic of the
baseline, but characteristic of data near the event). The present work obtains a prediction
distance as small as zero (sensitivity =1, specificity =1) with most of the forewarning times ≤1.5
hours. The best off-training-set error rate was.287 using 10-fold cross validation.

Our non-invasive (scalp) EEG analysis resulted in cross validation error rates comparable to
other invasive EEG approaches. Additional accuracy could be obtained by applying this
methodology to specific patients on a per patient basis for custom EEG models if the data were
available. Modifications could conceivably be made to the algorithm to improve the compu‐
tational feasibility of per patient machine learning models. A research team could allow
patients to start with group-based models that are less accurate while the patients collect and
upload ambulatory data from their devices as they use them in real-world settings. Further‐
more, businesses could be compensated for creating patient specific models from patients’
ambulatory data. Additionally, our algorithms have other applications as well, such as failure
forewarning in machines [21] and bridges [22].
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