
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900

4

Real Time Multiagent Decision Making by
Simulated Annealing

1Dawei Jiang and 2Jingyu Han
1National University of Singapore,

2Nanjing University of Posts and Telecommunications,
1Singapore

2China

1. Introduction

In this chapter, the application of Simulated Annealing (SA) algorithm in real time
multiagent coordination problem is described. A Multiagent System (MAS) consists of a
group of agents that interact with each other. Research in MAS aims to provide theories and
techniques for agents’ behavior management. The focus of this chapter is on fully
cooperative MAS, where all the agents share a common long-term goal. Examples include a
team of robots who play football against another team or a group of rescue robots that, after
an earthquake, must safely rescue the victims as soon as possible. The challenging issue in
such systems is Coordination: the policy to insure that the individual action of each agent
can generate the optimal joint action as a whole.
Coordination in MAS has been explored from many aspects such as game theory (Osborne
& Rubinstein , 1999), communications (Carrier & Gelernter, 1989), social conversions
(Boutilier, 1996) and learning(Tan, 1997). Unfortunately these approaches have some flaws.
First, in the worst case, these approaches degrade to a naïve solution which searches the
whole joint action space whose size grows exponentially with the number of agents (It is
called “curse of dimensionality”). Therefore, they do not scale well for large systems.
Second, many of the approaches report an answer only when all the possible statuses have
been considered. This is not suitable for real time case. In many real time scenarios such as

robot football, rescue robots, etc.，it is often needed that decision making algorithm returns
a well enough answer at any time.
Recently, there is some work on how to decrease the joint action space by coordination graph
(CG) (Guestrin & Venkataraman , 2002). The insight in CG is that in MAS only a small part
of agents need to coordinate their actions while others can still act individually. Thus, the
global joint payoff function, the representation of the global joint coordination dependencies
among all agents, is approximated as a sum of local payoff functions, each of which
represents the local coordination dependencies between a small sub-group of the agents.
Then, the agents use a variable elimination (VE) algorithm to determine their optimal joint
action. Unfortunately, the worst time complexity of VE grows exponentially with the
number of agents. Moreover, VE only reports results when the whole algorithm terminates,
therefore it is unsuitable for real-time systems. Max-plus (MP) algorithm is proposed as an O

pe
n

A
cc

es
s

D
at

ab
as

e
w

w
w

.i-
te

ch
on

lin
e.

co
m

Source: Simulated Annealing, Book edited by: Cher Ming Tan, ISBN 978-953-7619-07-7, pp. 420, February 2008, I-Tech Education and
Publishing, Vienna, Austria

www.intechopen.com

 Simulated Annealing

78

approximate alternative to VE (Kok & Vlassis, 2005). MP can converge to the optimal
solution for tree-structured graphs and also find near optimal solutions in graphs with
cycles, but it limits the local payoff functions to contain at most 2 agents.
In this chapter, An Simulate Annealing (SA) based algorithms to address aforementioned
coordination problem is presented. This approach has two main benefits. First, the time
taken by the algorithm grows polynomial with the number of agents. Second, the algorithm
can report a near-optimal answer at any time.
The chapter is organized as follows. Section 2 describes the problem setting and
representative work on how to solve multiagent decision problem, especially on Variable
Elimination (VE) approach. Section 3 introduces the general steps and key elements of SA
algorithms, which is employed in later sections. Section 4 gives how to effectively find a
satisfactory answer in any time for multiagent decision problem by SA algorithm. In Section
5, the performance of SA algorithm on multiagent decision problem is evaluated by
comparing it with comparable approaches followed by conclusion and future work.

2. Problem setting and variable elimination approach

Multiagent decision making problem can be formally describe as follows.
Given a group of agents G={G1,G2,…,Gn}, they are interacting with each other together during a long
time sequence {t1,t2,…,tn} to reach final goal . At each time ti, each agent Gi selects an individual
action ai from his own action set Ai (Thus the joint policy space is A=×Ai) based on payoff function
v(a) and goes into next time ti+1. At each time, the decision making problem is to find the optimal
joint action a* that maximize the global payoff function v(a). That is to say, a*=maxarga v(a).
To overcome the curse of dimensionality, the global joint payoff function is decomposed
into a linear combination of s set of local payoff functions, each of which is only related to a
small number of agents. For example, in RoboCup, only the players that are close to each
other have to coordinate their actions to perform a pass or a defend. In some situations, this
approach can get a very compact representation for coordination dependencies among
agents. Furthermore, such representation can be mapped onto a coordination graph G=(V,E)
according to the following rules: each agent is mapped to a node in V, and each
coordination dependency is mapped to an edge in E. Then Variable Elimination (VE) can be
used on G to determine the optimal joint actions.
Variable Elimination is also called bucket elimination. It is first used for reasoning in Bayes
network. It can also be effectively used to solve the multiagent decision making problem.
The technical steps include two passes. In the first pass, by enumerating all the possible
combinatorial joint actions of his neighborhood, each agent conditionally computes his own
optimal action and sends the result to the entire neighborhood. Then, the agent will be
eliminated from the system. This process will continue until only one agent remains in the
system. In the second pass, all agents do the entire process in reverse elimination order. In
the process every agent can find his own optimal decision based on his neighborhood
agent’s behavior. An example is taken to illustrate the execution of VE algorithm. Suppose
that the system has 4 agents with each one having 4 different actions, then the number of
joint actions is 44=256, and global joint payoff function can be decomposed as:

 V(a)=v1(a1,a2)+v2(a2,a4)+v3(a1,a3) (1)

Fig.1 shows the initial corresponding coordination graph. The key idea in VE is that, rather
than enumerating all possible joint actions and summing up all functions to do

www.intechopen.com

Real Time Multiagent Decision Making by Simulated Annealing

79

maximization, each time only one variable is optimized. The example begins with
optimization for agent 1. Agent 1 collects all local payoff functions including its own, i.e., v1
and v3 then does maximization. Hence, it can be obtained that

 maxa v(a)=
432 ,,max aaa {v2(a2,a4)+ 1max a [v1(a1,a2)+v3(a1,a3)]} (2)

After enumeration of possible action combinations of his neighbors, i.e., agent 2 and agent 3,
agent 1 conditionally returns his best response and yield a new function e1(a2,a3) =
maxa1[v1(a1,a2)+v3(a1,a3)]. Its value at the point a2, a3 is the value of the internal max
expression in equation (2). At this time, agent 1 is eliminated from G. The global joint payoff
function is rewritten as:

 maxav(a)=
432 ,,max aaa {v2(a2,a4)+e1(a2,a3)} (3)

Now fewer agents remain. Next, agent 2 does the same procedure. After collecting v2(a2,a4)

Fig.1. Initial coordination graph

and e1(a2,a3), agent 2 produces a conditional strategy based on the possible actions of agent 3
and agent 4, and returns his choice, i.e., e2(a3,a4) = maxa2 {v2(a2,a4)+e1(a2,a3)} to the system,
then is eliminated. The global payoff function only contains 2 agents now:

 maxav(a)=
43,max aa {e2(a3,a4)} (4)

Agent 3 begins to do optimization. Enumerating actions of agent 4, he reports his own

choice and gives a conditional payoff e3(a4)=
3

max
a

e2(a3,a4). Finally, the only remaining

agent 4 can simply choose his optimal action: a4*=
4

arg max
a

e3(a4).

In the second pass, all agents do the entire process in reverse elimination order. To fulfill

agent 4's optimal action a4*, agent 3 must select a3*=
3

arg max
a

e3(a4*). Then agent 2 can make

a decision a2*=
2

arg max
a

e2 (a3*,a4*). Finally, agent 1 does a1*=
1

arg max
a

e1 (a2*,a3*) to choose

his optimal action appropriately. The whole procedure needs only 4×4+4×4+4=36 iterations
which is much smaller than 256 iterations of the whole joint action space.
The outcome of VE is independent of the elimination order and always gives the optimal
joint action (Guestrin, 2003). However, the running speed of VE is depended on the
elimination order and exponential in the induced width of the coordination graph (Guestrin

G1

G2 G3

G4

www.intechopen.com

 Simulated Annealing

80

& Venkataraman, 2002) (Dechter,1999). Finding the optimal elimination order for VE is a
well known NP-complete problem (Arnborg et al., 1987). Thus, in some cases and especially
in the worse case, the time consumed by VE grows exponentially with the number of agents.
Furthermore, VE can not give any useful results until the termination of the complete
algorithm. Therefore, it is not suitable for real time multiagent decision making scenario. So
in the following graph how to use simulated annealing (SA) approach to circumvent such
limitations is addressed in detail.

3. Simulated annealing algorithms

The simulated annealing algorithm (also called as monte carlo annealing or probabilistic
hill-climber), inspired by statistical mechanics, is very popular for combinatorial
optimization. In this area efficient methods are developed to find minimal or maximal
values for a function of a number of independent variables. The simulated annealing
process executes by ‘melting’ the system being optimized at a high effective temperature at
first, and then lowering the temperature by slow stages until the system ‘freezes’ and no
further change occurs. In the following subsection the generic procedure to solve
combinatorial optimization is introduced first, and then the essential factors in designing SA
algorithm are analyzed.

3.1 Generic procedure to solve combinatorial optimization by SA

Given a generic function to be optimized f: (x1,x2,…,xj,…xn)→R+, where xj∈S (here S is the

domain) is a component of vector X and N(xj)∈ S is the neighborhood of xj. To find the
maximal or minimal result, SA algorithm executes as the following 4 steps.
1. Initial temperature Tmax and initial answer X (0) is given.
2. Based on X (i), a new resultant X’ which contains a certain newly produced component

x’ ∈N(x(j)) is obtained.
3. Whether X’ will be accepted as a new answer X (i+1) depends on the probability

 P(X(i)→X’)=
(') (())

1 if (') (())

 otherwisei

f X f X i

T

f X f X i

e

−
−

<⎧
⎪
⎨
⎪⎩

 (5)

In other words, If f (X’) is less than f (X(i)) then X(i+1)=X’, otherwise X’ will be accepted as X

(i+1) with the probability of

'

i

f(X) f(X(i))

Te

−

−

. If X’ is rejected, the control flow goes to step 2

again until an acceptable X (i+1) is found.
4. Step 2 and 3 is repeated until a final status defined before reached.
It can be seen that the process of SA is a discrete status sequence. At each temperature Ti, its
new status X (i+1) only depends on X (i) and has no relevance with X (i-1), X (i-2)…, X (0).
Thus it is a Markov process.

3.2 Essential factors for designing simulated annealing algorithm
When a simulated annealing algorithm is designed, six essential factors should be taken into
consideration.

www.intechopen.com

Real Time Multiagent Decision Making by Simulated Annealing

81

3.2.1 Neighbor function (status production function)
A neighbor function is used to generate a new candidate answer based on current status.
When a neighbor function is designed, it should ensure that all the candidate answers in the
state space can be reachable. In general, designing a neighbor function focuses on two key
aspects, which are the rule of producing candidate answers and the distribution of
candidate answers. The former determines how to produce a candidate answer based on
current answer. The latter determines the probability of newly produced different candidate
answers. Usually production rule of neighbor function is devised according to concrete
problem and distribution of candidate answers takes uniform distribution, normal
distribution, exponential distribution and Cauchy distribution .etc.

3.2.2 Status transition probability (acceptance probability)
Status transition probability is the likelihood that one feasible answer, denoted as xold,
transits to another feasible answer, denoted as xnew . In other words, it is the chance that a
new feasible answer will be accepted as current answer. As a rule, the status transition
probability observes the followings.
1. At the same temperature, the chance to accept the candidate answer which will

decrease objective function value is larger than that which will increase objective
function value.

2. As the temperature declines, the chance to accept the answers that will decrease
objective function value should gradually become smaller and smaller.

3. As the temperature is approaching zero, only the answers that make objective function
value decrease can be accepted.

In most of the cases, Metropolis rule as equation (5) is used.

3.2.3 Cooling function
Cooling function determines how the simulated annealing proceeds from a high
temperature Tmax to lower temperature by stages. If the temperature decreases slow enough,
the objective function value can concentrate on the global minima or maxima with an
expensive cost. If the temperature decreases too fast, the global minima or maxima will not
be reachable. Let T (t) be the temperature at time t. The classical cooling function usually
takes T (t) = Tmax/lg(1+t) and the fast cooling function usually takes T(t) = Tmax/(1+t). These
two types of cooling function can gurantee the algorithm converge to the global minima or
maxima.

3.2.4 Initial temperature
Many experiments show that the higher the initial temperature T(0) is, the greater the
chance of obtaining high quality final answer is. But the time consumed is also longer.
Therefore, to get a better initial temperature Tmax, both optimization effectiveness and
efficiency should be taken into consideration. Usually, the following several approaches can
be applied.
1. At first, a group of statuses is obtained by uniform sampling. Then, the initial

temperature Tmax is defined as the variance of all the statuses’ objective function values.
2. At first, a group of statuses is random obtained. Then, the biggest difference of objective

function values, denoted as |△max| , is obtained by comparing every two statues.

www.intechopen.com

 Simulated Annealing

82

Finally, the initial temperature Tmax is determined by a function which takes |△max| as
parameter.

3. The initial temperature Tmax is determined based on engineering experience for some
specific problems.

3.2.5 Metropolis sampling rule
This rule is used to determine how many candidate answers will be produced at a certain
temperature. The following policies are widely used.
1. Test whether the average of object function values is stable or not. If so, the sampling

will continue, otherwise the sampling will stop.
2. Test whether objective function value difference in continuous steps is small enough. If

so, the sampling will continue, otherwise, the sampling will stop.
3. The sampling is constrained by fixed number of steps.

3.2.6 Termination rule
It is used to determine when the simulated annealing algorithm ends. It includes the
following approaches.
1. An ending temperature threshold is set. If the current temperature is below the

threshold, the simulated annealing stops.
2. The number of iteration is set. The simulated annealing process will proceed according

to the times of iterations.
3. The simulated annealing will end if the objective values do not change in a series of

continuous steps.
4. The termination depends on whether the system entropy is stable or not.

4. Multiagent decision making by simulated annealing algorithm

It is natural to apply SA to multiagent decision making problem since the global payoff
function needs to be optimized via a number of independent action variables of each agent.
The process works as follows. First, the global payoff function is decomposed into a number
of local terms. Then, global payoff function will be rewritten as the linear combination of
the local terms to avoid the curse of dimensionality. That is to say, given n agents, its global
payoff function can be decomposed as follows:

 v(a)= ...
i i ij i j i, j,k i j k

i G i, j G i, j,k

v (a)+ v (a ,a)+ + v (a ,a ,a)
∈ ∈
∑ ∑ ∑ +…. (6)

Here vi(ai) represents the payoff that an agent contributes to the system when acting
individually, e.g. dribbling with the ball. vij(i,j) denotes the payoff of a joint action between
agent i and j, and vijk(ai,aj,ak) depicts another coordination action involving three agents, e.g.
pass from i to j, then j to k . Coordination among more agents can be added similarly if
needed. This decomposition approach is different from MP for the number of agents is not
limited while MP does. In MP algorithm, the global joint payoff function can only be

decomposed into
i i ij i j

i G i, j G

v (a)+ v (a ,a)
∈ ∈
∑ ∑ .

Now SA can be smoothly applied to solve the multiagent decision problem. The goal is to

find the optimal joint action, i.e., a*=)(maxarg ava . The pseudo-code of SA is presented in

www.intechopen.com

Real Time Multiagent Decision Making by Simulated Annealing

83

Alg.1. The SA algorithm is implemented in a centralized version and performed by the
agents in parallel, without assuming the availability of communications. The idea behind
the algorithm is very straightforward. In each iteration (called an independent try), the
algorithm starts with a random choice of joint action for the agents, then loop over all the
agents. Each agent optimizes the global payoff function with his own action while all of the
other agents stay the same. If the agent’s local optimization can yield a better joint action
than the initial one, the new solution is accepted. Otherwise, the new solution is accepted

with a probability of
(/)

1

1 T
e
− Δ+

 . The looping continues until the temperature T decayed from

Tmax to a predefined threshold Tmin. Then a new random starting position is selected and the
whole process is repeated. When an agent should send action to the server, he returns his
own action from the optimal joint action found so far.
Basically, what the SA does is to seek the global maximum of the global joint payoff
function. As a stochastic algorithm, although SA can not guarantee the convergence to
optimal joint action, in a rather short time it can find an approximately optimal solution. It
has the following attractive features. First, SA is an anytime algorithm that can report an
answer at any time. Secondly, in each independent try, agent i only has to iterate his own
actions instead of all combinatorial actions of his neighbors, thus makes the algorithm
tractable.

Algorithm 1. Pseudo-code of the simulated annealing algorithm
Define: G ={G1,G2,…,Gn} the agents who want to coordinate their actions
Define: v (a) the global joint payoff function
Define: a* the optimal joint action so far
Define: ai the action of agent i
Define: ai* the optimal action of agent i found so far
Define: a-i the actions of all agents but agent i
 g←0
 t←0
 While t<MaxTries do
 a = random joint action
 T← Tmax

 repeat
 for each agent i in G do

 a’=argmax
ia (a-i∪ai)

 △←v(a’)-v(a)

 if (△>0) then
 a←a’
 else

 a←a’ with probability
)/(1

1
T

e
Δ−+

 end if
 if v(a)>v(a*) then
 a*←a
 g←v(a*)

www.intechopen.com

 Simulated Annealing

84

 choose ai* from a*
 end if
 if should send action to server then
 send ai* to server
 end if
 end for
 T←T.decay
 until T<Tmin

 t←t+1
 end while

5. Experiments

In this section, the simulated annealing algorithm is evaluated by comparing it with other
algorithms, especially with variable elimination algorithm. The following subsections include
three parts. The first subsection describes the test bed of experiment since there is no
standard benchmark to use. The remaining two subsections give the details of the
experiment. It runs in two stages. In the first stage, the number of agents and the number of
different actions per agent are fixed to test the scalability of the two algorithms when the
number of neighbors per agent grows. In the second stage, the relative payoff SA returned
and the optimal payoff produced by VE is compared to evaluate SA algorithm’s performance.

5.1 Test bed setting
Since there is no standard benchmark to evaluate multiagent decision algorithm, a random
generator (RG) is used to generate all test sets. The inputs of RG include the number of
agents |G|, the number of different actions per agent |A|, maximum number of neighbors
per agent nrs, and the number of payoff functions each agent has nrρ. It is believed that these
aspects should be sufficient to describe the difficulty of the coordination problem. The
output of RG is a set of payoff functions. Each function is a value rule <ρ : υ>, which is first
used by literature (Guestrin & Venkataraman , 2002) and proved suitable for many real-
world applications. The global joint payoff function is thus represented by the sum of value
rules of all agents. A sample output of RG with |G| = 4, |A| = 4, nrs = 3, nrρ = 1 is shown in
table 1.

<ρ : υ>

< a1 = 3 ∧ a3 = 3 ∧ a4 = 4 : 7.19085 >

< a2 = 4∧a3 = 4 : 4.67774 >

< a1 = 1 ∧a2 = 1 ∧ a3 = 2 ∧ a4 = 2 : 4.67774 >

< a1 = 4 ∧ a3 = 2 ∧ a4 = 1 : 4.67774 >

Table 1. Sample output of RG

Here the integer value of ai is an action index and is mapped to a predefined action in real
MAS such as dribbling, pass .etc. in a real RoboCup. The details will not be addressed here
for the focus is concentrated on the performance of multiagent decision. The following two
subsections give how to evaluate the performance of SA algorithms in details. All the
programs are implemented in C++, and the results are generated on a 2.2GHz/512MB IBM
notebook computer.

www.intechopen.com

Real Time Multiagent Decision Making by Simulated Annealing

85

5.2 Scalability of SA algorithm
In this stage, 120 coordination problems are generated and each one is assigned with 4 test

sets based on different actions per agent. The aim of this experiment is to evaluate the

scalability of SA algorithm. For the problem in each test set, the settings are as follows. The

number of the agents is set to |G| = 15. Each agent has nrρ = 8 value rules with different

number of neighbors. The payoff in each value rule is generated from a uniform random

variable U [1, 10]. The number of neighbors k in each value rule is in the range k ∈ [1, nrs].

Each value has a chance of
ne

Nr

k

⎛ ⎞
⎜ ⎟
⎝ ⎠

/ 2 neNr
.

When applying VE, the algorithm is speed up by eliminating the agent with the minimum

number of neighbors. When running SA, MaxTries is set to 20, the highest temperature Tmax

is 0.3, and lowest temperature Tmin is 0.05. The temperature decay of this algorithm is in

proportion to nrs. Therefore, if certain value rule contains a large number of agents, the SA

algorithm will search deeply in an independent try, vice versa. To weaken the side effect of

hardware and operating system the experiment is repeated 10 times and the average is

adopted as the measure. Fig. 2(a)–2(d) gives a clear picture of the timing results for the four

(a) Timing comparisons for VE and SA (4
actions per agent).

(b) Timing comparisons for VE and SA (6

actions per agent).

(c) Timing comparisons for VE and SA (8
actions per agent).

(d) Timing comparisons for VE and SA (4

actions per agent).

Fig.2. Time consumed comparisons for both VE and SA

www.intechopen.com

 Simulated Annealing

86

test sets. It can be easily seen that the running time of SA algorithm grows linearly as the

number of the neighbors per agent increases. In contrast, the time of VE algorithm grows

exponentially, since it must enumerate all neighbors’ possible combination actions in each

iteration.

Furthermore, when the average number of neighbors per agent is more than 3.5, VE can not

always compute the optimal joint action so these tests are removed from the test sets. In

sum, the SA algorithm outperforms the VE algorithm with respect to scalability and this is

especially meaningful in multiagent decision scenario.

5.3 Relative payoff comparison
In the second stage, 6 coordination problems are generated. Each problem has its own

settings such as number of agents, number of neighbors per agent .etc.. VE and SA are both

employed to solve them. When SA is applied, instead of starting with a random choice for

all agents, in ith independent try, the agent selects action according to the ith highest value

rule if he is involved; otherwise the action is selected randomly. The MaxTries is set to 200,

so that SA has enough time to run. Other settings are the same as the first stage.

To give a clear comparison of VE and SA, the payoff axis is scaled so that the global

maximum payoff is 1. The time axis is also scaled so that the whole time taken by VE to

terminate is 1. Thus the points in the figure can be seen as the fraction of the payoff and the

running time of VE. The results of SA will be scaled to its VE companion. The experiment is

also repeated 10 times to weaken hardware and software’s side effect.

The relative payoff found by the SA with respect to VE is plotted in Fig. 3(a)–3(f). It can be

seen SA performed very well. It is obvious that the near optimal result is found in all tests.

In loosely connected coordination problem with few actions, i.e., Fig. 3(a), SA converges to

the maximum payoff with only the 60% time that VE takes. However, if the number of

actions is big as Fig. 3(b), SA can not reach the optimal result although it can find near

optimal solution (96% payoff) quickly. Further experiments show that if the joint action

space is huge (more than 15 agents, and each agent has more than 10 actions) the acceptable

probability should be increased to speed up the convergence to optimal result. This is

because in such situations, a little higher acceptable probability can increase the chance of

stochastic movement of SA. This technique help SA jump away from local optimizations

and cover the joint action space as possible as it can. But the exact relationship between

acceptable probability and the convergence speed is still not very clear. For the medium

connected problems (Fig. 3(c)–3(d)), SA can compute the optimal policy with a little fraction

of time (2%–6%) that variable elimination needs to solve the same problem. Fig. 3(e) and

Fig. 2(f) give us a strong impression that SA can compute more than 98% payoff within the

time ranges between 0.015% to 0.2% of the time VE takes in the densely connected problems.

Other unpublished tests are also carried out. For example, SA is compared with max-plus

algorithm informally. The experiment shows that when reaching the same relative payoff,

the time difference between the two algorithms is at most 5%. Although SA algorithm is not

much faster than max-plus, it is still believed that SA approach is more appropriate for

complex coordination problems, since in these problems the coordination dependencies in

the value rule is often more than two, therefore max-plus can not be applied directly.

www.intechopen.com

Real Time Multiagent Decision Making by Simulated Annealing

87

(a) |G | = 14, nrs = 2, nrρ = 10, |A| = 5

(b) |G | = 14, nrs = 2, nrρ = 10, |A| = 10

(c) |G | = 12, nrs = 4, nrρ = 10, |A| = 4

(d) |G | = 12, nrs = 4, nrρ = 10, |A| = 8

(e) |G | = 10, nrs = 8, nrρ = 10, |A| = 4

(f) |G | = 10, nrs = 8, nrρ = 10, |A| = 8

Fig. 3. Relative payoff found by SA with respect to VE.

6. Conclusion

In this chapter, SA algorithm is employed to solve real time multiagent decision making
problem. Compared with exact method this chapter’s empirical evidences show that (1) this
method is almost optimal with a small fraction of the time that VE takes to compute the
policy of the same coordination problem; (2) the running time of SA grows linearly with the
increasing number of neighbors per agent;(3) it is an anytime algorithm which return result
at any time. For above reasons, it is believed that SA is a feasible approach for action
selection in large complex cooperative autonomous systems.
As future research, an appropriate setting of the acceptable probability will be figured out,
especially the decay rate in SA. Some recent work shows that neural network algorithm can
produce a good decay rate for larger problems. Such techniques may be employed to solve
multiagent decision making problem. Furthermore, whether reinforcement learning
algorithms can be applied to automatically learn the payoff in each value rule is to be
investigated

www.intechopen.com

 Simulated Annealing

88

7. References

Arnborg,S.; Corneil,D.G. & Proskurowski,A. (1987). Complexity of finding embeddings in a

K-tree. SIAM Journal on Algebraic Discrete Methods, vol.8, no.2, (1987) page number

(277-284), ISSN: 0196-5212

Boutilier,C.(1996). Planning, learning and coordination in multiagent decision processes,
Proceedings of the 6th conference on theoretical aspects of rationality and

knowledge,pp.195-210,ISBN:1-55860-417-9,the Netherlands,1996, Morgan Kaufmann

publisher Inc., San Francisco,CA, USA

Carrier,N.; Gelernter,D.(1989). Linda in context. Communications of the ACM, vol.32,

no.4,(1989)page number(444-458),ISSN: 0001-0782

Dechter,R.(1999). Bucket elimination: a unifying framework for reasoning. Artificial

Intelligence, vol.113,No.(1-2),(1999)page number(41-85),ISSN: 0004-3702

Guestrin, C. ,Venkataraman (2002). Context specific multiagent coordination and planning

with factored MDPs, Proceedings of the eighteenth national conference on artificial,

pp.253-259,ISBN: 0-262-51129-0, Edmonton Canada, July 2002, American

Association for Artificial Intelligence, Menlo Park, CA, USA

Guestrin,C. (2003).Planning Under Uncertainty in Complex Structured Environments .PhD

thesis ,Stanford University

Jiang,D.W;Wang,S.Y.(2007). Using the simulated annealing algorithm for multiagent

decision making, proceedings of the 10th annual RoboCup international

symposium,pp.109-120,ISBN: 978-3-540-74023-0, Bremen Germany, June

2006,Springer, Berlin Heidelberg Germany

Kok,J.R.; Vlassis,N.(2005).Using the max-plus algorithm for multiagent decision making in

coordination graphs, Proceedings of RoboCup 2005, pp.1-12,ISBN: 978-3-540-35437-

6,Osaka, Japan, 2005, Springer Berlin, Heidelberg

Osborne,M.J.;Rubinstein,A.(1999). A course in game theory, MIT Press, ISBN: 978-0262650403,

Cambridge of USA

S.Kirkpatrick, C.D.Gelatt, Jr., M.P.Vecchi (1983). Optimization by Simulated Annealing.

Science, vol.4598,no.220, (May 1983)page number(671-681),ISSN: 220.4598.671

Tan,M.(1997). Multi-agent reinforcement learning: independent vs. cooperative learning.

Proceedings of Readings in agents,pp.487-494,ISBN:1-55860-495-2,Morgan Kaufmann

Inc., San Francisco, USA

www.intechopen.com

Simulated Annealing

Edited by Cher Ming Tan

ISBN 978-953-7619-07-7

Hard cover, 420 pages

Publisher InTech

Published online 01, September, 2008

Published in print edition September, 2008

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

This book provides the readers with the knowledge of Simulated Annealing and its vast applications in the

various branches of engineering. We encourage readers to explore the application of Simulated Annealing in

their work for the task of optimization.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Dawei Jiang and Jingyu Han (2008). Real Time Multiagent Decision Making by Simulated Annealing,

Simulated Annealing, Cher Ming Tan (Ed.), ISBN: 978-953-7619-07-7, InTech, Available from:

http://www.intechopen.com/books/simulated_annealing/real_time_multiagent_decision_making_by_simulated_

annealing

© 2008 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

