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1. Introduction

Functional MRI studies (fMRI) are based on the blood-oxygenation-level-dependent effect
(BOLD) that arises in brain areas where neuronal activity takes place (Ogawa et al., 1990,
1992; 1993). BOLD induces changes in the local magnetic susceptibility and these can be
measured by Gradient Echo (GE) Echo-Planar-Imaging (EPI). The fMRI signal thus observed
consists of a complex value, which is subdivided into a magnitude and a phase term. In
most fMRI studies, the phase signal is discarded and only the magnitude changes are used
to detect activated brain areas. In recent years, an increased interest in using both signal
types has emerged, with the prospective of increasing both statistical power and spatial spe‐
cificity.

This chapter describes the fMRI signal from a mathematical and biophysical view point,
with emphasis on the phase signal. We will show which kind of information that the phase
conveys and exemplify how it can be incorporated in the fMRI analysis pipeline. In section
2, we first describe the basics of an fMRI study, from the fundamental MR signal equations
to how a whole brain image is generated in the scanner. We also describe the blood-oxygen‐
ation-level-dependent (BOLD) effect that follows neuronal activation. It alters the local mag‐
netic susceptibility and the homogeneity of the local magnetic field and hereby alters the GE
EPI signal.

Next, we discuss the phase signal in detail and we characterize the phase in comparison
with the more familiar magnitude signal. We illustrate how the probability distributions of
the magnitude and the phase values change as the signal-to-noise-ratio increases and how
physical mechanisms, like paramagnetic and diamagnetic changes in the local field homoge‐
neity, influence the magnitude and the phase signal in different ways. Regarding neuronal
activity, we will review different biophysical models of BOLD with emphasis on the phase
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signal. Early models describe how the phase effect tend to cancel out for microvascular net‐
works, while a detectable effect remains in larger vessels only (Yablonskiy and Haacke,
1994; Kiselev and Posse 1999; Menon, 2002). On the contrary, a more recent model, based on
the Sphere of Lorentz effect, shows that a spatially extended, activated brain area produces a
detectable change in the phase signal (Zhao et al., 2007; Feng et al., 2009).

An issue with the phase signal, addressed in the fourth section, is that the potentially valua‐
ble phase information is buried in strong phase variations that extend across the head, re‐
flecting variations in the magnetic field homogeneity that vary both in space and in time.
These noise factors are unrelated to the neuronal activity and affect the phase to a greater
extent than the magnitude signal (Petridou et al., 2009; Hagberg et al., 2008). Methods that
suppress or remove these unwanted effects represent a key factor fMRI analysis of phase da‐
ta. We describe the sources of unwanted phase effects, how these can be modelled, and
quantified. We also review several available post-processing methods that can be used to
suppress or even remove these unwanted phase effects.

In the last section, we discuss emerging methods that utilize the information conveyed by
the phase in the analysis of fMRI data. We will highlight a method that can be used to im‐
prove the analysis of the conventional magnitude signal. This method is derived by identify‐
ing physiological noise sources from the phase data, and by noise regression of the
magnitude signal. The BOLD effect in phase images can also be usedwith the prospective of
increasing statistical power and spatial specificity. For illustrative purposes, we show some
phase and magnitude results obtained at the group-level in an fMRI study of a motor task
performed at 3T.

2. Basics of fMRI physiology

Magnetic Resonance Imaging (MRI) is a non-invasive tomographic technique based on the
principles of NMR. In virtue of being a tomographic technique it provides the reconstruc‐
tion of sections of a 3D object. The capability to explore the structure of the human body
non-invasively makes MRI widely employed in clinical imaging. Since the early 1990’s, MRI
is used not only to study brain structure but also to study brain function. Theso-called func‐
tional Magnetic Resonance Imaging (fMRI), which is based on the BOLD contrast, discov‐
ered by Ogawa et al. (1990, 1992, 1993). The great advantage of fMRI resides in its non–
invasiveness and high availability, since standard equipment already existing in hospitals
can be used.

Neuronal activity causes a local increase in the available oxygen due to neurovascular cou‐
pling, either due to synaptic input from other brain areas, or due to local signal processing
(Logothetis, 2008). The neurovascular coupling mechanism consists of several steps, leading
from an increase in the local neuronal activity to changes in blood flow. Initially, the blood
oxygen concentration decreases, causing the initial dip phenomenon of the BOLD effect. As
a compensatory mechanism, vasoactive substances are released by glia cells into the extrac‐
ellular space. When these substances reach nearby blood vessels, the blood flow increases,
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and so does the relative amount of oxygenated haemoglobin, as a result of changes in the
diameter of the blood vessels, the density of the red blood cells, and the amount of O2 and
CO2. The hemodynamic BOLD response thus apparently over-compensates the oxygen use
in the activated neurons, giving rise to blood oxygen levels which are higher than necessary
to re-establish local tissue oxygen availability. The onset of this BOLD response is typically
delayed by 1-2 seconds and peaks 4-6 seconds after onset of the neural response. Spatially,
the fMRI signal spreads out due to bigger veins that drain the capillaries close to the neu‐
rons at work.

2.1. The fundamental MRI signal equations

Any atom holding a net nuclear magnetic moment, I, can generate an MR signal detectable
by a scanner. Most MRI methods employ hydrogen atoms 1H, owing to a high nuclear gyro‐
magnetic moment and the high water concentrations present in the human body (ca 55M).

When hydrogen atoms are dipped into an external field, B0, the spins tend to either align
with the external field (lower energy state) or orient themselves in the opposite direction
(upper energy state). At equilibrium, spins are in light excess in the former state, resulting in
a non-zero net magnetic moment Mthat is aligned with the external field (Fig. 1). According
to the rules of quantum mechanics, the nuclear magnetic moment cannot be exactly aligned
with the external magnetic field, and are therefore oriented at an angle with respect to the
field. This difference in orientation between the external field and the field of the spins caus‐
es a torque effect leading to a precession of the spins around the external field (see zoomed
box, Fig. 1). The precession occurs at the Larmor frequency, ω , according to the fundamen‐
tal equation of NMR, the Larmor equation:

0Bw g= (1)

where γ is the gyromagnetic ratio (in units of radian/T/s), and B0 the intensity of the magnet‐
ic field.

Figure 1. Net magnetic moment Mof and ensemble of spins, each with an individual nuclear magnetic moment, I,
placed in an external field B0. In the zoomed inset, the precession of I around the B0 axis at the Larmor frequency, ω is
shown.
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At equilibrium, no MR signal can be detected since the magnetization vector M is time inde‐
pendent. An MR signal can only be detected after the equilibrium condition has been pertur‐
bed, when the spin systems return to equilibrium and the spins flip from the higher to the
lower energy level. The perturbation is made so that the spins can absorb the necessary en‐
ergy to bridge the gap, ΔE, between the two spin states. A radiation field B1 oscillating exact‐
ly at the Larmor frequency is used to excite the spins and induce transitions from the lower
to the higher energy state. The perturbing B1 field is applied orthogonally with respect to B0

(Fig. 2).

The induced transition to the upper energy level gives rise to a spin coherence, bringing the
longitudinal equilibrium magnetization Mz into the transverse plane x-y, Mxy, in a fixed ref‐
erence system (laboratory system) as shown in Fig. 2.

The transition from the longitudinal to the transverse direction is thus induced by a radio-
frequency field B1, or a so-called 90° pulse. When the B1 90° pulse is interrupted,M starts to
precess around the B0 z-axis at the Larmor frequency, whilst re-establishing its initial equili‐
brium value.This causes the gradual recovery of the longitudinal component Mz and the
complete extinction of Mxy. The temporal variation of the transverse component, Mxy, origi‐
nates the MR signal, also known as Free Induction Decay (FID),oscillates at the Larmor fre‐
quency and is detectable as an induced voltage in the radio-frequency coil, according to
Faraday’s law of electromagnetic induction.

The evolution of the magnetization M of a spin system immersed in an external magnetic
field, B0, perturbed by an oscillating field, B1, and the forces that rule the FID can be con‐
jointly described by the phenomenological Bloch equations. The solutions to the Bloch equa‐
tions govern the decay and recovery of the magnetization.

In the absence of local magnetic field inhomogeneities, the decay of the transverse compo‐
nent, Mxy, is described by the characteristic time constant, T2, also known as the spin-spin
relaxation time, while the characteristic time constant T1, known as spin-lattice relaxation
time, rules the recovery of the transverse component, Mz, according to:

2/
0

t T
xyM M e-= (2)

1/
0(1 )t T

zM M e-= - (3)

In the presence of local field homogeneities, that are not refocused by the imaging sequence
the FID signaldecay is governed by the time constant T2*, or the effective transverse relaxa‐
tion time:

2/ *
0

t T
xyM M e-= (4)
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This situation happens for gradient echo sequences used in fMRI studies. With this MR se‐
quence, local field inhomogeneities are not refocused and in presence of a positive BOLD
effect, a lengthening of T2* arises due to a relative increase in the local blood concentration of
oxyhemoglobin during activation. Oxyhemoglobin is less paramagnetic than deoxyhemo‐
globin and therefore generates a field shift which is diamagnetic relative to the baseline con‐
dition (see paragraph 4 and Fig 8). As will be discussed in greater detail further on, the
presence of paramagnetic effects leads to an increase in the bulk magnetic field, with faster
spin precession while the presence of diamagnetic effects causes a decreased local field, and
a loss of angular precession velocity of the spins around Bo (see Eq. 1 and Fig. 2)

A diamagnetic or a paramagnetic shift in magnetic susceptibility causes variations in the lo‐
cal Larmor frequency and may lead to off-resonance and dephasing effects, φ(t) depending
on whether the field is uniform or varies across the voxel. Therefore a more general signal
equation for a gradient echo sequences is:

( )

( ) ( )

2*

0

i tt T
xy o

t

M M e e

t B d

j

j g t t

- ×-=

= × ò
(5)

Implicitly, this equation takes into account the complex value of the MRI signal, which is de‐
scribed in more detail below. The decay term of [Eq. 5] is obtained from the magnitude com‐
ponent of the MR signal while the off-resonance dephasing effects, φ(t) are obtained from
the phase.

2.2. Image generation and fMRI

The MRI signal is derived from the entire system of spins, which are excited by the RF pulse
and precess at the Larmor frequency. In order to spatially distinguish between spins and to
reconstruct an image, magnetic field gradients are added to the external magnetic field B0.
These gradients are applied in the three spatial directions (x,y,z), defining respectively the
slice-selection gradient, Gz, the phase-encode gradient, Gy, and thefrequency-encode (also readout)
gradient, Gx. The first gradient is used to select the magnetization located inside a slice
through the object, while the latter two gradients are used to encode the spatial position of
this magnetization in 2D space. This information is sampled in a reciprocal space, termed k-
space, and the image of the selected slice is reconstructed by a 2D Fourier Transform that
maps the original magnetization distribution of the object from k-space back into object
space.In an fMRI study, the signal changes caused by the BOLD response is followed by
whole brain measurements that are obtained every 1-3 seconds, with typical voxel sizes be‐
tween 3x3x3 and 1x1x1 mm3 in human brain studies. Due to the sluggishness of the BOLD
functional brain studies generally employ gradient-echo echo-planar imaging (GE-EPI) se‐
quences for data acquisition: a 2D image (or a slice) is acquired following a single excitation
pulse, and 20-30 such slices are imaged yielding whole brain coverage within a 2-3 s long
repetition time, with typical voxel sizes between 1x1x1 and 3x3x3 mm3 (Schmitt et al., 1998).
The GE-EPI sequence, in which the entire 2D k-space is filled using rapid gradient switching
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after a single excitation pulse, begins with a slice-selective excitation pulse with a flip angle
α(i.e. an RF pulse that brings the Magnetization vector at an angle αwith respect to B0), and
is followed by an EPI readout of gradient echoes (i.e. a train of gradient echoes made up of
readout gradientswith alternating polarity, see Gx in Fig.3). Before each readout gradient, a
brief phase-encode blip (Gy) is applied in order to quickly sample the whole k-space. Alter‐
natively, a full 3D volume can be acquired by so-called echo-volume imaging (EVI, Mans‐
field, 1977). In this case no slice-selection is necessary, instead an entire volume is excited by
a single RF-pulse and 3D k-space is covered by phase encoding along two spatial directions.

The advantages of using gradient-echo EPI areitsrapid image generation with minimal ener‐
gy deposition, sufficient spatial resolution and ease of acquisition, yielding whole brain cov‐
erage within a short imaging time. These advantages come however at the expense of a
relative low signal-to-noise ratio, which is however combined with a great BOLD contrast-
to-noise ratio.

Figure 2. At equilibrium, the net magnetization is said to be longitudinal, Mz and is oriented along the direction of the
external magnetic field, B0. A radio frequency (RF) field B1oscillating at the Larmor frequency is applied orthogonally to
B0. This so-called 90° pulse, rotates the magnetization vector into the transverse orientation Mxy. During the echo time,
spin coherence is lost leading to a T2* signal decay, that depends on the local magnetic susceptibility. Spins in a dia‐
magnetic environment precesses a little slower, while spins in a paramagnetic environment precesses a little faster
than the on-resonance spins. The original equilibrium condition with a longitudinal net magnetization is recovered
after a time that is about five times as long as the longitudinal T1 relaxation time.
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To reach a sufficient BOLD contrast-to-noise ratio (CNR), several such GE-EPI images are
acquired during presentation of selected stimuli, generating an fMRI time series.A typical
stimulus paradigm for an fMRI experiment alternates “ON” states in which subjects are
asked to perform a task, and “OFF” states (or “Control” state) in which they have to be at
rest or perform a control task. Generally “ON” and “OFF” states are repeated every 20-40s,
to maximize the BOLD signal, and several repetitions of such “ON”/”OFF” states are re‐
quired. Typical durations of an fMRI time series is 5-10 min. An example of an fMRI experi‐
ment is shown in Fig. 4.

Besides the acquisition sequence and the stimulus paradigm, the success of an fMRI experi‐
ment depends uponthe statistical data analysis that is undertaken to individuate the cerebral
regions where the variation of the magnitude MRI signal is stimulus correlated. The sensi‐
tivity of the statistical analysis depends on both the BOLD contrast and on the fMRI noise
level. As we will show, the fMRI noise level can be reduced by using the information con‐
veyed by the phase signal.

3. Characteristics of the MRI phase signal

As we will see, the MRI signal can be described by a complex number, consisting of a mag‐
nitude and a phase term. Most MRI methods only retain the magnitude term, but in some
established applications, like phase-contrast angiography, Susceptibility Weighted Imaging

Figure 3. The gradient echo (GE) echo-planar-imaging (EPI) sequence. An RF pulse with flip angle α (first row) is ap‐
plied together with a magnetic field gradient in the slice selection direction (Gz. last row). Hereby all the spins located
inside the selected slice have theirmagnetization vector rotated by an angle αwith respect to B0. k-space (the recipro‐
cal of the image space) is sampled by a combination of brief phase-encoding blips (Gx second row) and readout gra‐
dientswith alternating polarity (Gy third row). Finally, a Fourier Transform is performed to recover the MR image of the
selected slice.
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or anatomical phase imaging methods at high field strengths, the phase is used as a sole in‐
gredient or in combination with the magnitude to generate image contrast.

The phase and the magnitude signals are like two sides of a coin for the MRI signal. While
the magnitude signal is related to the dispersion of the underlying local magnetic field, the
phase is sensitive to coherent magnetic field shifts. The reason behind this may become clear
if we consider the MRI signal as a vector sum of single spin contributions located at different
spatial points inside the voxel, precessing around the B0 field according to the fundamental
Larmor equation (e.g. Fig.1). In case of an ideal homogeneous magnetic field, without field
dispersion or field shifts, all the vectors will precess ‘on-resonance’ at the same frequency
generating a maximal magnitude signal at the echo time TE, and a zero phase. In the pres‐
ence of a field inhomogeneity across the voxel, a field dispersion, each spin senses a slightly
different field and precesses at a frequency which is slightly different from the ‘on-reso‐
nance’ condition. At TE, the vectors will therefore point into different directions and the vec‐
tor sum generates a decreased magnitude signal, while the average phase is zero. In
presence of a local deviation of the magnetic field which is uniform across the voxel, a field
shift, all the vectors have the same frequency albeit different from the ‘on-resonance’ condi‐
tion. At TE, there is a decreased magnitude signal, and an altered phase.

In the following we will discuss the different characteristics of the magnitude and phase of
the MRI signal, with emphasis on some factors that are important for fMRI applications. Be‐
sides the signal and noise properties, we will describe three biophysical models for the effect
of BOLD on the phase signal.

3.1. Definition of the magnitude and the phase of the fMRI signal

The MR detection systemis based on quadrature detection. The voltage induced by the oscil‐
lating net transversemagnetization Mxy is split into two channels that function with a phase

Figure 4. An fMRI experiment consisting of “OFF” and “ON” periods with a 20-40 seconds duration. Gradient-echo EPI
images with whole brain coverage are acquired each 2-3 seconds, and 100 or more brain volumes make up the fMRI
time series.
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difference with respect to each other. Two output signals are thus detected, the first which is
‘in-phase’ and the second which is ‘in-quadrature’ (ie phase shifted) with respect to the first.
These signals can be described in mathematical terms by the real and the imaginary compo‐
nents of a complex vector, corresponding to the Mx and the My components of the detected
net magnetization of the FID.

In the ideal case, the imaginary component of this complex vector is zero and all the neces‐
sary image information is contained in the real component. If this is not the case, it should in
principle be possible to recover the real-valued component by ‘phase correcting’ the data.
Thereby the complex vector would be rotated into the Mx direction, and an absorption mode
image of the magnetization vector would be available, as suggested bysome promising at‐
tempts (Bernstein et al., 1989, Bretthorst, 2008). However in general, due to phase imperfec‐
tions that are difficult to correct, it is convenient to use the absolute (magnitude) value of the
MRI signal, corresponding to the length of the complex vector. Such MRI images are pro‐
duced by taking the square root of the sum of squares of the real and imaginary components
of the measured magnetization vector. The phase of the complex vector, or the argument of
the complex vector, is obtained by evaluating the arc-tangent of the ratio of the imaginary
and the real components (see Fig. 5):

2 2( )xy x yS abs M M M= = + (6)

arg( ) arctan( )y
xy

x

M
M

M
j = = (7)

In general, the phase evolves linearly with the local magnetic field Bloc in a particular voxel
during the time between the excitation pulse and signal read out, i.e. the echo time, TE. At
the time of acquisition the phase is:

locB TEj gD = × × (8)

where γ is the gyromagnetic ratio (in units of radian/T/s) for the observed nuclear spins (see
Eq.2).

The phase evolution is defined as positive (clockwise) for increasing magnetic fields (para‐
magnetic shifts), and negative (counterclockwise) for decreasing magnetic fields (diamag‐
netic shifts). However this sign convention based on the physical torque effect on the
magnetic vector is not compatible with the mathematical sign convention of complex num‐
bers (see Fig. 2 and Hagberg, et al., 2010) and therefore often a negative sign is used in front
of the expression in [Eq. 8].
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3.2. Signal-to-noise ratio in magnitude and phase images

As we discussed above, the signal in the MRI detection system is acquired via two channels
that correspond to the real and the imaginary components of a complex number. The elec‐
tronic noise of each receiving channel has a Gaussian probability density function (PDF),
with zero mean and variance determined by fluctuations around this mean. The PDF of the
phase and magnitude noise are determined by the combined noise from both channels
(Gudbjartsson and Patz 1996). The magnitude values are always greater than zero, and
hence cannot have a zero mean. In presence of purely electronic noise, the noise in the mag‐
nitude image therefore follows the Rayleigh probability density function, while for SNR lev‐
els of 3 and above a Gaussian PDF is observed. The phase signal originating from pure
electronic noise takes on any value in the ±π range with equal probability according to a
uniform PDF (Eq. 9). As the SNR increases, the PDF of the phase signals evolve towards a
Gaussian shape (Fig. 6). Since these the magnitude and the phase signals have a common
origin in the real and imaginary components of the receiving channels, the SNR values are
interrelated. For high SNR values, the PDF of the phase is obtained from the magnitude sig‐
nal (Eq.9).

Figure 5. The MRI detection system subdivides the image information into a real and an imaginary component, corre‐
sponding to the Mx and the My components of the transverse magnetization. These components define a complex
vector and can be rearranged to form the length [Eq. 6] and the argument [Eq.7] of the vector, corresponding to the
MRI magnitude and phase signals, respectively. The red arrow indicates the area just above the frontal sinuses with
strong magnetic field variations, due to the difference in susceptibility between the air in the frontal sinuses and the
brain tissue.

Advanced Brain Neuroimaging Topics in Health and Disease - Methods and Applications100



Figure 6. Histograms representing the signal-to-noise probability density functions (PDF) for the magnitude (left col‐
umn) and phase (right column) signals. The following cases are shown. First row: with an SNR of zero (purely electron‐
ic noise), the magnitude values distribute according to a Rayleigh PDF, while the distribution of the phase values is
uniform. In row 2-4, we show how the shape of the PDF changes as we go towards greater SNR. At low SNR levels of 1
(2nd row) a Rician PDF is observed for the magnitude data, while at an SNR of 3 (3rd row) and 10 (4th row) the shape is
Gaussian. Above an SNR of 3, the phase signal also follows a Gaussian PDF, albeit with a more narrow shape, as the
standard deviation of the phase signal is the inverse of the SNR observed for the magnitude signal.
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ï >>
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(9)

These considerations evidence how the noise properties of magnitude and phase signals are
interrelated at high SNR levels. Although the theory by Gudbjartsson and Patz was devel‐
oped for an MRI image acquired at a single time point, their observations are also funda‐
mental for describing the magnitude and phase fluctuations that occur during an fMRI time
series, described in section 4 (see also Hagberg et al., 2008). Keeping these fluctuations as
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small as possible is important in fMRI, since the statistical T-values depend on them. Less
fluctuations lead to higher BOLD contrast-to-noise ratios and greater statistical T-values,
yielding an enhancement of the fMRI detection sensitivity.

3.3. The blood-oxygenation level dependent effect and the phase signal

The contrast in a GE-EPIsequence is generated by the signal evolution between a 90º RF ex‐
citation pulse and signal read-out (that is the echo time, TE). While the magnitude signal fol‐
lows an exponential decay, the phase is linearly accrued during TE (see Eqs. 5, 8). The BOLD
effect causesachange in the magnetic susceptibility difference between veins and the sur‐
rounding tissue. During the activated state, the oxygenation fraction Y is greater than dur‐
ing baseline states, and therefore the susceptibility difference is diminished. The effect of
BOLD on the magnitude signal isdriven by a change in the dispersion (variation) of the
magnetic field inside the voxel, while a change in phase is driven by a coherent shift (a net
change) of the magnetic field.

The magnitude/phase evolution during TE is influenced not only by the BOLD effect per se
but also by the vessel geometry and the spatial orientations of the vessels with respect to the
orientation of the static magnetic field of the scanner (see Eq. 10, Fig. 7). Ideally, only the
BOLD effect arising in the capillary bed close to the site of neuronal activation should be de‐
tected, however larger draining veins also contribute to the activation maps.

In order to calculate the phase variation during BOLD, let’s consider the simple case of a sin‐
gle vessel crossinga voxel. The vessel can be modelled as an infinitely long cylinder with a
different, blood-oxygenation and hematocrit dependent susceptibility than the surrounding
brain tissue. In this case, the signal depends on the orientation of the vessel with respect to
the static magnetic field of the scanner. Vessels oriented parallel to the field, do not ‘oppose’
the field as much as perpendicularly oriented vessels and hence produce a magnetic field
shift that is localized inside the vessel, while in the perpendicular orientation, the vessel‐
sproduce both extra- and intra-vascular effects. These are described by the following equa‐
tions (Boxerman et al., 1995):

( )

( ) ( )
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(10)

where Δχ0 is the susceptibility difference between the extra (ev) - and intravascular (iv) space
(in cgs units), Y the oxygenation level of the blood, Hct is the haematocrit level, B0 is the stat‐
ic magnetic field strength, R the vessel radius and r the distance from the centre of the vessel
cylinder, and θ, Ψ are the angles defined in Fig 7.
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Figure 7. Biophysical cylinder model for a single vessel placed with its length axis oriented parallel (A,D, symbol: =) or
perpendicular (C, F, symbol: ┴) to the external magnetic field, B0. B: The angles θ, Ψ and the distance from the centre of
the vessel, r, define the position for a point in space where a magnetic field is generated due to the blood-tissues sus‐
ceptibility difference, as described in [Eq. 10]. A,C: Simulated magnetic field map for a cylinder placed in the centre of
a sphere (first row: Δχ0=0.18ppm, hematocrit=0.4, oxygenation fraction Y=0.54). For a cylinder oriented parallel to the
field, no phase modulation occur in the extravascular space (the field inside the cylinder is visible as a blue spot in the
centre). For a cylinder oriented perpendicular to the external field, a cos2Ψ modulations occurs around the vessel. D,F:
Measured MRI phase images (Magnetic field strength: 3T, GE-EPI, TE=20ms) for a cylinder with higher susceptibility
than the surrounding water. The pattern corresponding to the dipole field is evident for the perpendicular orienta‐
tion. Unwanted background variations of the field are present in the measured but not in the simulated data.E: De‐
pending on the vessel orientation (= or ┴) with respect to the external field, diamagnetic or paramagnetic field shifts
can be observed.

In Fig. 7, phase images of a cylindrical vial containing a solution with higher magnetic sus‐
ceptibility than the solution contained in the surrounding, outer area are shown for a paral‐
lel and a perpendicular orientation, with respect to the static magnetic field.The greatest
extra-vascular effects are obtained for the perpendicular orientation, with a spatial cos2Ψ
modulation around the vessel, and a diamagnetic phase shift inside the vessel. The size of
the phase shifts will depend on the oxygenation fraction and on the geometrical factor, de‐
termined by the orientation of the vessels, as expressed by [Eq.10]. The expected phase val‐
ues that occur during the resting and active conditions of an fMRI study can be obtained by
straightforward calculations based on [Eq. 10]. For instance, during rest (when the oxygena‐
tion fraction is ca Y=0.54) the maximal field difference between the extra- and intravascular
space amounts to ±0.62μT at 3T and appears in the tissue surrounding a perpendicular ves‐
sel (extravascular space). This value corresponds to a phase shift as high as ±4.98 radian if a
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GE-EPI sequence with a TE of 30 ms is used. In presence of a BOLD response during the
activated state (Y=0.68) the susceptibility difference between the blood and the tissue dimin‐
ishes and therefore the maximal field difference becomes ±0.43μT (±3.45 radian). In the intra‐
vascular space of a parallel vessel, the field undergoes a diamagnetic shift and is therefore
reduced from 0.42 μT (3.37 radian) at rest to 0.29 μT (2.33 radian) during activation. Conse‐
quently, the expected BOLD induced field change is maximal in the extravascular space for
perpendicular vessels (±0.19μT, 1.52 radian), while for the parallel case it is greatest in the
intravascular space (-0.13μT, 1.04 radian). These observations are also in line with previous
work (Hoogenrad et al., 2001).

During an fMRI study the expected phase effect will be diminished due to the partial vol‐
ume effects that arise when the vessel diameter is smaller than the measured voxel size (see
Brainovich et al., 2010). In view of these phase shifts, Menon (2002) suggested that it should
be possible to identify voxels dominated by draining vessels parallel to the field, due to the
intravascular phase shift, while the contribution from perpendicular vessels should cancel
out, due to signal modulation in the extravascular space that is averaged out as a conse‐
quence of partial volume effects.

The cortical region that encloses the activated neurons is characterized by a dense capillary
network. Larger vessels that drain the activated region are more remotely located at the
brain surface (e.g. Keller et al., 2011). The network consists of vessels with a range of differ‐
ent radii, and diffusion effects must also be considered to quantify the effect of the magnetic
field distribution. This is not trivial to do and therefore calculations were initially done by
Monte Carlo simulations (Yablonskiy and Haacke 1994) before an analytical expression was
derived by Kiselev and Posse (1999, see Eqs. 5 and 25 in that paper). From these studies, it
emerges that the strength of the BOLD- induced magnitude signal depends on the spatial
vessel distribution, consistent with the fact that field dispersion dominates changes in the
magnitude signal. On the other hand, if the single vessel model is used for the phase signal,
positive and negative phase signals mutually cancel out for random vessel orientations,
such as those found in the capillary network, while the phase signals add together for or‐
dered orientations, as was recently explored in a simulation study (Chen and Calhoun,
2010).

These two models of the BOLD phase effect suggest that the interest of analyzing the phase
signal resides in the possibility to exclude voxels dominated by draining veins, since predic‐
tions based on the summation of magnetic field changes in single vessels cancel out (Hoo‐
genrad et al., 2001). A slightly different picture with regard to the BOLD effect and the
variation of the phase signal emerges if the concept of the ‘sphere ofLorentz effect’ is taken
into account (Durrant et al., 2003). Zhao et al., 2007 followed by Feng et al., 2009 showed by
theory and by experiments that an extended activated brain area actually gives rise to a co‐
herent phase shift. The sphere of Lorentz concept predicts the existence of two main effects
of the BOLD response: local field changes caused by the red blood cells, and a bulk magnetic
susceptibility shift which is further subdivided into a demagnetizing effect and a volume-
averaged magnetization change (Durrant et al., 2003). The volume-averaged effect depends
on the blood volume, the vessel geometry and the geometry of their ensuing magnetic field,

Advanced Brain Neuroimaging Topics in Health and Disease - Methods and Applications104



as well as the size of the susceptibility effect in vessels located in the tissue surrounding the
volume (Zhao et al., 2007). The spatial distribution of the phase effect that emerges from this
model corresponds to a magnetic dipole and, similarly to the single vessel case, it depends
on the geometry and orientation of the activated brain region with respect to the external
field (Fig. 8).

Figure 8. Simulation of the spatial pattern of the phase effect generated by the BOLD response in a brain area with an
elliptic Gaussian shape (contours of the region are overlaid on the phase images). The external, static, magnetic field,
B0 is applied along the Z-direction, and the phase effect is shown in three planes: XZ, YZ, and YX. Similarly to the case
of a single vessel, the phase effect depends on the orientation of the cortical regions with respect to B0. A. When the
longest axis of the region is oriented parallel to B0, a paramagnetic shift that increases the local field occurs. B. When
the longest axis of the region is oriented perpendicular to B0, a diamagnetic effect that tends to decrease the field is
generated.

Simulations of the BOLD effect that includes the sphere of Lorentz effect can be performed
by a three-dimensional Fourier transform of the magnetic field distribution (Marques and
Bowtell, 2005). Similar to the approach used by Feng et al. (2009), we performed such calcu‐
lations for the BOLD response in a cortical region with an elliptic Gaussian field distribution
described by:
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where ΔYcap is the change in oxygenation in the capillaries (0.08) due to BOLD, X, Y and Z
are the Cartesian coordinates in 3D space, FWHMi expresses the spatial extent of the area in
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terms of the full width half maximum value for the coordinates in the i-direction, where
i=X,Y,Z; and the other parameters are the same as in [Eq.10] and in Fig. 7. We varied the size
of the activated region between 5-40mm (FWHM of the shortest length axis) and the
strength of the BOLD response. Values for the BOLD induced magnetic field change were
close to those observed above for the single vessel model (± 0.05-0.25 μT). The results from
these simulations are shown in Figs. 8 and 9. We found that both the spatial extent of the
activated area and the strength of the BOLD response influence the size of phase change. For
instance, magnetic field shifts of ±0.1 μT lead to phase shifts in the range of 0.01-0.04 radian,
depending on the spatial extent of the region. As shown in Fig. 9, the greatest phase effect
was found in small areas with a strong BOLD response. The size of these expected phase
changes are thus about two orders of magnitude lower than those found for fully sampled
large draining vessels, despite similar size of the BOLD induced magnetic field change. This
fact highlights the difference between biophysical models.

With regard to the time evolution of the phase effect, studies have shown that it closely fol‐
lows that of the magnitude signal (Zhao et al., 2007). This observation is in agreement with a
common BOLD origin for both the phase and magnitude signals.

As we have seen, three differentbiophysical models for describing the phase signal changes
caused by the BOLD effect are available in the literature. The first modelis based onthe sig‐
nal behaviour in large draining veins, the second in capillary networks, while the third mod‐
el describes the BOLD phase effect caused by a spatially extendedcortical region. The spatial
pattern of the BOLD effect is different for the phase than for the magnitude images, but
from the literature we know that their temporal evolution is similar (Zhao et al., 2007; Feng
et al., 2009).

Figure 9. Simulations of the phase effect with positive (red) and negative (blue) sign generated by the BOLD response
in a brain area, with an ellipsoid Gaussian shape. As in Fig. 9, the longest axis is oriented along B0. A: Variation of the
phase effect with the spatial extent of the activated area (indicated as the FWHM of the shortest length axes, see Eq.
11 and Fig.8). The BOLD response is fixed (±0.10 μT). The phase effect is greatest when the size of the region is small,
but diminishes as the size of the activated region increases. B: Variation of the phase effect with the strength of the
BOLD responses. The spatial extent of the activated brain area is fixed (FWHM=10mm). The positive (negative) phase
increases (decreases) with increasing BOLD field changes. The arrow indicates equivalent points in Fig. 9 A and 9B
where the FWHM is 10mm and the BOLD response has a field change of ±0.10 μT.
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4. Unwanted phase effects and their removal

The phase value can be considered a fingerprint of the voxel averaged magnetic field. There‐
fore any effect that causes local or global dishomogeneities of the field leads to phase varia‐
tions in space. Furthermore, during breathing and motion, the phase will vary from scan to
scan in an EPI time series (Hagberg et al., 2008; Petridou et al., 2009). Since the expected
BOLD-related phase changes are weak, correcting all unwanted phase fluctuations is of ut‐
most importance.

MRI phase images are characterized by phase wrapping effects dueto an inherent limit of
the MRI detection system: the range of phases that can be detected is limited to ±π and
therefore phase wraps occur if this limit is exceeded. The true underlying phase value is
thus equal to the observed phase ± an integer number of revolutions on the unit circle:

true obs 2 kj j p= ± × (12)

where k can take on any integer value. Such phase wraps occurin space and in time (Hag‐
berg et al., 2008). For instance, close to air-tissue borders where the magnetic susceptibility
difference is important, and therefore the phase value also varies greatly, especially if long
TE times are used for the measurements, leading to phase jumps in the vicinity of such air-
tissue borders (see [Eq.8], and Fig. 5). Temporal phase wraps may also occur in fMRI time
series, as the magnetic field may vary with time due to physiological and scanner fluctua‐
tions.

4.1. Physiological and scanner noise in phase fMRI images

Unwanted field non-uniformities can be subdivided into static and dynamic magnetic sus‐
ceptibility differences considering the duration of a 2D image acquisition and they are
caused both by the subject and by the scanner (see Hagberg et al., 2008). Static effects are
caused by factors that are considered to remain unchanged during the acquisition of a single
image, while dynamic effects are caused by factors with a varying influence from slice to
slice. Examples of static effects are imperfect shimming and slowly evolving field drifts, ex‐
amples of dynamic effects are breathing, motion and system vibrations.

The magnetic susceptibility varies greatly across the brain, due to air-tissue bordersas well
as due to more local susceptibility differences between the vessels,the sub-cortical struc‐
tures, the grey and the white matter (Collins et al., 2002, see also the strong phase variations
in brain regions just above the frontal sinuses in Fig. 5). When the brain is placed in an exter‐
nal magnetic field, these variations in magnetic susceptibility lead to field dishomogeneties.
The scanner hardware compensates for some dishomogeneities by a procedure known as
‘shimming’, i.e. we try to make the field more uniform by activating the shim-coils. How
good the shim can get depends on the hardware, and on some clinical scanners only linear
correction terms are available, while other commercial systems are capable of performing
corrections up to the 2nd order, therefore higher order field imperfections remain, despite the
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shimming procedure. Since the shim-values are generally set at the beginning of the fMRI
experiment they do not compensate for field variations during scanning caused by respira‐
tion, that modifies the susceptibility difference between the lungs and the brain, see Ray et
al., 2000, and by small micromovements of the brain during the respiratory and cardiac cy‐
cles (Le and Hu 1996; van Gelderen et al., 2007). These effects can be noticeable also in the
fMRI magnitude signal (see Fig. 10), and must therefore be regressed out if more subtle ef‐
fects are to be studied, like for instance in resting state studies. New hardware develop‐
ments may in the future make such corrections unnecessary. One possibility is to change the
shim-currents on-the-fly during the fMRI experiment, so that the effects caused by respira‐
tion are compensated (van Gelderen et al., 2007). Another possibility is to use magnetic field
monitoring during image acquisition (Barmet et al., 2009). This information can either be
used for image post-processing or for re-calibration of the shim-currents (Vannesjo et al.,
2012).

Not only the subject, but also the scanner contributes to static effects, linked with the afore‐
mentioned imperfect shimming issue and slow magnetic field drifts. Time-dependent dy‐
namic effects are caused by helium-pump related system vibrations, and concomitant field
gradients arisingfrom Maxwell effects, eddy-current fields, and gradient non-linearities
(Hagberg et al., 2008). In a typical fMRI time-series, the scan-to-scan variability of most of
these factors can be neglected, except for system vibration, magnetic field drift and heating
of the gradient system (Foerster et al., 2005).

4.2. Removal of unwanted phase effects

The unwanted phase effects that originate from different sources can be removed by differ‐
ent post-processing approaches that will be briefly described. We exemplify the effects of
these methods on some data sets we acquired (Hagberg et al., 2008; 2012).

Phase wraps, defined in [Eq. 12], can be efficiently removed by performing phase unwrap‐
ping. Unwrapping is a straightforward process if it is applied across the time dimension, in‐
dependently for each voxel in the fMRI time series (Hagberg et al., 2008). Alternatively,
spatial phase unwrapping can be applied (e.g. Cusack and Papadakis, 2002; Jenkinson,
2003). Finally, the reference phase method has been proposed, that effectively removes
phase wraps by referencing subsequent phase images to the first phase image acquired in
the fMRI time series (Tomasi and Caparelli, 2007).

Logically, sources of unwanted phase effects must be unambiguously identified and charac‐
terized before removal. Recent studies have shown, that the dominating source of phase var‐
iations during fMRI time courses are induced by respiration and the cardiac beat (Petridou
et al., 2009; Hagberg et al., 2008; 2012). The importance of respiratory and cardiac effects on
the phase data becomes clear from Fourier analysis of the fMRI time series data (Fig.10). Af‐
ter spatio-temporal phase unwrapping, the physiological noise components are slightly less
pronounced than after temporal unwrapping alone, while the reference phase method
seems more efficient for removal of the respiratory component. The magnitude data is also
affected by respiration and the heartbeat, and a very popular method for removal of physio‐
logical noise from magnitude data is RETROICOR (Glover et al, 2000). It uses the respiratory
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and cardiac traces to create regressors for noise removal. The benefit of this approach for
phase fMRI time series acquired at 7T has been demonstrated (Petridou et al., 2009).

For long it has been known that information regarding respiration and heartbeat can be ex‐
tracted from the phase value of the central k-space point (Hu et al., 1995; Le and Hu 1996).
One possibility is thus toperform noise regression based on the phase of the central k-space
point, instead or in combination with RETROICOR (Hagberg et al., 2012).

Other techniques specifically aim to compensate the scan-to-scan off-resonance effects in k-
space. Available techniques are the DORK (acronym for dynamic off-resonance in k-space)
and TOAST (temporal off-resonance alignment of single-echo time series technique) meth‐
ods. In DORK, the global field-changes are estimated by the phase evolution of the central k-
space point between subsequent TRs and then each read-out line is corrected in k-space
assuming a linear phase accrual in time (Pfeuffer et al., 2002). In TOAST, phase rewinding is
performed based on a voxel wise estimate of the B0 changes from the smoothed difference
between the phase at each single time point and the average phase in the entire fMRI time
series (Hahn et al., 2009). In the next paragraph, we will show how these methods compare
in terms of eliminating physiological noise.

Finally, an alternative method that we have explored is based on spatial high-pass filtering.
In the human brain at 3T, we observed that the unwanted phase effects were characterized
by a low spatial frequency (Hagberg et al., 2012). This characteristic is present also for phan‐
tom measurements as can be seen in Fig. 7. We found that the phase fluctuations became
similar to the ones observed in magnitude data in healthy human subjects,after application
of Gaussian filters that removed all components extending 20mm or more (Hagberg et al.,
2012). Fourier analysis also shows that the scanner Helium pump artefact at 2Hz and the
respiratory artifact are completely removed by spatial filters, while some cardiac pulsation
effects remained (Fig. 10, Hagberg et al., 2012).

The efficiency of each technique for removal of phase instabilities can be evaluated and com‐
pared with results from the magnitude data. Krueger and Glover (2001) proposed a model
that quantifies the available temporal stability of magnitude data, tSNR based on the factor
λM that expresses the proportionality between the magnitude signal and the physiological
noise. Basically this model implies that the available temporal signal-to-noise level reaches a
maximum limiting value for high signal-to-noise-ratios at a single time point, SNR0, calculat‐
ed from the average signal in each voxel across the GE-EPI timecourse, S, divided by the
Rayleigh corrected noise level, N:
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In accordance with the Gudbjartsson and Patz relationship between the noise in magnitude
and phase images (Eq. 9), we can derive three models for the temporal fluctuations in phase
images. In the first model, the noise components induce greater fluctuations in the phase
than in the magnitude images, in the second model the contributions are similar in both im‐
age types and in the last model the noise is less pronounced in phase than in magnitude im‐
ages, following the relationship (Hagberg et al., 2008):

Figure 10. Fourier analysis of the heart beat and the respiratory cycle (A) and their relation to the MRI signal in magni‐
tude (B) and phase (C-F) images. A: Respiration occurs between 0.12 and 0.25 Hz, and the first and second harmonics
of the heart-beat around 1.2 and 2.4 Hz, respectively. B: In magnitude images, respiration induced fluctuationscause
the typical 1/f decrement at low frequencies, but instabilities are also prominent around the first cardiac harmonic.
Note the relative absence of disturbances around 2Hz, caused by the scanner Helium pump and visible in most of the
phase time-series. Results are shown for gray matter (solid line), white matter (dotted line), and CSF (dashed line). C:
temporal unwrap and detrending of the phase time-series (Hagberg et al., 2008); D: spatial unwrapping followed by
temporal unwrapping and detrending, (Hagberg et al., 2008); E: Reference phase method (Tomasi and Caparelli,
2007); F: k-space filtering (Hagberg et al., 2012).
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where λM< λφ; λM= λφ; or λM> λφ, respectively for the three noise models.

The tSNR obtained for the magnitude signal and 1/tSDφ images obtained after different
phase processing methods are shown in Fig. 11 and illustrates that the phase noise is gener‐
ally greater than the magnitude noise, but can be efficiently reduced by adequate post-proc‐
essing methods. (Fig. 11, see also Hagberg et al., 2012). Spatial high-pass filtering currently
represents the best approach for removal of unwanted phase fluctuations. If adequately
adapted, similar or even reduced λφ values are obtained for the phase compared to magni‐
tude data. In general, the amount of filtering must be adapted to the field strength of the
scanner, the echo time and voxel size of the GE-EPI sequence. For instance, at 3T, a TE of
30ms, and a voxel size of 3x3x3mm3 we found that a Gaussian filter with a 20mm FWHM
suffices to reach the a similar stability in both phase and magnitude time series (Hagberg et
al., 2012). Filters with a FWHM close to the voxel size, reduces the phase noise to less than
half the magnitude noise. For most other post-processing methods, including spatio-tempo‐
ral unwrapping, regression based on the phase evolution central k-space point (NVR), RET‐
ROICOR, and TOAST, the phase noise was always greater than the magnitude noise.

Figure 11. Temporal stability in magnitude (A) and phase (B-F) images. The phase images were post-processed by dif‐
ferent methods prior to calculation of the inverse of the standard deviation of the phase across the time series (see Eq.
14). (B) RETROICOR; (C) TOAST; (D) noise regression based on the phase of the central k-space point; (E) combined
approach based on both thecentral k-space point and RETROICOR; (F) : k-space High pass filtering of the phase data
by a Homodyne filter based on a Gaussian kernel in k-space (Hagberg et al., 2012).
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5. On the use of phase information in fMRI studies

The phase signal possesses many interesting features that may be used to extract valuable
information without the need for additional scanning time. The question that remains is
howthe phase information best is used in order to improve currently available standard
fMRI methods. At the time being, no clear-cut answer emerges in the literature. Ongoing
work will probably give us an answer in the near future. What follows is a brief overview of
some possible approaches that are currently being explored. In the last paragraph, we will
also show an example of the outcome of an fMRI analysis performed for both the magnitude
and the phase signals within the framework of the standard General Linear Model, using
different phase post-processing methods.

We have seen how unwanted phase fluctuations due to respiration or heartbeat are well
visible in the phase data. The phase can thus be used to identify and characterize the tempo‐
ral evolution of different noise sources. This information can be used to remove contribu‐
tions from common noise sources from the magnitude data sets.

We have seen how the BOLD response influences the phase signal as described by different
biophysical models. The dipole of the ensuing magnetic field effect is manifest at different
length-scales, depending on whether draining veins or microvascular networks drive the re‐
sponse. Indeed, a phase effect arises both at the level ofsingledraining vessels with diame‐
ters of 100-500μm and inextended cortical regionswith BOLD activation. Therefore, the
phase signal may be used to exclude single voxels dominated by draining veins (Menon,
2002) or to potentiate the statistical fMRI analysis based on magnitude data (Rowe and Lo‐
gan, 2004).

5.1. Improving the magnitude signal: noise reduction

Physiological noise is a known limiting factor in fMRI studies (Krüger and Glover, 2001).
Improving temporal stability is desirable, as it directly influences the statistical T-values. As
pointed out above, studies show that the phase evolution at the centre of k-space in fMRI
time series closely reflects field variations due to respiration and the cardiac beat (Hu et al,
1995, Le et al., 1996). Therefore the phase signal can be used as a proxy for physiological
(and scanner) fluctuations. The magnitude signal could then be de-noised by simply regress‐
ing out unwanted fluctuations (Hagberg et al., 2012). This kind of use of the phase data may
thus improve the outcome of fMRI analysis based on magnitude data.

The improvement in temporal stability of the magnitude signal was evaluated for different
post-processing strategies (Hagberg et al., 2012). The standard RETROICOR method is
based on signal regression (Glover, 2000). The onset of respiration and heart beat is obtained
from measurements with a respiration belt and a pulse oxymeter synchronized to the ac‐
quisition of the fMRI time series. A set of 8 or more regressors are then created and used for
signal regression and de-noising of the magnitude signal. In our approach, that we termed
phase based nuisance variable regression (NVR, Hagberg et al., 2012), we used the phase
evolution in the centre of the k-space as the only noise regressor. We also evaluated the pos‐
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sibility to combine the RETROICOR noise regressors with the regressor based on the phase
evolution in central k-space (Table 1 and Fig. 12). We found that the temporal stability of the
magnitude fMRI time course improved by 5% after NVR, which was slightly less than RET‐
ROICOR (Hagberg et al., 2012). It should be noted that RETROICOR is based on the cardiac
and respiratory traces that must be acquired in synchrony with the fMRI time course, while
NVR can be applied without this information. In addition, we found that a combination of
RETROICOR and phase-based magnitude correction could improve the overall signal stabil‐
ity more than RETROICOR alone.

Tissue Raw magnitude data RETROICOR NVR
RETROICOR and NVR

combined

Gray matter voxels 0.0102±0.0042 0.0083±0.0041 0.0093±0.0041 0.0079±0.0039

White matter voxels 0.0056±0.0022 0.0040±0.0024 0.0050±0.0022 0.0035±0.0026

CSF voxels 0.0199±0.0076 0.0159±0.0066 0.0176±0.0065 0.0150±0.0058

Table 1 Stability in magnitude images in terms of the physiological noise parameter λM (see Eq. 13) for raw images
and after noise-regression.

Figure 12. Increase in temporal stability of the magnitude signal for different magnitude post-processing methods.
The data shown is the percent increase in temporal signal-to-noise ratio with respect to no post-processing for (A)af‐
ter NVR; noise regression based on the evolution at the centre of k-space; (B) after RETROICOR; and (C) after a com‐
bined approach based on both NVR and RETROICOR methods. Data were obtained during a 5min acquisition of
resting-state fMRI data. A sagittal plane showing the results for all acquired transverse slices is shown.

5.2. Statistical analysis methods incorporating the phase effect

Basically, two methods that incorporate phase signals in the fMRI analysis have been sug‐
gested. The first method aims at excluding those voxels from the analysis where the phase
changes are great. These voxels are most probably related to draining veins (Menon 2002).
The second method is the constant phase model of Rowe and Logan (2004) that extends the
General Linear Model GLM to complex values. This model was further refined by Rowe
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(2005) who combined the real and the imaginary terms of the MRI signal into a single matrix
expression. The General Linear Model which is used to evaluate magnitude images is:

( )tabs y X b h= × + (15)

For complex numbers, GLM can be rewritten as (Rowe, 2005):
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where yt is the complex valued fMRI time course, φt  is the phase at each time point, x, X are
the design matrices for the complex vector and the magnitude signals, respectively; βt

re, βt
im,

β the parameter estimates obtained after model fitting; and ηt
re, ηt

im, η the noise of the real,
imaginary and magnitude signals.

Examples of using this model indicate the difficulties that may arise when assessing fMRI
results (Rowe 2005). Indeed at least three sets of maps showing activated voxels can be iden‐
tified, dependent on which signals show significant activations: magnitude only (MO),
phase only (PO), or activations in both magnitude and phase images (M&P). Considering
the dipolar pattern that the BOLD response has (see Fig. 8), both positive and negative
phase changes occur. Therefore we actually end up with as much as 5 sets of activation
maps: MO; PO_positive; PO_negative, M&P_negative; M&P_positive (Rowe, 2005; Arja et
al., 2010). At the time being, no method is available that brings the analysis of these maps
one step further, so that a single activation map showing where in the brain activation takes
place with a high sensitivity and specificity, is available. For instance, it is not clear what a
PO activation which is visible in the phase but not in the magnitude images actually means.
As we have seen in the earlier paragraphs, such an effect could be generated by a draining
vessel, or by the sphere of Lorentz effect of the activated cortical patch, or perhaps by an
unwanted phase effect that was not completely removed prior to analysis. It is desirable that
methods that allow us to combine the activation maps are developedin the future. Such an
approach could be based on the available biophysical models for the BOLD effect in phase
images, perhaps even by performing quantitative susceptibility mapping (Balla et al., 2012),
and may in the future bring us closer to the goal of correctly assigning the cerebral networks
where the neuronal activity has its origin at the highest specificity and sensitivity.

5.3. On the use of phase images in an fMRI study

In the following, we will show an example of an fMRI study that incorporates both phase
and magnitude images. The goal of the analysis was to investigate possible global phase ef‐
fects according to the models that describe the phase signal changes caused by the BOLD
effect. In order to make sure that we adequately handle unwanted phase effects, different
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approaches for removal of these were explored and their impact on the final activation maps
were investigated.

Five healthy right handed subjects (three females and two males, 24-27 years) volunteered to
participate in the fMRI study (approved by the local IRB). They performed index finger tap‐
ping in synchrony with a visual stimulus flashing at 1.7 Hz, in a block design paradigm: left
hand tapping for 18s, 9s rest; right hand tapping for 18s, 9s rest; repeated 4 times. Complex
valued BOLD fMRI time series were collected (Gradient echo EPI, 75 volumes, TR=3s, TE=39
ms, slice thickness: 3 mm and a 50% gap between 24 slices, bandwidth: 3396 Hz/px, voxel
size: 3 x 3 x 4 mm3). Phase wraps and unwanted phase effects related to spatial static mag‐
netic field gradients were removed by three different methods: a) spatio-temporal phase un‐
wrapping, b) pixel wise noise regression based on the phase of the central k-space point and
c) spatial high-pass filtering. For the spatial filtering method, a homodyne k-space approach
was used based on the following three window functions: Hanning window, Gaussian win‐
dow (with three different window widths: 5, 10 and 20mm) and a spline window, that was
adapted to the magnitude k-space data of each image slice and each timepoint in the fMRI
time series (Hagberg et al., 2012). Normalization to the MNI brain space was based on the
magnitude image and subsequently applied to the phase images, and conventional spatial
smoothing of the pre-processed images was applied to both phase and magnitude images,
prior to statistical analysis using SPM5. Statistical analysis was first performed at the single-
subject level, then the contrast images were included in a second-level group analysis to re‐
veal the common activation pattern. We thus did not specifically use the Rowe and Logan
model in [Eq. 16], but could rely on standard statistical analysis within the framework of the
General Linear Model, using standard statistical methods.

Activation patterns for magnitude and phase images achieved after post-processing and
statistical analysis are shown in Fig. 13. No significant activations were found in the phase
data after a) spatio-temporal unwrapping or b) phase-regression. Only after post-processing
by c) spatial homodyne high-pass filtering, significant activation patterns were obtained.
Voxels with significant magnitude changes were located in the primary motor cortex. Some
of these voxels also showed significant positive changes of the phase, however most voxels
with a significant phase effect were located outside M1. In general, the parameter estimates
for the phase signal were smaller than for the activations revealed in the magnitude data,
leading to lower statistical Z and T-values (Table 2). The T-values for the magnitude images
reached levels of 15, while the T-values for the phase data depended on which spatial homo‐
dyne window function that had been used. Satisfactory values of the statistical T-value (≥ 8)
were obtained with the Homodyne approach using a Hamming window and a Gaussian
function with FWHM=20mm, which most probably removes all unwanted phase effects at
this field strength and for this echo time (Hagberg et al., 2012). The statistical parametric
maps (SPMs) achieved with three of the five filters could be thresholded with p<0.001 (un‐
corrected for multiple comparison). The other two sets of data were thresholded with p<0.1
uncorrected, in order to reveal the significant activations (Fig. 13).
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Figure 13. Activation patterns for a motor task obtained from a) magnitude (M) and b-f) phase (P) images. Unwanted
phase effects were removed by five different homodyne (spatial high-pass) filters: b) Hamming window; c) Gaussian
20mm; d) Gaussian 10mm; e) Gaussian 5mm and f) k-space spline window. The statistical maps have been threshold‐
ed at a statistical significance level of p<0.001(uncorrected for multiple comparisons). Color bars indicate statistical T-
value ranges.

Phase

Cont # voxels in cluster Tvalue Zvalue p-value MNI coordinates

Hamming n=32 Pos

Neg

Clmax 659

85

8.57

5.84

5.08

4.16

pu<0.001

pu<0.001

34, -26, 46

38, -6, 42

Gauss FWHM

20mm

Pos

Neg

Clmax 792

92

8.04

5.74

4.93

4.11

pu<0.001

pu<0.001

32, -26, 48

38, -6, 40

Gauss FWHM

10mm

Pos

Neg

Clmax 841

Clmax 238

7.80

5.38

4.86

3.96

pu<0.01

pu<0.01

42, -20 22

38, -6, 44

Gauss FWHM

5mm

Pos

Neg

Clmax 1064

Clmax 381

6.61

5.02

4.46

3.79

pu<0.01

pu<0.01

34, -26, 44

-40, -30, 52

k-spline filter Pos

Neg

Clmax 606

Clmax 213

8.62

5.28

5.10

3.90

pu<0.001

pu<0.001

42, -20, 18

-40, -30, 42

Magnitude

Raw data Pos Clmax 950 15.06 6.37 FWE=0.5 52, -14, 54

Table 2 Results obtained in a second level analysis. T and Z statistical values and size of the activated clusters
(agglomerate of activated voxels) for magnitude and phase images are reported. Corresponding p-values and
Montreal Neurological Institute (MNI) coordinates of their centre are shown for positive (Pos) and negative (Neg)
phase changes, and for the positive magnitude activation.
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After identification of voxels with significant signal changes in the second-level group anal‐
ysis, the timeseries were extracted from these voxels for each subject. In Fig. 13, the extract‐
ed phase and magnitude timeseries, in brain regions with significant, stimulus correlated
signal changes, are shown. In agreement with the work by Zhao et al. (2007), the time evolu‐
tion of the phase and magnitude signals closely follow each other. The maximal change of
the magnitude signal is 1-2% while the maximal phase change is 0.005-0.010 radians. The
contrast-to-noise ratio was smaller for the phase than the magnitude data, both for the nega‐
tive and for the positive phase changes. With respect to the size of the observed phase
changes these were in agreement with those found for the simulated data (Figs. 8 and 9).
The size of the activated clusters was 1000 voxels or less, corresponding to a region with an
extension (FWHM) of 12mm. For this size, the observed phase changes of 0.005-0.01 radian
would correspond to a diamagnetic field shift of ca 0.05-0.10 μT or less, which in turns cor‐
responds to a change in the oxygenation fraction of ca 0.04-0.08 in a capillary network.

Figure 14. Timeseries extracted from brain regions with significant, stimulus correlated signal changes in three differ‐
ent subjects (SS, BM, and OF). Positive (left) and negative (right) phase signals are shown, overlaid on the magnitude
signal (Amp, green). The phase signal clearly has a lower contrast-to-noise ratio than the magnitude signal. The tem‐
poral evolution of the phase and magnitude timeseries are similar.

This preliminary study suggests how the phase information can be incorporated into the
fMRI analysis. In a previous study, (Hagberg et al., 2008) we showed that it is possible to
identify voxels with large phase changes in draining veins, by strong positive and negative
phase changes close to the brain surface, where the largest vessels are found (Menon 2002).
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In the present study we used the same set of data but with a different post-processing ap‐
proach, that included phase post-processing by Homodyne high pass filtering followed by
normalization to a standard brain space and spatial smoothing of the final images. This ap‐
proach allowed to remove contributions from strong positive and negative phase changes in
draining vessels and enabled the detection of quite subtle phase changes. These results are
consistent with a BOLD response in an extended brain area that generates a magnetic dipole
effect (Durrant et al., 2003; Zhao et al., 2007).

6. Conclusion

Functional MRI methods based on the evaluation of magnitude image data may benefit
from the inclusion of the information conveyed by the phase images. For instance, it is possi‐
ble to directly improve the quality of the magnitude data by noise regression derived from
the phase signal. In order to reveal subtle BOLD related activations in phase images, the
many unwanted phase effects must first be accounted for. Spatial high-pass filtering that re‐
moves the spatially slowly evolving B0 signal components currently represent the best ap‐
proach for achieving this goal. We show that phase changes consistent with a dipolar
activation pattern caused by an extended cortical region can be detected. Future work must
address the question of how the BOLD related phase activation patterns can be incorporated
in the statistical analysis pipeline, in order to improve the specificity and the sensitivity of
fMRI.
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