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1. Introduction

The primary indicator of brain activity in the functional Magnetic Resonance Imaging (fMRI)
technique is known as the blood oxygenation level dependent (BOLD) responses, which
derives from the hemodynamic response of the local blood vessels recorded throughout the
brain. The goal of this review is to describe new approaches to the estimation of the neural
signals underlying the BOLD signal. A proper understanding of the metabolic pathway
underlying the fMRI BOLD signal is a necessary precursor to an analytic capability for neural
signal estimation from the BOLD waveforms. Any such estimation must be based on a model
of the known neural population dynamics underlying the BOLD metabolic signal generation,
which may be progressively refined as more information becomes available about both neural
response characteristics and the metabolic cascade. Given adequate signal/noise ratio, it is
possible to develop approaches that overcome the temporal limitations of BOLD signal and
are able to reveal relevant properties of the underlying neural signals. This analysis can provide
a direct linkage between the live assessment of the functioning brain and the direct neuro‐
physiological recordings in other species.

FMRI analysis techniques for estimating the BOLD signal typically employ the Generalized
Linear Model (Boynton et al., 1996), which incorporates the convolution approach to the
estimation of the underlying neural signal. Convolution is based on the assumption of a unitary
BOLD waveform kernel that generates the straightforward prediction of the BOLD response
waveform for any stimulus type or duration in any brain area. In fact, however, major
deviations from a standard BOLD waveform may be found, even in the same cortical regions,
for variations in stimulus conditions. D’Avossa, Shulman & Corbetta (2003), for example,
reported strong differences in waveform when the response to the motion or color of a cue/
stimulus pairing was modulated by attention. Such local waveform differences most likely
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derive from differences in the neural signals driving the BOLD activation, since the metabolic
and hemodynamic processes that mediate the paramagnetic signals should be invariant on the
scale of typical voxel dimensions within a given cortical region.

The BOLD signal measured by fMRI has low temporal resolution (0.5 – 5 s) relative to other
methods for mapping human brain function (such as high-density EEG analysis). Estimation
of single parameters of the BOLD waveform, such as response delay alone, can improve the
temporal resolution for the neural signal delays to 100 ms or better for narrowly targeted brain
regions (Menon, Luknowsky & Gati, 1998; Henson et al., 2002) but this requires the assumption
that the BOLD signal has a unitary waveform, which is often not the case (Aguirre et al.,
1998; D’Avossa, Shulman & Corbetta, 2003; Handwerker, Ollinger & D’Esposito, 2004; Likova
& Tyler, 2007, 2008; Tyler & Likova, 2009). Even minor deviations from a stable waveform
violate the assumptions of such single-parameter analysis and invalidate the delay measure.
A more advanced approach to neural signal estimation is therefore needed.

2. The chain of metabolic processing

Although much effort has gone into the analysis of the temporal dynamics of the BOLD signal
as a proxy for the underlying neural activity that elicits it, the link between neural activity and
the hemodynamic response is nevertheless indirect, involving a chain of metabolic processes
mediated by the astrocytic glial cells in the cerebral cortex. Here, we focus on the role of the
metabolic pathways mediated by the glial cells in coupling the neural activity to the BOLD
responses in the blood vessels, and the consequent implications for the processes governing
the fMRI BOLD dynamics.

In general terms, the stimulus impinging on the subject generates a sequence of neural
responses starting with the transduction into a neural signal within the sensory receptors. This
signal then propagates to the brain and activates various populations of neurons within the
voxels being analyzed by the fMRI technique (Logothetis, 2003). For instance, the neural signals
arriving from the visual pathway generate synaptic activation of the populations of neurons
in the primary visual cortex. This synaptic activation generates an energetic demand for the
restoration of the neurotransmitter molecules carrying the activation signals across the
synapses. The chain of metabolic processing progresses from the neural events through the
metabolic demand mediated by the glucose/lactate cycle in neighboring astrocyte glial cells to
the processes of oxygen delivery by the adjacent arterioles and capillaries that is detected by
the imaging technology. The first element in this metabolic chain is the local astrocyte endfeet,
which provide glucose to the neuron and replenish its supply by an ATP metabolism, fueled
by diffusion through the astrocyte cytoplasm from their endfeet connections to neighboring
blood vessels (Magistretti & Pellerin, 1999; Magistretti, 2009). Thus, the integrated metabolic
demands are met primarily by the astrocytes, which integrate the required energy consump‐
tion over time and space and make a complementary metabolic demand on the adjacent
vasculature.
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In detail, the pathways are complex, involving lactate, glucose and glycogen metabolic
mechanisms, mediated by both intracellular astrocyte and supplementary extracellular
transport (Dienel & Cruz, 2008; Gandhi et al., 2009) but the connection between the local
glucose metabolism close to the synapse and the oxygen-based hemodynamics in the blood
vessel remains unclear. Three hypotheses for this neuro-hemodynamic coupling may be
advanced (see Fig. 1), although all three remain to be tested:

• aerobic  glucose  metabolism.  This  is  the concept  of  a  direct  coupling between the neural
glucose metabolism and the vascular oxygen supply, in which the neural metabolism is
supported by oxygen transported from the blood vessels either within the encapsulat‐
ing  astrocytes  or  through  the  extracellular  cytoplasm  (having  passed  through  the
astrocytic  sheath)  to  reach  the  site  of  the  neural  synapses  and provide  the  oxidative
metabolism of the glucose to reconstitute the ATP used in the neural response. Studies
in rat cortex have demonstrated a linear relationship between neural activity, glutamater‐
gic neurotransmitter flux and the cerebral rate of oxygen metabolism (Hyder et al., 2002;
Smith et al., 2002). Since cells are predominantly linear summators of the excitatory and
inhibitory  transmitter  release  across  their  synaptic  population,  the  energetic  demand
driving the BOLD signal is most closely coupled to the net transmitter signal imping‐

Figure 1. The astrocytes as the substrate for the neurovascular coupling of the neural metabolism. (From Hyder et al.,
2006, with permission).
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ing on the cells, and hence to intracellular potential in the cells. The problem with this
hypothesis is that aerobic metabolism is a process with a time constant of the order of
minutes (Margaria et al., 1933), which is too slow to account for the 5 s time constant of
the BOLD response, despite its high efficiency.

• anaerobic glucose metabolism. This is the concept that the entire neural metabolic process is
based on anaerobic glucose delivery from the blood vessel, and that the variation in the
oxygenation fraction of the hemoglobin is an epiphenomenon. On this hypothesis, the
metabolic demand at the site of the neural synapse generates a signal in the astrocytes to
release nitric oxide in the filopodia (endfeet) wrapping the arterioles, stimulating an increase
in the arteriolar volume with a consequent increase in the proportion of oxyhemoglobin in
that region of tissue. The ~5 s time constant of decay of the nitric oxide in the presence of
hemoglobin (Hakim et al., 1996) meshes well with that of the BOLD response dynamics. The
nitric oxide release signal is presumably mediated by a calcium wave traveling ‘antidrom‐
ically’ through the astrocyte (Bezzi et al., 1998; Koehler et al., 2006), with its diffusion time
accounting for the 1-2 s onset delay in the onset of the BOLD signal.

• anaerobic stimulation of the combined metabolic pathway. This is a mixed concept in which the
anaerobic metabolic demand from the neural glucose metabolism stimulates the nitric oxide
(NO)-mediated arteriolar dilation (Burke & Bührle, 2006; Kitaura et al., 2007) with the
consequent increase in both glucose and oxygen transport into the astrocytes (and extrac‐
ellular cytoplasm). On this concept, the slow diffusion of the oxygen and glucose molecules
to the synaptic sites is irrelevant to the BOLD response time course. The critical factor is that
the metabolic demand generated by the neural glycolysis is fast enough to elicit an NO signal
to the arterioles that, together with the NO decay time constant, generates an arteriolar
volume time course compatible with the measured BOLD dynamics. On this interpretation,
the question of how long the transported products take to reach their metabolic targets, to
provide the needed aerobic recovery from the anaerobic depletion, is inaccessible by the
BOLD signal probe. It can only discriminate the slower events resulting from the arteriolar
volume changes.

Thus, the most likely basis of the metabolic demand driving the cortical BOLD signal is the
energetic load deriving from the total conductance changes in the postsynaptic membrane
generated by a range of processes subsequent on transmitter release at the synaptic inputs to
each neuron. The summed metabolic demand in the nexus of active cortical neurons adjacent
to a capillary forms the drive for the metabolic response in that region of cortex. Hence, the
transmitter release is tightly coupled to the activation of the post-synaptic receptors on the
recipient cell membrane and consequently to the energetic demands of the membrane receptor
activation (and to a lesser extent to the subsequent recycling of the transmitter molecules). The
majority of these energetic demands are met by the conversion of glutamate to glutamine in
the neighboring astrocytes (Sibson et al., 1998, 2001; Rothman & Schulman, 1998). The
glutamine is then taken up by the neurons for reconversion to glutamate for use as a trans‐
mitter, releasing energy within the neuron in the feedback loop.
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3. The time course of astrocytic responses

A key factor in understanding the role of astrocytes in the metabolic pathway supporting
neural activity is their time course. It may be emphasized that the astrocyte metabolic processes
are slow relative to the intracellular signal dynamics, as are the processes of hemodynamic
oxygen supply. The time constant of a biological process may be defined as the unit area of
the response to a sufficiently brief input event (or, equivalently, the unit area of the temporal
derivative of the response to a step input.) The time constant of the astrocyte responses at the
cell body is known to be of the order of several seconds (Kelly & van Essen, 1974; Filosa, Bonev
& Nelson, 2004; Metea & Newman, 2006). The hemodynamic response of the blood vessels to
expand in response to the neural metabolic demand is mediated by control of the arteriole
diameter with the enveloping astrocyte endfeet (Magistretti & Pellerin, 1999; Hyder et al.,
2006; see Fig. 1) with a very similar time course to that of the slow astrocyte responses that
must underlie the observed hemodynamics. The post-neural processing stages are often
modeled as a linear hemodynamic response kernel convolved with the presumed neural
signal. However, this approach overlooks the key role of the pre-hemodynamic processes of
the glial and other intermediaries as just described. To reflect the contributions of these
intermediary processes, therefore, we will refer to these as the ‘metabolic response kernel’
(MRK) incorporating both the glial and hemodynamic components of the metabolic recovery
processes.

4. The form of the metabolic response kernel

The time domain approach of the present analysis allows the extraction of the maximum
possible information about the temporal evolution and any processing nonlinearities of the
neural signals underlying particular BOLD activation profiles. The analysis in the following
sections reveals that much information about the neural response properties is reflected in the
BOLD signals, even if the time-resolution is insufficient to reproduce the exact neural signal.
This capability is particularly clear in the case that the full metabolic response kernel (MRK)
is monophasic (see Section 5). (Other MRK forms are a biphasic form with an initial positive
lobe of the response rebounding to a subsequent negative lobe before returning to the baseline
level (Buxton, 2001), or the triphasic form in which the positive lobe is both preceded and
followed by a negative lobe (Thompson et al., 2003). In either case, the neural response
properties are difficult to distinguish from the metabolic ones, proportionately to the area of
the extra lobes in the MRK.)

However, it is an established property of the BOLD response that it is largely sustained for an
appropriately sustained neural response (Boynton et al., 1996; Birn, Saad & Bandettini, 2001;
Glover, 1999; Logothetis, 2003; Shmuel et al., 2006). The implication of this result is that the
MRK as a whole is monophasic, since convolution of a sustained input with a biphasic impulse
response for the subsequent processing will inevitably result in a transient rather than
sustained BOLD response Pfeuffer et al. (2003).
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The monophasic assumption was tested for the rat cortex by both Martindale et al. (2003) and
de Zwart et al. (2005), who showed that the empirical dispersion of the BOLD response
generated a delay increasing with distance from the activation site, but always well-fit by a
monophasic model of the BOLD impulse response. Similarly, direct measurements of cerebral
blood flow and the concentrations of oxygenated and deoxygenated hemoglobin in the human
brain (Hoge et al., 2005) reveal only a monophasic temporal waveform for each of these
contributors to the BOLD response. These results are all compatible with the inference of a
dominant monophasic positive BOLD response in cat LGN and cortex, as reported in
Thompson et al. (2003, 2004, 2005). This monophasic form also seems to be a fair approximation
in the case of human fMRI because the canonical response kernel (commonly termed the HRF)
provided in the SPM software package, although biphasic, has a negative lobe of less than 10%
of the amplitude of the positive lobe. It is therefore only a minor modification of this standar‐
dized kernel to assume that it has no significant negative lobe, which is the assumption made
for the following analysis. (As will be explained below, the residual biphasic component in
most published reports can be equally attributed to neural rather than hemodynamic rebound
signals.)

5. Implications for the variety of BOLD response waveforms

Armed with this monophasic assumption for the MRK, we show how several properties of the
neural signal are reflected in the recorded BOLD waveform (Tyler & Likova, 2011). This
demonstration assumes a linear relationship between the neural response and the BOLD
waveform, in order to make its properties clear before introducing the nonlinear aspects of the
analysis. The analysis will demonstrates how the principles of the polarity, latency, transience
and number of phases may be reflected in the BOLD response when they are present in the
underlying neural population response:

5.1. Polarity

For any monophasic neural response, the polarity of the BOLD response will be an accurate
reflection of the polarity of the neural response, regardless of the difference in their time
courses to any order of magnitude.

5.2. Latency

Any delay in the neural response will also be reflected in the consequent BOLD response. Of
course, the metabolic processing sequence may introduce additional delays, but neural delays
such as response reaction times or perceptual ambiguity delays should be accurately reflected
in the BOLD waveform once the inherent delays of the MRK are taken into account.

5.3. Transience

As described in Section 4, the BOLD MRK is predominantly monophasic, hence the transience
of the BOLD response for a sustained stimulus implies a transience of the underlying neural
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response. For example, in most visually responsive cortical neurons the onset of a sustained
light is known to generate neural responses consisting of an initial transient followed by a
smaller sustained response that is often of much lower amplitude. Such stimulation will
generate a transient BOLD response even though the stimulation and photoreceptor response
are sustained. (It is for this reason that typical stimulation in fMRI experiments is repetitive,
since rapid repeated stimulation will generate a series of transients that combine to form an
effectively sustained neural response.)

5.4. Number of phases

For a monophasic MRK (HRF), the BOLD waveform will have the same number of phases as
the input stimulus, if the neural input is balanced for positive and negative lobes. Thus, the
fact that the measured BOLD waveform is typically biphasic does not imply that the MRK is
necessarily biphasic. The negative lobe may derive from a biphasic neural response to a
stimulus rather than to blood dynamics.

A.           Neural pulse response 
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Figure 2. Left panels: (A) neural impulse response, (B) step response, (C) balanced doublet and (D) balanced triplet
response. Right panels present convolution of each of these responses with the MRK shown at upper right. Note that
differences in neural response characteristics (left panels) at the time scale of 100 ms generate profound changes in
the simulated BOLD waveforms (right panels) on a much longer timescale, which in turn are diagnostic of the differen‐
ces in the neural signals.
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Some of these properties of the BOLD response are illustrated in the simulation of Fig. 2, for
which the MRK is assumed to be the gamma function shown in Fig. 2A, right, as the basis
function for the formal analysis (see Section 9.1). Note that gamma bases are statistical
descriptors of the occurrence of discrete particles (Stacy, 1962; Farwell & Prentice, 1977) that
have a simple analog implementation that is a cascade of identical lowpass filters (De Vries &
Principe, 1992; Celebi & Principe, 1995; Chen, 2006). In terms of molecular diffusion processes
within neurons, therefore, the gamma function represents an optimal description of the
cooperative process of the arrival of effector molecules at the channels controlling current flow
through the cellular membrane (Shao, 1997).

6. Direct forward modeling approaches

A few previous studies have made estimates of the effects of different neural models on the
form of the BOLD response dynamics. For example, Mechelli et al. (2001) report a simulation
study of the estimated regional cerebral blood flow (rCBF) and blood-oxygenation-dependent
(BOLD) signals as a function of the duration, onset asynchrony and relative amplitudes of two
brief stimuli. They included a basic model of neuronal dynamics and varied one parameter of
this model – the amplitude of a slow late transient – to show its effect on the simulated BOLD
responses. This exercise constitutes an unvalidated forward model of the effect of only one
parameter of a simulated neural response.

However, what Mechelli et al. (2001) offer as the analysis of the effects on the BOLD waveform
is described as “the BOLD parameter estimates”, which is actually a single-valued function
with no specification of which parameter(s) is/are being estimated. Since no comparison is
made with empirical data or their noise limitations, the fact that this study includes a proposed
model for the neural dynamics does not qualify it as a validated procedure for estimating the
neural population dynamics underlying the local BOLD signals (which is the goal of the
present chapter).

Similarly, Buxton et al. (2004) extend their balloon model of the hemodynamic response
leading to the BOLD signal by proposing a model of the neural response to account for the
temporal nonlinearity in BOLD responses as a function of duration. This neural response
incorporates a slow subtractive inhibitory component to the net neural signal, which has the
effect of producing a neural response consisting of an initial transient followed by a sustained
plateau. Model responses for three kinds of stimuli – a single short pulse, two short pulses and
one long pulse, are offered as a demonstration of the properties of this model. As with Mechelli
et al. (2001), no attempt is made to compare the model outputs with actual BOLD recordings,
so the Buxton et al. (2004) study again does not qualify as a validated procedure for estimating
the neural population dynamics underlying the local BOLD signals.

Both Mechelli et al. (2001) and Buxton et al. (2004) include parameters intended to account for
the temporal nonlinearity of short duration responses (which do not fall linearly as response
duration is reduced; Boynton et al., 1996; Birn, Saad & Bandettini, 2001). Both studies demon‐
strate the required lack of reduction in a single example of a short-duration response, but
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neither study provides a validation of either the waveform or the amplitude response function
relative to empirical BOLD data. In principle, although either model could provide a platform
for such validation or for the further estimation of the dynamics of the underlying neural
population response, they neither do so nor suggest procedures by which such estimation
could be achieved.

7. Analytic model of the neural-BOLD coupling

To start the analysis, we developed a specific model structure of the processes leading to the
BOLD paramagnetic signal of fMRI recordings. This model incorporates aspects of the
biophysical processes that are not present in the linear convolution analyses of Friston et al.
(1997, 1998, 2000), although somewhat condensed in comparison with the biophysical/
metabolic derivations of Mechelli et al. (2001), Buxton et al. (2004) or Sotero & Trujillo-Bareto
(2007, 2008).

The metabolic demand through the biophysical chain to the measured BOLD signal has two
sources of nonlinearities. The major source of the BOLD waveform measured by fMRI is the
summed local field potential in the cortical region contributing to the signal for each voxel.
Because each astrocyte meets the metabolic demand for multiple synapses, it sums the
metabolic demand generated by the underlying neural activity across the local neural sources,
and is thus nonlinear with respect to the formalism of the General Linear Model. The metabolic
demand is no longer specifiable as the convolution of the stimulus waveform with a single
impulse response function but is the complex sum of many such convolution processes. In
addition, the coupling itself also exhibits saturation nonlinearities when pushed beyond the
region of small-signal linearity.

The neural responses within each voxel are treated as generated by sets of homogeneous
populations with similar signal waveforms Ni(t) within each population (Fig. 3, where N is the
neural signal variation over time t for each population i). Each neural response then generates
a local metabolic demand Mi(t) that may have a nonlinear relationship to the neural signal
waveform (Chatton, Pellerin & Magistretti, 2003). The MRK will be convolved with a non-
linear transform of the presumed neural signal to provide an estimate of the neural metabolic
demand that is being met by the combined glial and hemodynamic metabolic response. The
fMRI analysis also has a finite dynamic response time, but it will be treated as incorporated in
the MRK of the glial/hemodynamic response.

These nonlinearities provide the opportunity to evaluate an analytic model of the neural signal
leading to the BOLD activation. The model assumes the presence of neuronal subpopulations
having response dynamics with various decay time constants in response to the stimulus.
Pooling among the subpopulation responses can then explain the multiple decay characteris‐
tics of the recorded local field potentials (LFPs). Subsequent convolution with a characteristic
metabolic response kernel then generates the predicted response Y(t) for the BOLD waveform
for the region of cortex generating the LFP signal, accounting for concurrently recorded BOLD
waveforms.
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Figure 3. Block diagram of the main processing stages that lead up to the BOLD signal. The boxes represent processes
denoted by capitalized functions of time. The i subscript indicates that the stage incorporates multiple components in
parallel within the voxel, as indicated by the parallel boxes in these columns. Dashed boxes indicate an array of further
components. See text for further details.

The neural responses within each voxel are modeled as sets of homogeneous populations
Ni(t) with similar signal waveforms within each population. Each neural population response
then generates a local metabolic demand Mi(t) that may have a nonlinear relationship to the
neural signal waveform. The integrated metabolic demands are met primarily by the astro‐
cytes, which integrate the required energy consumption over time and space and make a
complementary metabolic demand G(t) on the adjacent vasculature. The hemodynamic
processes H(t) replenish the energy depletion in the astrocytes, leading to the paramagnetic
response that generates the BOLD signal of the differential precession rates of the oxygenated/
deoxygenated hemoglobin moieties.

8. Implications for the analysis of BOLD fMRI signals

To evaluate the neural contribution to the differential BOLD response waveforms within the
same cortical regions, Likova & Tyler (2007) developed an “instantaneous stimulus paradigm”
to evoke BOLD signals in response to instantaneous stimulus transitions. It would typically
be assumed that such transitions, being instantaneous, would all generate the same BOLD
waveform (effectively equivalent to the MRK) for all different stimulus configurations. Thus,
any significant deviation from that prediction in the BOLD waveform elicited in the same
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cortical area can contribute to revealing the specifics of the underlying neural processing and
enhance the understanding of the networks of extended perceptual responses to complex
stimulus configurations. Indeed, the instantaneous stimulus paradigm generated striking
differences in the BOLD waveforms properties (e.g., latency, sign, amplitude and width) even
within the same brain areas as a function of the stimulus type (Likova & Tyler, 2007).

Figure 4. BOLD waveforms in different brain regions to an instantaneous figure/ground stimulation consisting of the
asynchronous replacement of center (square) and surround fields of random dots in two sequential screen updates
(i.e., separated by only a 60 ms delay). Colored spots indicate sets of brain regions with similar BOLD waveforms (ar‐
ranged in groups of similar waveforms), which differ radically across regions coded by different colors. (From Likova &
Tyler, 2007).

Generally speaking, there is overall homogeneity of the cortical blood supply on the scale of
fMRI voxels (~2 mm cubes), although at a finer scale the blood supply may be separated into
multiple layers supplied by different local cortical sources (Duvernoy, 1999). Although there
have been reports of different temporal dynamics of the BOLD response recordable at high
field strength from different cortical layers (Silva & Koretsky 2002; Jin & Kim, 2008; Siero et
al., 2011) and degrees of capillary branching order (Tian et al., 2010). Nevertheless, all these
studies are subject to the caveat that the response at different depths were mediated by neural
stimulation, and there was no validation of how the neural signals may or may not have varied
with cortical depth in these studies. Moreover, these reports may be characterized by three
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summary statements: i) all the reported BOLD responses are of similar form, predominantly
monophasic; ii) the times-to-peak are similar over cortical depth, varying by less than 1 s from
the mean peak time of ~5 s; iii) there are minor waveform differences with either early or late
negativities of the order of 10-20% of the amplitude of the positive peak. The two-photon study
of the relationship to capillary structure (Tian et al., 2010) found that BOLD peak times were
invariant with cortical depth, although there was a minor degree of depth dependency in the
onset time of the BOLD response and the strength of the initial dip. Overall, therefore, it seems
that BOLD dynamics show only minor variations with cortical depth, and that even these
minor variations have an unknown degree of contribution from neural response variations to
the differential cortical layer dynamics.

Any reported variations in the vascular dynamics are, however, minor relative to the dramatic
waveform differences across the cortex observed by Likova & Tyler (2007), as illustrated in
Fig. 4. Widely separated regions across the cortex form sets of regions (indicated by the colored
dots) with major differences in BOLD waveforms across the different sets. These striking
waveform variations are therefore most likely attributable to differences in the underlying
neural dynamics, not to spatial variations in vascular dynamics. No study of BOLD waveform
variations has suggested that differences as large as these could be attributable to hemody‐
namic variations. Consequently, these results imply that fMRI signals contain much more
information about the neural processing than is commonly appreciated, and thus have the
potential to capture them through an appropriate approach.

9. Nonlinear dynamic forward optimization

However, until recently there has been no method of transcending the BOLD temporal
limitations in order to estimate the dynamics of the neural signals underlying the measured
fMRI waveforms. Tyler & Likova (2009, 2011) therefore proposed a Nonlinear Dynamic
Forward Optimization (NDFO) approach for the time-resolved estimation of the neural signals
underlying the particular characteristics of the temporal BOLD waveforms for a particular
stimulus processed by a particular cortical region. The philosophy of this approach is to utilize
the information available from neurophysiological studies of the neural population dynamics
and biochemical studies of the metabolic pathway coupling to the measurable blood response
to provide Bayesian priors as to the likely temporal structure of the component neural signals.
Such a forward modeling approach provides a compact account of the measured waveform
with the minimal number of neural predictors, based on prior knowledge of the expected
temporal properties of neural signals and of their consequent metabolic demand. In the case
of the neural signals, the goal is to estimate the amplitude and time course of each of the neural
components whose metabolic effects, when summed, account for the measured BOLD
waveform for a particular stimulation condition and cortical region.

Rather than simply characterizing the behavior of the BOLD waveform (Birn, Saad & Bandet‐
tini, 2001; d'Avossa, Shulman & Corbetta, 2003; Fox et al., 2005; Grotz et al., 2009) or attempting
to infer the potentially complex properties of the underlying neural mechanisms from the form
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of the BOLD response by deconvolution (Glover, 1999; Logothetis, 2003; Logothetis & Wandell,
2004), the concept of forward modeling is to incorporate as much knowledge as possible about
the likely neural substrate and optimize the remaining details to best fit the BOLD waveform.
Here the predictors are non-linear because there is a nonlinear relationship between the neural
responses and the metabolic demand that they generate (Birn, Saad & Bandettini, 2001; Pfeuffer
et al., 2003), although the summative property of the paramagnetic signals throughout a voxel
implies that we can assume that the component metabolic demands sum linearly together (Fig.
3). The dynamic forward modeling approach may thus incorporate a variety of possible
nonlinearities into the structure of the model. The neural model that we investigate in the
present version of the analysis is the sum of a positive and a negative component based on
delayed gamma functions convolved with the stimulus waveform.

9.1. Analytic framework for the neural temporal response

The starting point for the NDFO modeling is a gamma function model of the neural signal,
whose first effect in terms of the cascade of BOLD dynamics is to create a metabolic demand
G(t) in the neighboring glial cells (see Fig. 3). Gamma probability density functions have the
analytic form a. tk-1. e-t/τ /(k), where t is the time dimension, a is a scaling parameter and k and τ
are generic waveform parameters. They may be termed simply “gamma functions” to
emphasize their analytic rather than statistical properties. In engineering the same function is
known as the n-pole filter function (with n=k), and is used to describe the temporal dynamics
of a wide range of processes. For the present application, the temporal gamma function is
assumed to have integer powers of k and corresponds to the solution of differential equations
with real (non-imaginary) roots. The gamma function has the analytic advantage over many
other functions, such as the Gaussian, that it is by definition causal because it has the value of
zero at t=0, and is defined as zero for t < 0 (i.e., the full specification is y=a. tk-1. e-t/τ for t >=0; y=0
for t < 0, where the gamma scaling factor is folded into the scaling constant a). Its shape
progresses from highly asymmetric around the peak for small k to approximately Gaussian
and symmetric for large k (see Fig. 5).

Figure 5. Examples of delayed gamma function step responses with exponents of k=2 (left) and 6 (right). Successive
functions (colors) introduce a wide range of peak latencies for the neural signal estimates (with time constants in‐
creasing in factors of 2 and a fixed delay ∆t of 40 ms).
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A key feature of this formalism is that the peak latency is determined by the time constant, τ,
and is proportional to the width (at half height) of the response peak, which can be estimated
to good accuracy by the methods described in the next section.

9.2. Neural model

A comprehensive model of the BOLD requires an accurate model of the intracellular potential
dynamics deriving from the sensory stimulation. Based on the gamma function formalism, we
propose to use the nonlinear neural response model jointly specified in eqs. 1 and 2:

hl e-

+ -= + × +/
P( ) [ ( ) ( ) ] ( )tN t N t N t e t (1)

where (t) is the net source of additive noise and the function is governed by the parameter set
P =(a, kn, τn, b, Δt , η, λ) (see Table 1).

The nonlinear neural signal N
P
(t) in eq. 1 is the sum of half-rectified positive and a negative

components based on delayed gamma functions, convolved with the stimulus waveform:

= × Ä - D( ) ( ) ( )N t a S t n t t (2)

where

n(t)= (1− t)⋅ t kn−1e −t /τn − b
τn

t kne −t /τn

(Note the convention that time series functions are capitalized, impulse response kernels are
lower case, and vectors are bold face.) The neural impulse response expression n(t) is set up
so that its convolution with a step function is equivalent to the sum of a pure transient and a
pure sustained component. In addition, the expression is specified with an additional trans‐
mission delay, Δτ, that delays the response relative to the stimulus without affecting its
waveshape with the parametrization specified in Table I, which defines the parameters in
vector p of this equation. To illustrate the properties of the model, we analyze the effect of
varying the inhibitory ratio implied by the negative component weight b, and the offset/onset
gain ratio λ in Fig. 6.

a scaling constant (a fitting parameter but not a waveshape parameter)

kn integer exponent governing the rising phase

τn time constant of falling phase in the neural response

Δt transmission delay before response onset

b sustained/transient ratio in the step response

η time constant of nonlinear gain control in the neural response

λ ratio of offset to onset gain in the neural response

Table 1. Nonlinear Forward Model Parameters
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One issue that arises is how to measure the latency Δt of the delayed gamma functions of Fig.
5. A simple derivation can show that the peak latency tpeak of these responses is specified by
the expression (kτ

n
+Δt). Thus if k and Δt, both of which are well-determined from neurophy‐

siological studies in monkey cortex, are set to the means of their Bayesian priors on this basis,
the peak latency tpeak can be determined from the value of τ, which can be accurately derived
from the model optimization.

9.3. Metabolic demand

Since little is known about the glial dynamics of transmitter recovery, we may pursue two options
as to their effects. One option is that the metabolic demand driving the BOLD response derives
from the transmitter recovery cycle following the activation by an axonal spike. Since axonal
spikes represent only the positive aspect of the intracellular voltage and since 90% of cortical
synapses are excitatory (Shank & Aprison, 1979; Wang & Floor, 1994), the signal transmitted
from one cortical stage to the next may be treated as a half-wave rectified version of the dynamic
neural signal (i.e., only the positive component in eq. 1) with λ set to zero. To illustrate the
properties of our model, this prediction is shown as the blue curves in Fig. 6A(a) (indexed in
row/column notation), which is an overlay of the model estimates of the neural responses to
stimulus pulses that double in duration from 8 ms to 16 s (eight doublings). For this example,
the neural response has balanced excitation and inhibition, so even the prolonged pulses
generate only an initial transient response, with the negative lobe at offset being thresholded
out by the rectification. (Note that the local metabolic demand, Mi(t), has the same time course
in this model as the transmitter recovery from which it derives. The energetic processes required
for the recovery to the initial state, however, form a chain of glial metabolic response, G(t), that
may have substantially slower time course at one or more stages.) The other option is to consider
the instantaneous metabolic demand of both excitatory and inhibitory cells, or both ‘on’ and
‘off’ cells, implying that the signal generating the metabolic demand is a full-wave rectified
version of the intracellular voltage (i.e., the full expression of eq. 1 with λ > 0).

9.4. Metabolic coupling

Having provided relevant variables for the linear and nonlinear components of the neural
response dynamics, we may now consider the issue of the metabolic coupling with the neural
signal to generate the BOLD response. This coupling has been modeled extensively over the
past two decades, with the best-known example being the Buxton-Friston balloon model (Friston
et al., 2000; Buxton et al., 2004) and the most elaborated version being by Sotero & Trujillo-
Barreto (2007, 2008). However, these models are not well-validated by empirical human studies
(because they contain too many interdependent variables to allow the assessment of each
separately), and too little is known of the dynamics of transmitter recovery and/or the
nonlinearities in the process at present to securely assign time constants to the astrocytic
component relative to the hemodynamic component of the metabolic coupling. We will
therefore treat the entire chain from the metabolic demand to the magnetic resonance signal
in the traditional fashion, as a unitary linear kernel. (As stated above, this kernel is often termed
the hemodynamic response function HRF, but in view of its likely substantial astrocyte
contribution, we give it the more general term of the metabolic response kernel, MRK). As
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more information becomes available, nonlinear aspects of the metabolic coupling may readily
be incorporated into the analysis.

10. Sensitivity of the BOLD response waveform to neural nonlinearities

We may now evaluate the response to these two options for the nonlinearity of the metabolic
demand through the biophysical chain of the metabolic processes to the measured BOLD signal
(Table 1). The main goal is to estimate the properties of the neural signal processing, and it will
be seen that there is sufficient information to provide a rich analysis of these properties, and
to account for the empirical nonlinearities of the BOLD signal, as long as the metabolic supply
chain conforms to the linearity assumption.

For this demonstration, we assume an MRK of the form:

( ) 1 /MRK  e ,m mk tt t t- -×= (3)

where km and τm are the metabolic waveform parameters.

Thus, the forward model structure was the convolution of the nonlinear neural signal to the
boxcar stimulus of variable duration and the MRK to generate the model BOLD response:

( ) ( ) ( )BOLD   N MRKt t tÄ= (4)

The results of the simulation study are shown in Fig. 6, where the capital letters code for
different sets parameter values and the lower-case letters code for different stages of the
simulation output. For a given row, column (a) shows the assumed metabolic demand, column
(b) plots the BOLD responses over duration for the half-wave-rectified model of metabolic
demand, column (c) plots the BOLD responses over duration for a fully-rectified model, and
column (d) plots the duration summation curves for the peak amplitudes. The other parameter
values were, a=0.8, τn=40 ms, kn=4, ∆t=0, =∞, λ=-1. In the first three panels in each row, the
successive curves represent responses to a doubling of the stimulus duration relative to that
for the previous curve, while the fourth panel plots the peak amplitude of each of the successive
curves in columns (b) and (c), together with the linear prediction for a purely sustained
response (green curves; BOLD waveform not shown).

The development of the peak amplitude in the BOLD temporal summation series for a purely
transient neural response is shown as the blue summation curve in Fig. 6A(d). The critical point
of this plot is that the asymptotic corner of the summation curve occurs at 40 ms, which is the
value of the time constant assumed for the neural signal in this example. Thus, the form of the
BOLD amplitude summation series (Fig. 6, column (d)) provides a direct empirical estimate
of the time constant of neural integration down to the millisecond range. There is no limit in
principle to the temporal resolution that can be achieved by this technology since it is estimated
from the amplitude variation of the BOLD signal as a function of stimulus duration, not from
its temporal aspects.
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The reduction in peak amplitude is captured in the red temporal summation curve of Fig.
6A(d), showing a reduction by a factor of two for long durations. (The green curve in Fig.
6A(d) represents the values expected for fully proportional linear summation of the energy in
the stimulus pulse; it is an accelerating curve due to the logarithmic abscissa.) The case of the
full-rectification model of the metabolic demand is shown in Fig. 6A(c). Here the second neural
response peak (i.e., that from the stimulus offset) plays a key role in varying the BOLD
waveform, which first extends in time and then shows a two-peaked structure with reduced
amplitude for long-duration stimuli.

Fig. 6B(a) shows the half-and fully-rectified version of the metabolic demand to the same pulse
duration series, where the neural inhibition is now assumed to be reduced in energy by 1.5%
relative to the excitation. This small imbalance is magnified by the convolution with the
sustained stimulus, and thus it results in a sustained component that is 12% of the amplitude
of the initial transient (blue curve in Fig. 6B(a)) and then into an almost fully sustained set of
BOLD response functions (Fig. 6B(b), compared to A(b)). Thus, the form of the BOLD response
functions can be strongly diagnostic of even slight variations in the properties of brief neural
signals. Moreover, the nature of the metabolic demand function (half-or fully-rectified) has a
big impact on the form of the BOLD response, determining whether or not an offset peak occurs
at the tail of the responses even when they are sustained (Fig. 6B(b vs. c)). Such a peak has been
reported in some studies (d’Avossa et al., 2003; Fox et al., 2005) but is not always evident. Thus
it remains an empirical question to what extent rectification is representative of BOLD
waveforms; intermediate forms of the rectification model are required to capture the empirical
properties in detail.

Note that the amplitude series in Fig. 6B(b) and (c) show bands of denser packing of the
functions, where the amplitude changes are not spaced in proportion to the doublings of
stimulus duration. Viewed in terms of the sequence of BOLD waveforms in Fig. 6B(b) and (c),
the regions of dense packing form an intermediate “shelf” or partial asymptote in the peak
amplitude summation plots of Fig. 6B(d). It is again evident that the onset of this intermediate
shelf in the summation curve corresponds to the 40 ms integration time of the underlying neural
signal, while the second asymptote at higher amplitude corresponds to the ~5 s integration
time of the MRK (HRF). Accurate measurement of such summation functions can therefore
provide discriminative characteristics that, when interpreted through the nonlinear model
structure, can provide estimates of both the neural and the metabolic time constants in the
neural-to-BOLD signal chain.

This point is emphasized by the response set in row C of Fig. 6, which probes the effect of
varying the time constant of the neural transient. The key difference from the parameters used
in row B of Fig. 6, is that the neural time constant for row C was doubled from 40 ms to 80 ms
(and the excitation/inhibition imbalance was also increased to 7% to maintain the same form
of offset peak). It is evident that (i) the summation curve (Fig. 6C(d)) takes a measurably
different form, and that (ii) the accuracy of estimation of the neural time constant is limited
not by the BOLD time constant but by the variability of the BOLD amplitude measures. For
example, this analysis shows that the neural time constant is estimable to within about 0.1 log
units if the BOLD response functions can be measured to an achievable accuracy of about 10%.
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The final case of duration summation analyses (Fig. 6D(d)) shows the NDFO predictions
of increasing the excitation/inhibition imbalance of the neural response to 20% (increasing
the  sustained  level  to  50%  of  the  transient  amplitude),  illustrative  of  a  system  that  is
predominantly sustained in nature. Under these conditions, the impact of the initial transient
becomes essentially negligible, and the summation curves (Fig. 6D(d)) become indistinguish‐
able from proportional summation (i.e., they run parallel to the green curve). This manip‐
ulation illustrates that the power of the NDFO analysis depends on the neural processing
being predominantly transient,  and that  the properties  of  the underlying neural  mecha‐
nisms would not be accessible to this form of analysis in predominantly sustained systems.
Luckily,  however,  the  well-established deviation from proportionality  for  short-duration
stimuli (Birn, Saad & Bandettini, 2001) implies that neural signals are, in practice, predom‐
inantly transient and are therefore typically amenable to this form of NDFO analysis (Tyler
& Likova, 2009, 2011).

 (a) (b) (c) (d) 

A 

 

B 

C 

D 

Figure 6. Simulations of four different types of BOLD response for monophasic metabolic demand signals (and a
monophasic MRK). The rows represent the results for A: metabolic demands with a purely transient time course, B-D:
responses with a mixed transient and sustained time course, with the sustained component at respectively 12%, 18%
and 50% of the amplitude of the transient component (based on different ratios of neural excitation/inhibition). For
each type, column (a) shows the assumed metabolic demand, column (b) plots the BOLD responses over duration for
the half-wave-rectified model of metabolic demand, column (c) plots the BOLD responses over duration for a fully-
rectified model, and column (d) plots the duration summation curves for peak BOLD response amplitude (blue curve:
half-rectified model, red curve: fully-rectified model, green curve: pure linear summation). Note the use of the loga‐
rithmic abscissa in column (d) to focus the analysis on the brief duration regime. The progression of the model BOLD
responses with stimulus duration and the form of the summation curves are diagnostic of both the relative weighting
between the sustained and transient components of the neural signal and the form of rectification feeding the meta‐
bolic demand.
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11. Multicomponent analysis of V1 spatial BOLD configurations

In a study of the fMRI components, Tyler et al. (2008) recorded the sets of BOLD waveforms
generated by fields of dynamic noise-patterned stimuli in different eccentricity bands across
the visual field (Fig. 7A). Responses were analyzed in a corresponding series of retinotopic

Figure 7. A. The set of spatial noise stimuli used in the ICA study. The eccentricities of the three defining radii were 1,
3.5 and 7 for the inner hole, the central disk/inner edge, and the outer edge of the peripheral annulus, respectively. B.
Variety of BOLD response waveforms obtained for the four matching ROIs designated at right, in a block design of 30s
on/30s off for fields of dynamic visual noise. Many of these responses differ substantially from the form of the typical
GLM and from each other, particularly for the responses to the fine spatial structure of the scaled grid in the last col‐
umn. C. The first three ICs derived from the individual voxel analysis throughout V1. D. Weighted sums of the three ICs
optimized to account for each of the BOLD waveforms in the upper plots.
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regions of interest (ROIs) defined bilaterally on V1 (on the basis of separate retinotopic
mapping stimuli). An example of the variety of cortical responses obtained in retinotopic area
V1 combined for both hemispheres is shown in Fig. 7B. The responses vary not just in ampli‐
tude across stimulus types, but markedly in the waveform of the responses. For some stimuli,
the same area may show a classic boxcar response, a double-peaked on-response, a rounded
on-response, or a negative on-response. Since there is no reason to expect substantial differ‐
ences in the BOLD dynamics in different regions of V1 (see Section 8), variation in response
from single cortical regions is difficult to explain by variations in the hemodynamics of the
blood oxygenation and implies a neural origin of the differences in BOLD response profiles
for the different stimulus types. This inference is particularly strong for the radial grid
stimulus, which spans the areas of all the other stimuli, and should therefore be expected to
match their average waveform.

The BOLD waveforms of Fig. 7B were analyzed by an independent components (IC) model of
the variations in temporal response over all the voxels in V1 to determine the minimum
number of temporal components that could account for the data (see Tyler et al., 2008, for
details). There was a relative drop in the component weighting beyond that for the first three
ICs, implying that the three ICs in Fig. 7C represented the responses of three stable response
populations contributing to the overall response pattern, while further ICs represented noise
or spatially inhomogeneous aspects of the responses. Fig. 7D shows that the IC model does a
good job of capturing this variety of response patterns with the weighted sums of the first three
ICs, which account for 92% of the variance in the empirical responses.

These results support once again the important point that BOLD waveforms within particular
cortical regions may vary dramatically as a function of the stimulus type, despite the fact that
the metabolic/hemodynamic response kernels are expected to remain invariant across the
region (see Section 8). Consequently, differences in the BOLD response waveform in this V1
ROI are best interpreted as being due to differences in the neural response waveforms to the
different stimuli.

12. Neural response component analysis

Under the assumption that the neural components signals in local regions of cortex are well-
approximated by sets of delayed gamma-function components, the components should be
resolvable into the same component vocabulary, i.e., delayed gamma functions, that approx‐
imate known components of the neural dynamics. Note that the mean BOLD waveform has
an unusual double-peaked form, rising at the stimulus offset as well as the onset, and that the
off-period, by contrast, has a single-peaked form (Fig. 8A). This overall waveform could not
be fitted by any single gamma-function convolution. As a result, the novel analysis developed
by Tyler et al. (2008) consisted of (i) the simultaneous optimization of the set of neural
components (ii) through the Buxton-Friston balloon model, together with (iii) the rise and fall
parameters of MRK. The results of the analysis for the V1 dataset of Fig. 7 were sufficient to
account for >95% of the BOLD variance overall (Fig. 8), which drew from the whole of the V1
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ROI. The IC analysis breaks the overall waveform down into independent components that
are differentially expressed across the individual voxels of V1 (capturing the temporal
waveform variety of the specified ROIs within V1 shown in Fig. 7). The first IC (Fig. 8B) shows
the classic form, following the predicted linear form for the balloon model (blue curve)
accurately. The optimized neural signal for the fit to the first IC (red curve) is close to a boxcar
function. The second IC has a very different form (Fig. 8C), with an early negative BOLD peak
at the stimulus onset and no corresponding rise at stimulus offset. The estimated neural signal
has the same nonlinear characteristic, although the negative peak has a much shorter latency.
The third IC is even more non-linear (Fig. 8D), with approximately equal positive BOLD peaks
at stimulus onset and offset, as though responding to the stimulus events through a full-wave
rectified nonlinearity. Again, the estimated neural signal is a reflection of the same form of
nonlinearity with much shorter latency.

Figure 8. Dynamic forward modeling optimization of multiple neural components to the BOLD responses for cortical
area V1. A. The average BOLD waveforms across the whole of V1 (black) with the fit for the Buxton-Friston balloon
model. B-D. Plots of the optimized neural response estimates (red) for each of the three BOLD ICs (black curves), with
the fit of the balloon model output to each component (blue curves). Note the wide variety of temporal properties of
the neural signals (red curves) selected by the optimization to account for the waveform differences of the BOLD com‐
ponents. (from Tyler, Kontsevich & Ferree, 2008, with permission.)
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13. Discussion

This chapter illustrates how a range of neural waveform parameters can be estimated from the
observed variety of BOLD waveform effects, despite the wide difference in their time courses
from seconds to milliseconds. Our novel analysis of the neural signal underlying the BOLD
response waveforms constitutes a “temporal microscope” for the neural signals in the cortex
generating the recorded BOLD waveforms. This form of estimation depends on the assump‐
tion, reviewed in Section 8, that temporal variations in the BOLD waveforms are due to changes
in the underlying neural activity rather than the parameters of the hemodynamic responses to
the metabolic demand. Generally, studies that analyze BOLD temporal variations have
operated on the basis that they are likely to reflect variations in the hemodynamics of the blood
control mechanisms. We argue that this is an implausible assumption in general because
decades of neurophysiological studies have shown that different response networks contain
neurons with a wide variety of different temporal responses to the same stimuli (fast transient,
slow transient, sustained, inhibitory, etc.), and that there are substantial variations in the
response dynamics across stimulus conditions in any given local cortical response. Conversely,
there is little convincing evidence for differences in the hemodynamic response parameters
among different cortical areas, since even studies finding variations in hemodynamic wave‐
forms across the cortex have typically used stimulus-driven activation of the neurons to
mediate the metabolic demand, and therefore are not able to dissociate the neural variation
from the hemodynamic variation.

For clarity in this enterprise, we have assumed that the metabolic response is both linear and
monophasic, have illustrated (Fig. 2) a variety of BOLD response properties that could arise
from such neural nonlinearities. We are not claiming to have proven that these BOLD prop‐
erties are entirely determined at the neural level but that, conversely, claims that they are
purely properties of the vascular hemodynamics per se must be considered suspect until they
are replicated in paradigms that remove the neural component of the system. One such
approach would be stimulation of the hemodynamic response by direct infusion of nitric oxide
(NO) in the vicinity of the blood vessels. This experiment has apparently not been attempted,
although suppression of the nitric oxide with application of the NO synthase inhibitors (Burke
& Bührle, 2006; Kitaura et al., 2007) has been shown to completely abolish the BOLD response
while only marginally affecting the local field potentials, establishing a critical role for NO in
neurovascular coupling.

Consequently, the present chapter has tried to redress the balance by considering how the
BOLD signal variation could arise from the effects of plausible nonlinearities in the variety of
neural population responses to standard types of stimulus presentation. In particular, the
nonlinearity of the transient responses at the neural response offset could be positive (rectify‐
ing) rather than negative (linear), and in either case this could show reduced amplitude relative
to the onset response (adaptive gain control). In this example of the NDFO analysis, the offset
responses are much smaller than the positive responses at stimulus onset. This analysis
demonstrates that estimation of the neural response dynamics for each stimulus type is well
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within the capability of one session of normal fMRI methodology, but requires the appropriate
combination of experimental design and theoretical analysis.

The final analysis of Figs. 7 and 8 describes a search for independent response components in
occipital area V1 in a relatively standard block-design stimulus paradigm incorporating a
variety of spatial stimulation patterns (Tyler, Kontsevich & Ferree, 2008). This analysis began
with the assumptions of the balloon model of vascular hemodynamics, but the results revealed
dramatic response nonlinearities, as expressed through an independent components analysis
of the response variation across the cortical space of V1 and the stimulus variety. Also, not
shown in these figures is the way in which these nonlinear components were expressed across
the cortical space, which implied that they were functional response components dependent
on the relation between the stimulated and unstimulated regions, rather than on structural
differences in the vasculature. Thus, although the balloon model was an initial assumption of
the analysis, the results confront the issue of whether its assumed nonlinearities are hemody‐
namic or neural in origin, given this result of profound functional nonlinearities across the
space of V1, which are a fortiori of neural origin.

The neural signal components estimated to underlie the three primary ICs of Fig. 8 provide
insight into the nature of the neural nonlinearities involved. Unlike the stable (linear) boxcar
of Fig. 8B, the other two estimated neural waveforms have initial transients, one representing
a half-wave rectification and the other a full-wave rectification. In neural signals, such
nonlinearities are extremely well known, and indeed are characteristic of neural processing in
general (as “on” responses and “on-off” responses, respectively), while it is difficult to
conceptualize how such nonlinearities could arise from the hemodynamics per se. A more
global mechanism that has such transient, rectified character is the top-down attentional
mechanism, by which activation may be enhanced in regions of recent stimulus change in a
transient fashion (Liu, Pestilli & Carrasco, 2005). Such top-down mechanisms are again neural
rather than hemodynamic in nature. The present data make it clear that a rich array of such
neural nonlinearities should be expected to contribute to the fMRI signals recorded from the
brain, although they are not sufficient to distinguish between the top-down and bottom-up
hypotheses for the neural signals underlying the nonlinear BOLD responses revealed by this
paradigm. Nevertheless, further enhancements to the analysis should allow the technique to
answer many questions about the neural mechanisms involved in the BOLD response
dynamics.

As knowledge evolves, more complex models of the neural/metabolic coupling and the
hemodynamic response could be easily incorporated in our model. These all represent
Bayesian information that, if well established, can be used to refine the model structure and
enhance the fitting process when available. However, our reading of the literature is that a)
the first-order specification of the neural/BOLD coupling is well approximated by a linear
response kernel, and b) that estimates of the second-order effects are contaminated by the
assumption that the modeling has been purely hemodynamic, and has not taken into account
potential and actual nonlinearities in the neural signals at the time scale of the BOLD signal.
Thus, despite the best efforts of the proponents of elaborated hemodynamic modeling, there
is no secure information about the nonlinearities of this process for the human brain in vivo.
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Finally, we note that a technique with a philosophy similar to the present approach has been
successfully applied to the estimation of net spatial receptive field structure of small cortical
regions by Dumoulin & Wandell (2008), although they used a linear rather than nonlinear
model of the sequence of processes. Their spatial estimates were based on a model of the
temporal signal to be expected as a stimulus swept across each defined point on the retina.
Like us, they take the temporal stimulus waveform, convolve it with a spatiotemporal model
of the response of the underlying neural population and then with a model of the metabolic
response function to provide a basic forward model of the temporal BOLD response that is
optimized to the measured BOLD response at each cortical location. Our approach takes the
temporal analysis several steps further towards biological plausibility, and focuses on the
temporal rather than spatial aspect of the neural population response.

14. Conclusion

The conceptualizations and techniques introduced in this chapter provide an analytic capa‐
bility for resolving the timing and neural signal estimation underlying the BOLD waveforms
recorded throughout the cortex. Any such attempt must be based on a model of the known
neural dynamics of the neural populations underlying the BOLD metabolic signal generation,
which may be progressively refined as more information becomes available, both about the
underlying neural response characteristics and about the subsequent metabolic cascade. Given
adequate signal/noise ratio, the present analysis shows that it is possible to develop approaches
that overcome the temporal limitations of BOLD signal and are able to reveal relevant
properties of the underlying neural signals. In combination, these approaches represent a
notable advance in the capabilities of the fMRI technology, providing a direct linkage between
the live assessment of the functioning brain and the direct neurophysiological recordings in
other species, or even in the human brain.
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