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An Insight into the Abnormal Fibrin Clots — Its
Pathophysiological Roles
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1. Introduction

Blood coagulation and its dissolution (thrombolysis) are integrated and highly regulated
process to maintain the homeostasis. The mechanism of blood clotting and declotting and the
equilibrium between them exclusively depends on an intricate interplay between series of
elements — the coagulation factors (mostly proteolytic enzymes), platelet and endothelium [1].
Under normal conditions, tissue factor (TF) is not expressed by cells that are in direct contact
with blood. However, TF is exposed to blood following the damage to the endothelial cell wall,
where it is free to bind plasma factor VII and initiate the clotting cascade consisting of two
separate pathways — ‘intrinsic’ and ‘extrinsic’ that ultimately converge on the ‘common’
pathway and serve to activate prothrombin, the precursor of the enzyme thrombin (factor Ila)
by factor Xa [2]. The intrinsic pathway is initiated by the Hageman factor (factor XII) once it
binds to the anionic surfaces e.g. polyphosphates from platelets or RNA in inflammatory loci
[3,4]. A complex of prekallikrein and High Molecular Weight Kininogen (HMWK) also
interacts with the exposed surface in close proximity to the bound factor XII and activates it.
During activation, the single chain protein of the native factor XII is cleaved into two chains
of 50 and 28 kDa that remain linked by a disulphide bond. The light chain of 28 kDa contains
the active site and the molecule is referred to as activated factor XIla, which in turn activates
prekallikrein to form kallikrein. The kallikrein thus produced can then also cleave factor XII
and a further amplification mechanism is triggered. The factor XIla remains in close contact
with the activating surface and activate factor XI. This step requires Ca*. At this stage, HMWK,
binds to factor XI and facilitates the activation of factor X to form factor Xa [5,6]. The extrinsic
system, in contrast to the intrinsic pathway, involves both blood and vascular elements and
provides rapid response to tissue injury by generating activated factor X. TF and factor VII are
the unique proteins present in this pathway. Once exposed to blood plasma, TF binds rapidly
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4 Fibrinolysis and Thrombolysis

to factor VII which becomes activated to form factor VIla. Factor VIla along with Ca* and a
phospholipid rapidly activates factor X forming factor Xa (Figure 1). Factors II, VII, IX, and X
are the zymogen forms of vitamin K-dependent serine proteases. Vitamin K is an essential
cofactor for post-translational modification of these proteins, in the course of which a carboxyl
group is added to the 10 to 12 Glu residues in the amino terminal portion of these proteins.
Without this modification, the cell-based coagulation complexes remain unassembled that
leads to ineffective clot formation [7].
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Figure 1. The classical blood coagulation cascade.

2. Formation of fibrin clot

Fibrinogen, a 340 kDa plasma protein, is present at a concentration of 2-4 mg/ml in blood under
normal conditions [8]. Composition of fibrinogen, its cleavage by thrombin and subsequent
polymerization reactions leading to blood clot are as described in Scheme 1.
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First step:

Fibrinogen [(Ac)s (BB)a (v)o + (2.5 kDa oligosaccharide )]

Where A 15 16 residue fibrinopeptide, o5 610 residues amino acd chan,
B is 14 residue fibrinopeptide, Pis 461 residues amino acid chain and
vis4 11 residues amino acid chan.

Thrombin

Fibrin monomer (soluble) [ogfoyve + (2.5 kDaoligosaccharide)s] + 2A+ 2B

Second step:

n [ozPzyz+ 2.5 kDa oligo saccharidez] (soluble fibrin monomer)
Spontaneous aggregation
[oi2Bzyz + 2.5 kDa oligosaccharidez]n (insoluble fibrin oligomer or fibrin clot)

Third step:

Fibrin clot

l Factor XIIIa

Rigid fibrin dot with covalent cross-linking

Scheme 1. Steps of fibrin clot formation.

It is noteworthy that unlike an organic chemistry reaction of the type A+B —C, where the
structures of A, B and C are defined, Scheme I does not imply that the products of the reactions
are chemically and physically homogeneous. The extent of cross-linking, elongation and
branching of the fibrils, incorporation of other proteins present in blood plasma etc affect the
molecular weight, conformation, size and shape, stability and rigidity of the fibril structure.
Thus the subsequent steps associated with such reactions may be represented as A+B —C
—-C, — C, =G, ... efc together with the simultaneous reactions A+B —-C —C;; C — C; C—~C;
.... etc or a combination thereof. Further, in case of A+B —C, the rate of formation of C is
proportional to the concentrations of A and B. However, with variation of fibrinogen and
thrombin concentrations in the presence of other interfering blood components, the rate of
formation of different conformers of fibrin also varies. Overall, due to so many variable
parameters, the process is rather complex and the products formed are still difficult to predict
qualitatively and quantitatively.

For a healthy person, when a clot is formed under normal physiological conditions following
the above mentioned steps, it may be considered as normal. However, from a chemical point
of view, when any one of the reaction conditions is altered, an abnormal clot is likely to be
formed. The interferences may originate from alteration of the concentration of the substrate
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or corresponding enzyme. In addition, the composition of the reaction medium during the
course of the reactions, particularly presence of other biomolecules that interfere, may vary.
In either situation, the structure and composition of the products formed may differ signifi-
cantly. In a diseased condition, the concentration of fibrinogen or thrombin may increase
leading to greater accumulation of soluble monomeric form of fibrin [9]. Since the monomeric
form of fibrin leads to physically heterogeneous aggregates and the reaction involves bulky
macromolecules like proteins, the structure of the product i.e. fibrin clot is dependent on the
rate of the reaction as well. In other words, unlike the reactions of small organic molecules
where the structures of the products are defined and not flexible, structure of fibrin is de-
pendent on the rate of its formation. Further, the process of fibrin aggregation being occurred
in a biological environment may recruit other adhering proteins too leading to co-aggregate
formation. Thus, whenever the composition of blood differs from normal, the nature and
composition of the co-aggregate also differ. The altered structure of fibrin is stabilized in the
third step where factor XIIla enters to form covalent cross links within fibrin clots. If this factor
acts favorably, the clot formed will be more stable and hard. The extent of deformation,
intramolecular cross linking and incorporation of other proteins in the fibrin structure affect
its susceptibility to lysis by plasmin (discussed elaborately later). Usually deformed clots
which are resistant to lysis cause medical complications. For a patient, this complication is in
addition to those for which normal blood composition is not maintained.

Upon injury, thrombin cleaves off two short peptides from the N-termini of the Aa- and Bf3-
chains of fibrinogen, releasing fibrinopeptides A and B, respectively from the center of the
fibrinogen molecule, converting it to fibrin monomer, which polymerizes into half-staggered
oligomers that lengthen to form ~10 nm wide protofibrils. These protofibrils aggregate
laterally to make ~ 100 nm thick fibers. Branching along with lateral and longitudinal growth
of fibers leads to the formation of three-dimensional network or gel, which tends to remain
localized to the phospholipid-rich sites, e.g., on the surface of activated platelets [10]. Blood
clotting factor Xllla, a plasma transglutaminase specifically cross-links glutamine and lysine
residues of adjacent y- and a-chains of fibrin molecules. These cross-links are formed within
and between the protofibrils to stabilize the fibrin gel [11]. The activity of factor XIlla plays a
crucial role at this stage because it determines the stiffness of the clot. In case the clot is too
soft, normal pressure of blood flow may break it leading to continuation of bleeding. Alter-
nately, if the clotis too hard, it inhibits the pathway for normal healing of the wound. A serious
concern is that the clots may be degraded to clot-lets by the hydrolyzing enzymes and these
microemboli' enter into the circulation leading to heart attacks and strokes [12]. An optimum
degree of cross-linking does not make the fibrin network mechanically very stable rather it can
bend where its elasticity is apparent. In a dynamic system, the elasticity offers access of
hydrolytic enzymes to the cleavable polypeptide chain of fibrin network [13]. Activation of
the clotting cascade subsequently initiates the fibrinolytic cascade that regulates the size of the
ultimate clot. Perturbation in this equilibrium due to excess or abnormal thrombus formation
may lead to serious pathological problems.

1 When a thrombus detaches from the vessel wall and circulates in the blood.
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Based on above discussions, varieties of fibrin clot may be viewed as described in Figure 2.
The differences between the clots appear to be the thickness of the fibers and the porosity of
the mesh structure that are primary determinants of the action of plasmin. What is hidden is
the extent of branching of the chains. All these factors contribute to the elasticity of individual
fiber and finally elasticity of the fibrin clot. The elasticity of the clots is an important physical
parameter that determines the stability of the clots against the pressure of blood flow. In case
the clots are sufficiently elastic, they may get enough time to be degraded by lytic enzymes.
Otherwise, clot-lets may form and carried downstream in the blood circulatory system [14].

A Light clot B Medium clot C Moderately D Heavy clot
heavy clot

Figure 2. Hypothetical structures of fibrin clot of variable fiber thickness and porosity.

Figure 3. Interplay of enzymes in the process of fibrinolysis. Abbreviations used are FDPs, fibrin degradation products;
PAI, plasminogen activator inhibitors; tPA, tissue plasminogen activator.
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3. Mechanism of fibrinolysis

When a clot is formed, some mechanism is necessary to limit the clot at the site of injury and
ultimately to remove the clot during healing of the injury. Platelet-poor areas of the clot are
more prone to fibrinolysis than platelet-rich areas [15]. Fibrin actively regulates its self-
dissolution through numerous interactions with fibrinolytic and anti-fibrinolytic components.
This pathway consists of plasminogen, a variety of activators and several inhibitors (Figure
3). The 148-160 stretch of residues of the Aa-chain of fibrin becomes exposed and available for
plasminogen binding after the conversion of fibrinogen to fibrin. Activation of plasminogen to
form plasmin is accomplished either by factor XII-dependent pathway or by plasminogen
activators like tissue plasminogen activator (tPA) and urokinase-like plasminogen activator
(uPA) [16]. The tPA, which is synthesized primarily by microvascular endothelial cells is most
active when attached to fibrin. The affinity for fibrin makes tPA a useful therapeutic agent,
since its activity is largely confined to the sites of recent thrombosis [17]. uPA lacks fibrin
binding activity, circulates in an inactive single chain form (scu-PA) in plasma and can activate
plasmin in the circulation [18]. Plasmin interferes with the fibrin polymerization and initiates
cleavage of fibrinogen or soluble fibrin from the C-terminal end of its a-polypeptide chain and
gradually forms smaller fragments leading to formation of fibrin degradation products (FDPs)
fragments X, Y, D and E in plasma. Cleavage of cross-linked fibrin by plasmin produces
degraded products of variable lengths known as X-oligomers, that subsequently degrade into
Y, D and E fragments [19]. Elevated levels of FDPs are clinically significant in diagnosing
abnormal thrombotic states including Disseminated Intra-Vascular Coagulation (DIC), deep
venous thrombosis or pulmonary thromboembolism (described in detail later). The activity of
plasmin s tightly regulated to prevent excessive fibrinolysis, which is manifested by a bleeding
tendency. Free plasmin rapidly forms a complex with circulating a,-plasmin inhibitor and is
inactivated. Endothelial cells further modulate the coagulation/anticoagulation balance by
releasing plasminogen activator inhibitors (PAls), which block fibrinolysis and confer an
overall procoagulation effect. Thrombin also upregulates the expression of uPA and tPA and
their inhibitor PAI-1 and regulates fibrinolysis [20].

4. Abnormal fibrin clot

Alteration in fibrin polymerization, heterogeneous fibrillization or unusual structural confor-
mation may lead to the formation of an unstable thrombus. Abnormal fibrin network can make
thrombi excessively resistant to degradation or too fragile [21]. Binding of plasminogen to
fibrin during fibrinolysis has been reported to be dependent on the fibrin network conforma-
tion and fiber diameters. Fibrin fibers are generally intersected laterally rather than by
progressive uniform cleavage around the fiber [22]. Clots with a fine fibrin (tight) conformation
display a slower lysis than those with a coarse fibrin (loose) conformation, whereas, clots made
of thin fibers may be lysed faster than clots having thick fiber. Fibrin network architecture
rather than fibrin fiber diameter regulates the distribution or accessibility of fibrinolytic
components during the course of fibrinolysis [23]. Longstaff et al, (2011) recently showed that
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accessibility of the clot to fibrinolytic proteins and alterations in binding of tPA and plasmi-
nogen were both regulated by fibrin structure [24].

5. Factors affecting formation of abnormal clots

The structure and functions of fibrin clot are determined by genetic and acquired factors. Other
parameters such as microgravity, pH, temperature, reducing agents and concentration of
chloride and calcium ions may also affect the conversion of fibrinogen to fibrin; e.g. calcium
stabilizes the structure of fibrinogen, accelerates fibrin formation and can partially protect
fibrinogen from degradation. With advancement of space research substantial rise in quantity
and quality of manned space flights has provided opportunity for the eventual long-term
inhabitation of space, either on stations or other planets. Within space, a variety of altered
circumstances including changes in gravitational status, neuro-immunoendocrine modula-
tions, radiation affect the dynamic equilibrium of human body. Traumatic injuries often occur
to the astronaut during space travel for which efficient healing is required. Microgravity plays
an important role during wound healing. It has been found that fibrin gels formed in such
microgravitational condition are more homogeneous than those formed at normal gravity,
although the fibre diameter and matrix porosity remain unaltered. Changes in temperature
and concentration of proteins like, fibrinogen and thrombin substantially affect fiber diameters
and porosity of fibrin clot [9,25,26].

5.1. Genetic factors

Genetic abnormalities in the fibrinogen genes (4q28.1, 4q28.2, and 4q28.3) may cause low levels
of fibrinogen in blood, even fibrinogen production may be stopped. It leads to bleeding
problems in patients [27]. On the other hand, other genetic abnormalities may lead to the
production of fibrinogen molecules with abnormal structure and function which affect the
binding of fibrinogen with thrombin, resulting in the defective polymerization of fibrin
molecules or fibrinolytic inactivation by plasmin. This condition, known as ‘dysfibrinogenae-
mia’, has an autosomal dominant or recessive mode of inheritance [28]. Changes in chromo-
somes 5, 6,9, 16 and 17 in which the quantitative trait loci for fibrin structure are located lead
to formation of abnormal architechture of clot [29]. A Common fibrinogen Bp-chain polymor-
phism, BBArg448Lys, has been shown to affect fibrin structure in plasma clots. Fibrinogen [3-
chain plays a crucial role in conformational changes in Ca- region and lateral aggregation of
fibrin protofibrils. This determines fiber thickness and final ultrastructure of the clot. The
location of the B3Arg448Lys polymorphism is relatively close to three important areas, the
proposed [3-chain polymerization site; a 3-chain interaction site for the Ca-region and a 3-chain
calcium-binding site. Thus this polymorphism affects the fibrin structure and rigidity.
Recombinant Lys 448 and wild type fibrinogens also showed differences in fibrin structure,
both in purified systems and in plasma [30]. The a-chain Thr312Ala polymorphism is associ-
ated with formation of thick fibrin fiber with increased cross-linkage, because, this polymor-
phism lies close to the factor XIlla cross-linking site at position Aa 328 [31]. Clots produced
with a splice variant of y fibrinogen (Y’ fibrinogen) have thinner fibers, more branching which
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are more resistant to lysis [32]. Fibrinogen Naples I, is an abnormal fibrinogen with a single
base substitution (G to A) in the BB-chain gene (Ala68Thr). This polymorphism results in
inefficient binding between fibrin and thrombin causing decreased release of fibrinopeptide
A and B in both homozygous and heterozygous abnormal fibrinogens. Individuals homozy-
gous for this defect had a severe history of both arterial and venous thrombosis [33]. Most of
the plasma glycoproteins have N-linked oligosaccharides attached to the appropriate Asn
moieties of the peptide core; for example, fibrinogen contains sialic acid, galactose, mannose,
and N-Acetylglucosamine which occurs as a biantennary complex, N-linked to Asn364 of each
B and to Asn52 of each y chain [34]. Six hereditary dysfibrinogens have been reported to have
an amino acid substitution that generates an Asn-X-Ser/Thr type sequence containing extra
oligosaccharide at an Asn residue with the same biantennary structures found in normal
fibrinogen. These are, fibrinogen Pontoise at BBAsn333, Asahi at yAsn308, Lima at AaAsn139,
Caracas II at AaAsn434, Niigata at BBAsn158 and Kaiserslautern at yAsn380. Carbohydrate
moieties in fibrinogen have been proposed to be involved in the regulation of fibrin assembly
and form stable fibrin networks. However the extra-glycosylated dysfibrinogens cause altered
fibrin assembly at various stages of fibrin network formation [35].

Factor XIII polymorphisms, i.e. G to T transition in codon 34, with subsequent replacement of
valine with leucine (factor XIII Val34Leu) is associated with altered fibrin structure [36].
Thrombin activates factor XIII Leu34 more efficiently as compared to Val34. Early activation
of factor XIII and presence of high concentrations of fibrinogen result in the formation of less
permeable clots with smaller pores, thinner fibers and ineffective cross-linking [37]. ‘Dusart
syndrome’ is a congenital dysfibrinogenemia characterized by reduced plasminogen binding,
impaired fibrin-dependent plasminogen activation by tPA and abnormal fibrin polymeriza-
tion and clot structure. ‘Dusart’ fibrinogen molecules contain disulfide-linked albumin
molecules, most of which are bound in the carboxy-terminal region of the Aa554 [38, 39]. The
Factor V Leiden is a single point mutation at position 1691 in exon 10 that cause G to A transition
resulting in Glu506Arg substitution. G to A transition at position 20210 of the prothrombin
gene results in G20210A prothrombin mutations that elevates the plasma concentration of
prothrombin and in turn increases thrombin generation. These two mutations affect clot
structure resulting in Venous Thrombo-Embolism (VTE) [40].

5.2. Acquired factors

The acquired risk factors include abnormal concentration of thrombin and factor XIII in
plasma, blood flow, platelet activation, oxidative stress, hyperglycemia, hyperhomocysteine-
mia, medications, cigarette smoking, particulate matters in environment and interaction of
fibrin with other proteins, the role of which are discussed in details.

Notably prothrombin concentration plays a major role in regulating fibrin structure as the fiber
diameter of fibrin decreases with increasing prothrombin levels [41]. In both purified fibrino-
gen and plasma-based systems, clots produced with high thrombin concentrations (0.25
U/mL) are characterized by thin fibers that form a network with small pores [9]. Whereas in
hemophilia B, reduced thrombin generation is associated with the formation of lysis suscep-
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tible to loosely packed fibrin with thick fiber. Recombinant factor VIla increases the rate of
thrombin generation and clot stability [42].

There are controversies regarding the effect of blood flow on the structure and physical
properties of blood clot. One study found no effect of flow on fiber diameter, whereas another
group reported formation of thick and stiff fibers in the direction of flow, with thinner fibers
interconnecting these larger fibers perpendicularly [43-45]. Blood flow also causes location-
dependent changes in fibrin structure due to mechanical forces (radial, axial and circumfer-
ential) acting on the vessel wall. Thinner fibers with smaller pores that are formed on the
surface of thrombi are resistant to lysis with plasmin [46].

Fibrinogen is 20 times more susceptible to oxidation than albumin and may therefore scavenge
oxidants and protect other proteins from oxidation [47]. Oxidation of fibrinogen following
exposure to oxygen, metals and myeloperoxidase-derived oxidants decreases the rate of clot
formation, whereas, exposure of fibrinogen to Fe*" ascorbate promotes clot formation and
enhances platelet aggregation [47,48]. Fibrin structure and its lysability are also affected by
nitration of two (-chain tyrosines in the fibrinogen molecule [49]. F2-isoprostanes, a marker
of oxidative stress, shown to be associated with reduced clot permeability and fibrinolysis in
cardiovascular patients [50].

Platelets release proteins at the sites of platelet aggregation that alters the properties of fibrin
clot. Increased amounts of platelet factor 4 and PAI-1 contributes to the formation of compact
clot structures and impaired fibrin degradation [51]. Polyphosphate, a polymer of 60-100
phosphate residues is a platelet-derived proinflammatory and procoagulant mediator that
directly bind and activate factor XII. It affects intrinsic pathway by modulating the fibrinolytic
system, factor V activation and fibrin structure. Polyphosphates lead to the formation of tight
and thick fibrin aggregates having 3-fold higher turbidity [52]. It also impairs binding of
plasminogen and tPA to partially lysed fibrin causing prolonged clot lysis. This process is
Ca?*" dependent and independent of factor XIII activation [4,53].

Altered fibrin structure in hyperglycemia is attributed to fibrinogen glycation, which interferes
with fibrin polymerization, cross-linking by factor Xllla, tPA and plasminogen binding and
production of plasmin. Fibrinogen purified from hyperglycemic patients produces denser and
lysis-resistant clots. Treatment with insulin makes this fibrin more permeable as it decreases
tibrinogen glycation [54].

Homocysteine (Hcy), a product of methionine metabolism, increases the risk for Coronary
Artery Disease (CAD) and thrombosis. The e-amino group of fibrinogen lysines can be
modified by a highly reactive thioester, Hcy thiolactone, which is present in small amounts
(0.2 nM) in plasma. Elevated level of Hcy thiolactone introduces free sulthydryl groups to ten
lysine residues in the D- and Ca-regions of fibrinogen that increases the size of the modified
amino acid. This modification decreases the ability of fibrin to support tPA-induced plasmi-
nogen activation. This results in the formation of fibrin with thinner and more tightly packed
tibers leading to increased resistance to fibrinolysis [55,56].

The smoking-related fibrin abnormalities appear to be determined largely by elevated
fibrinogen and enhanced oxidative stress. It has been reported that following acute exposure
to cigarette smoke, fibrin clots have dense and compact fibers compared to nonsmoking
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samples [57]. Particulate matter which contained soluble components such as metal ions as
well as ultra-fine particles (< 0.22 um in diameter) has been reported to be capable of causing
alterations to fibrin structure and clot permeability in an oxidation-dependent manner [58].

Aspirin (75 mg/day) reversibly increases clot permeability and fiber mass-length ratio up
to 65%. In vitro model of acetylation of fibrinogen by aspirin showed that acetylation
reduced rigidity of clots and enhanced lysis of clot. Aspirin inhibits factor XIII activation
and fibrinogen oxidation. Ingestion of 300 mg aspirin increase clot permeability in subjects
possessing the Leu34 allele of factor XIII [59,60]. S-nitrosoglutathione (GSNO), a low Mw
member of S-nitrosothiols, is an important biological signaling molecule and has been used
clinically as an antithrombotic agent. It has been reported to bind to Ca-region of fibrino-
gen and alters its secondary structure and the kinetics of fibrin polymerization. It also
inhibits factor Xllla activity and fiber cross-linking in a dose-dependent manner. GSNO at
higher dose induces abnormal fibrin structures and fibrin agglomerates producing coarse
clot networks with decreased fibrin density and increased fiber diameter which are more
susceptible to lysis [61]. Fenfluramine (3-trifluoromethyl-N-ethylamphetamine), a drug used
as a regulator of serotonin has been reported to cause clotting abnormalities [62]. Apart
from cholesterol-lowering effects, statins reduce cardiovascular morbidity and mortality by
increasing fibrin permeability and shorter lysis time. Quinapril, an angiotensin-converting
enzyme inhibitor at 10 mg/day for 1 month can increase clot permeability by decreasing
formation of thrombin in CAD patients [63]. Metformin, an oral antidiabetic drug affects
the fibrin structure by interfering with fibrin polymerization and reduction of factor XIII-
mediated cross-linking that leads to increased lysability [64]. Anticoagulant treatment with
vitamin K antagonists, heparins, direct thrombin inhibitors, indirect thrombin inhibitors
and direct activated factor X inhibitors affects fibrin structure and physical properties
through reduced thrombin generation. This accounts for the formation of less compact and
more lysable fibrin [65].

Vascular wall components like proteins (decorin or collagen fragments efc.) and glycosami-
noglycans (chondroitin sulfate and dermatan sulfate etc) entrapped in the fibrin network
affect mechanical and chemical stability of fibrin clot. The architecture of the fibrin net-
work is not significantly influenced by the negatively charged glycosmanoglycans, but fully
glycosylated decorin, containing the same sugar subunits, modify the fibrin structure. Protein
modulators cause faster lysis of the clot, whereas glycosaminoglycans enhance plasmin
mediated clot lysis [66].

Several plasma proteins are known to bind to fibrin and change the properties and function
of the clot; e.g. lipoprotein(a) (Lp(a)) which is structurally similar to plasminogen, can compete
with plasminogen for the binding of fibrin and thereby inhibit the formation of plasmin and
eventually fibrinolysis. Lp[a] comprises of a heterogenous class of lipoprotein particles having
a core of neutral lipids and a protein moiety containing one mole of apoB-100 covalently linked
by a di-sulfide bond to one mole of apo[a]. The C-terminal domain of apo[a] containing the
catalytic triad, His4350-Asp4393-Ser4481 exhibits a high degree of homology with the serine
protease domain of human plasminogen. Apo[a] contains up to 54 kringles, among which,
kringles IV and V (KIV and KV) are homologous to plasminogen. Kringles are involved in
interactions with small molecules, for example, KIV-5, KIV-8 and KIV-10 have a high binding
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affinity for lysine, lysine analogs, and fibrin(ogen) [67]. Elevated Lp(a) levels cause formation
of thin fibrin fibers with less permeability and reduced susceptibility to fibrinolysis [68]. The
tibrin clot is stabilized against tPA-induced fibrinolysis in the presence of 0.6 to 1.0 uM myosin.
In the bound form the tPA-cofactor property of myosin is masked and the fibrin-myosin clot
starts disassembling at a slower rate through plasmin degradation than the pure fibrin clot.
Myosin weakens the interactions of FDPs leading to its polymerization that increased solubility
of the partially degraded fibrin-myosin clot [69].

Binding of fibronectin to a fibrin clot is a two step process; non-covalent and reversible binding
of fibronectin to fibrin is preceeded by covalent cross-linking by factor XIIla. Fibronectin
contains three domains with fibrin binding affinity. Low-affinity fibrin-binding sites are
contained within the C-terminal region and the high-affinity fibrin binding site resides within
the NH,- terminus of the fibronectin molecule. Covalent cross linking between glutamine in
fibronectin and the e-amino group of a lysine residue in the a-chain of fibrin is mediated by
factor XIlIla [70] Binding of fibronectin to fibrin upon injury is important for wound healing
and tissue repair [71]. Increased concentration of fibronectin in blood causes the fibrin network
to have thicker fibers and larger pores and is associated with arterial thrombosis [72]. Other
proteins that bind to fibrin includes a,-plasmin inhibitor, plasminogen activator inhibitor-2
(PAI-2), hepatocyte-derived fibrinogen-related protein-1 (HFREP-1), albumin, fibroblast
growth factor-2, vascular endothelial growth factor, interleukin-1b, factor Xa, tissue factor
pathway inhibitor, thrombin-activatable fibrinolysis inhibitor (TAFI), von Willebrand factor,
thrombospondin, actin, factor V and factor XIII. a,-plasmin inhibitor, PAI-2, TAFI, von
Willebrand factor, thrombospondin, actin and factor V have been reported to cross-link with
tibrin via factor XIIla. Howes et al, described the total protein composition of the whole clot
and identified proteins that are cross-linked via factor XIIla [73]; whereas Talens et al, identified
eighteen different fibrin clot-bound proteins, which are not cross-linked to fibrin via factor
XlIIIa [74]. These authors classified eleven out of the eighteen fibrin clot-bound proteins has
been classified into three groups related to their function: blood coagulation, protease inhibi-
tion and high density lipoprotein (HDL) metabolism. Plasminogen, factor XIII and thrombin
are involved in blood coagulation while a,-macroglobulin and «;-antitrypsin are protease
inhibitors and haptoglobin, serum amyloid P and apolipoproteins A-I, A-IV, ] and E are
involved in HDL metabolism [74]. B-amyloid 1-42 (A42) peptide may bind to each identical
ends of fibrinogen and specifically interacts near the C-terminus of the fibrinogen (3-chain and
induces oligomerization. Fibrin clots formed in the presence of ApB42 have abnormal structure
and are resistant to degradation by plasmin. This abnormal fibrin co-deposit with Af342 and
increase neurovascular damage in blood vessels [75]. Figure 4 shows co-aggregation of
different plasma proteins with fibrin. When fibrinogen (1.5 uM) was incubated with thrombin
(100 uU/ml), it forms a thread like fibrin fibers. Upon incubation with 1 uM of the plasma
proteins, the fibrin forms unusually dense network with less porous structure. Fibrin and a-
synuclein co-aggregate forms thread-like structure interspersed with dense network. These
SEM images of co-aggregates support the previous finding that binding of plasma proteins
with fibrin alters its fiber diameter, porosity. The dense clumps of aggregates might show poor
lysability.
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Figure 4. Morphology of abnormal fibrin co-aggregate. A. Normal fibrin network; B. Fibrinogen - fibronectin co-ag-
gregate; C. Fibrinogen- AB42 co-aggregate; D. Fibrinogen - transthyretin co-aggregate; E. Fibrinogen - human serum
albumin co-aggregate; F. Fibrinogen - lysozyme co-aggregate and G. Fibrinogen-A53T a-synuclein co-aggregate. In
these experiments, 1.5 uM fibrinogen was incubated with 100 pU/ml of thrombin (after dilution from bovine throm-
bin, 1000 NIH Units, Sigma Aldrich, USA) at 37°C for 24 hr to form fibrin clot. The co-aggregate was prepared under
identical conditions with 1 uM of the plasma proteins as stated above. Morphological analysis of protein aggregates
was done using scanning electron microscope (Model: Vega Il LSU, Tescan Digital Microscopy Imaging, Czechoslova-
kia). The sample (10 pl) was placed on a carbon coated 300-mesh grid for 5 min at 25°C and the unbound substrate
was removed by blotting paper. To stain the adhered particles, the grid was treated with 2% uranyl acetate for 20 sec
and the excess reagent was removed as stated. The grid was dried under vacuum, sputter coated with gold-palladium
alloy and viewed under SEM at 10.0 kV voltages and 20,000 x magnification.

6. Pathophysiological role of abnormal clots

Abnormally structured clots may also generate emboli that can lodge in critical organs,
disrupting the blood flow with potentially fatal consequences like liver diseases, ischemic
stroke, myocardial infarction, venous thromboembolism, atherothrombotic vascular disease,
peripheral artery disease, coronary artery disease, adult respiratory distress syndrome, retinal
vein occlusion, end-stage renal disease, acute pancreatitis, rheumatoid arthritis, type 1 and
type 2 diabetes and Alzheimer disease.

6.1. Liver diseases

The increased sialic acid content in the oligosaccharide of the abnormal fibrinogen impairs
polymerization of fibrin monomers leading to severe dysfibrinogenemia in patients with End
Stage Liver Disease (ESLD) [76,77]. Accelerated fibrinolysis is attributed by the impaired
clearance of tPA and other fibrinolytic enzymes by the diseased liver, without an appropriate
increase in plasminogen activator inhibitors [78]. Impaired hepatic synthesis of fibrinolytic
inhibitors like, a,-plasmin inhibitor and TAFI contributes to increased levels of plasmin. The
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hemostatic imbalance in ESLD occasionally favors hypercoagulability, predisposing to
thrombosis [79].

6.2. Ischemic stroke

Four types of inherited abnormalities of fibrinolysis (plasminogen deficiency, plasminogen
activator deficiency, dysfibrinogenemia and factor XII/prekallikrein deficiencies) are related
to thrombosis. Fibrin clots were formed more rapidly and had a compact structure composed
of thicker fibers and reduced permeability compared to those made from plasma obtained
from healthy controls [80].

6.3. Myocardial infarction (MI)

The term myocardial infarction pathologically denotes the death of cardiac myocytes due to
extended ischemia. Rupture of the atherosclerotic plaque? in an epicardial coronary artery
contributes to the activation, adhesion and aggregation of platelets and the production of
thrombin, causing subsequent thrombus formation which occludes the vessels and impedes
blood flow [81]. Acute MI patients show the tendency to form less permeable and lysable fibrin
clots that are composed of thicker fibers [82].

6.4. Venous thromboembolism (VTE)

Forming thrombus inside the vessel (intravascular thrombosis) of the lower extremities and
to a lesser extent in the upper extremities may lead to partial or complete blockage of blood
flow through this vessel causing a serious pathological problem known as deep vein
thrombosis (DVT). When an embolus goes up through the circulation settling in an arterial
branch in the lungs, it cause pulmonary embolism (PE). DVT and PE together are called
venous thromboembolic disorders (VTE). In addition to abnormalities in the blood
coagulation system due to increased thrombin generation, it can be caused by defective
plasminogen, tPA deficiency and higher level of TAFI. These indicate enhanced fibrin
formation and degradation [83]. Curnow et al, 2007 showed that patients with arterial
thrombosis, VTE, pregnancy complications or autoimmune diseases have increased fibrin

generation and reduced fibrinolysis [84].

6.5. Peripheral arterial disease (PAD)

It results from progressive narrowing of the peripheral arteries, most commonly in the pelvis
and legs. In middle-aged and elderly PAD patients, it has been shown that plasma fibrin clots
contain thicker fibers and smaller pores, which form more rapidly, but are lysed at a reduced
rate, compared with those made from plasma obtained from healthy individuals [16].

2 Deposition of a solid substance in the lining of the artery wall leading to hardening of the arteries. The core of the plaque
ismade of fatty substances, cholesterol, waste products from the cells, calcium, and fibrin, which is separated from arterial
bloodstream only by a slender and fragile layer of tissue, the fibrous cap.
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6.6. Coronary artery disease (CAD)

It is caused by the narrowing and hardening (atherosclerosis) of arteries which supply blood
to the cardiac muscles. In CAD patients, plasma fibrin clots are denser and less permeable than
healthy individuals. The fibrin clots with tightly packed, thin fibers and small pores are
associated with the number and severity of coronary artery stenoses (diseased arterial tissue)
documented by angiography. C reactive protein (CRP) binds to fibrin(ogen) and may alter
fibrin network formation, clot permeability and susceptibility to lysis both in healthy and CAD
patients [85].

6.7. Adult respiratory distress syndrome (ARDS)

Alveolar fibrin deposition is one of the hallmarks of this syndrome. In ARDS the increased
PAI and a,-plasmin inhibitor levels lead to decreased fibrinolytic activity and increased
alveolar fibrin deposition [86]. It appears to contribute to the magnitude of the inflammatory
response by virtue of their ability to cleave and degrade products to promote chemotaxis,
increase vascular permeability and exert modulatory effects on various immune cells. It also
causes lung fibrosis by providing a matrix for macrophage migration and by promoting
angiogenesis and collagen deposition [87].

6.8. Rheumatoid arthritis (RA)

During inflammation, the exudation of plasma into joints results in accumulation of high
concentration of coagulation factors at the synovial fluid and often accompanied by fibrin
deposits. Patients with RA have faster clot formation, higher clot absorbance at 405 nm,
indicating presence of thicker fibrin fibers than healthy individuals. Moreover, the clot is less
permeable and lysis time is longer. Fibrin deposition is correlated with fibrinogen, tPA, PAI-1,
PAI-2, CRP, platelet count and 8-iso-prostaglandin F, alpha, an inducer of oxidative stress [88].
Local activation of complement system helps to stabilize fibrin clots thereby decreasing the
fibrinolytic potential at the joint. Local production of the regulatory factor C4B-binding protein
(C4BP) by rheumatoid synovial fibroblasts as well as its co-localization with fibrin-rich areas
at the synovial tissue contributes to fibrin deposition at synovial joints. Fibrin is one of the
major substrate for peptidyl deiminases that transform Arg residues into Cit (citrulline)of
fibrin and subsequently change its physical properties inside inflamed joints. This modification
makes the clot resistant to proteolytic degradation by altering the binding sites for plasmin.
Further, the deformity turns the molecule antigenic [89].

6.9. Type 1 and type 2 diabetes

Diabetic patients suffer from persistent hyperglycaemia, which cause protein glycation.
Protein glycation generates glycoaldehyde that induces post-translational modification in
tibrinogen, which impairs the fibrinolytic process. Decreased binding of tPA and plasminogen
to fibrin, reduced plasmin generation on the clot surface and increased cross-linking cause
formation of dense, less porous fiber with reduced lysability in diabetic patients as compared
to healthy non-diabetic persons [90].
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6.10. Retinal vein occlusion (RVO)

Abnormal fibrin clot with poor lysability contribute to the hyperviscosity reported in this
disease. Elevated level of CRP, which binds to fibrinogen might be responsible for this
abnormality [91].

6.11. End-stage renal disease (ESRD)

In ESRD patients, plasma fibrin clots have reduced permeability, faster protofibril formation,
increased fiber size and mass, decreased susceptibility to fibrinolysis, compared with healthy
individuals. The plasma concentration of the acute phase protein fibrinogen plays major role
in regulating fibrin structure properties. Besides the levels of other acute phase proteins such
as orosomucoid, CRP and interleukin 6 (IL-6) have also been reported to affect the tightness
and density of plasma clots [50,92,93].

6.12. Alzheimer disease (AD)

Fibrinogen circulates through the brain and spinal cord vasculature without entering the
central nervous system (CNS) due to blood brain barrier (BBB) [94,95]. However, in patholog-
ical conditions like injury or diseases associated with vascular disruption, infection or
inflammation, the concentration of fibrinogen increases beyond its normal limit (2-4 mg/ml)
and enters into CNS through disrupted BBB [96]. The synergistic effect of higher fibrinogen
level and presence of A3 peptide produce lysis resistant clots in neurovascular diseases, which
contributes to vascular deficiencies, decreased blood flow, increased inflammation and
neuronal death leading to higher severity of AD [75]. AB can alter fibrinolysis by three
independent mechanisms; A{ intercalates into fibers during formation of fibrin network
promoting generation of clots with an abnormally dense fiber network, blocks binding of
plasminogen to fibrin and therefore blocks generation of plasmin and finally as a result, alters
the rate of plasmin-mediated fibrinolysis [97,98].

7. Role of plasmin

The suitability of a protein as a substrate of a proteolytic enzyme primarily depends on two
factors; specificity of the enzyme i.e. the peptide bond of the amino acids that the enzyme
targets to hydrolyze and accessibility of the hydrolysable bond to the catalytic site of the
protease. Thus, mere existence of a proteolytically cleavable bond in the primary amino acid
sequence of a protein does not ensure it to be hydrolyzed by a protease until the bond is
physically accessed by the catalytic site of the enzyme. Because of this stringency, many
proteins can survive proteolysis while maintaining compact configuration of the native state
in an environment of proteases whereas the partially or fully denatured state of the same
protein is easily degraded by the proteases. Sometimes it also happens that a proteolytically
sensitive region of a protein is first cleaved off by a protease followed by complete unraveling
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of the molecule in a cooperative manner leading to its fragmentation. For large multi-domain
proteins, usually the domains are connected by proteolytically sensitive hinge regions. Once
the domains are cleaved off, structural integrity of each domain is lost facilitating digestion by
the proteases. Therefore, if the peptide bonds of fibrin polymer (clot) that are otherwise
hydrolysable by plasmin are no more accessible to the enzyme due to alteration of the structure
of the clots, fibrin in its modified form may be partly or completely resistant to plasmin. For
example, tighter fibrin networks composed of thin fibers are degraded less efficiently by
plasmin than those composed of thick fibers due to two reasons; first, an increased number of
fibers to be cleaved and second, decreased porosity of tighter fibrin networks make the
fibrinolytic enzymes inaccessible to the hydrolysable bonds [99]. In case the fibrin clot is not
constituted of pure fibrinogen rather a copolymer with other protein/s or ligand, the situation
becomes even more complicated. The added molecules may sterically protect the hydrolysable
bonds of fibrin from the action of plasmin. Taken together, the fibrin clot may be completely
resistant to plasmin, e.g. AP binds to the fibrinogen 3-chain near the 3-hole, which is in close
proximity to residues 148-160 of the Aa-chain and modifies the structure in such a way that it
inhibits plasmin to bind the copolymer [98].

In the dissolution of the clots, the substrate (fibrin) is virtually static. It is only the enzyme
plasmin that is free in the solution and is capable of searching and recognizing the hydrolysable
bonds. From an enzymologist’s point of view, these reactions are difficult to take place, slow
and are not supposed to follow normal Michaelis-Menten relation of enzyme kinetics. From
the above discussion, it is apparent that when dealing with abnormal clots, presence of plasmin
may not be limiting. It is the deformation of the structure of the fibrin clot that prevents it from
being degraded by plasmin.

8. Prevention and treatment

At present, there are three major classes of medicines to treat patients with a thrombophilic
disorders: antiplatelet, anticoagulant and thrombolytic agents. There are several medications
that are used to inhibit platelet aggregation through the process by which platelets clump
together to plug the injured surface. Among them aspirin, dypyridamole, ticlopidine and
clopidogrel are orally administered, glycoprotein IIb/IIla (GP IIB/IIIA) inhibitors are intrave-
nous (IV) forms, whereas, non-steroidal anti-inflammatory drugs (NSAIDs) are available in
either of the forms stated. The anticoagulants, which act through inhibiting or altering steps
in the coagulation cascade, include warfarin (Coumadin), heparin etc. Thrombolytic medica-
tions serve to break up the fibrin clot. This includes streptokinase, uPA, tPA and their re-
combinant variants. Streptokinase binds with plasminogen and ultimately forms streptokinase
and plasmin complexes. These complexes are more efficient than plasmin alone at breaking
down a clot. Excessive bleeding is a serious consequence of using these medications [100]. The
specific impact of the abnormal fibrin structure on the efficiency of each of these therapeutic
agents has not been comprehensively characterized to date.
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The activity of fibrinolytic enzymes isolated from natural sources often resembles the activity
of plasmin and plasminogen activators [101]. Earthworms have been used in East-Asian
traditional folk medicine for thousand years for the antithrombotic effect. Later, Mihara et al,
1983 first isolated lumbrokinase (LK), a fibrinolytic enzyme from the Lumbricus rubellus
(earthworm) [102]. Few fibrinolytic enzymes have been isolated from earthworm Perionyx
excavates, which show rapid hydrolysis on both coagulated fibrous fibrin and soluble fibrino-
gen monomers in absence of activators such as tPA or urokinase [103]. Snake venom proteases
possess coagulatory and fibrinolytic activities. Fibrino(geno)lytic enzymes have been isolated
from the venoms of Agkistrodon acutus, A. contortrix, A. rhodostoma, A. halys brevicaudus, A.
piscivorus piscivorus, A. piscivorus conami and Crotalus atrox etc [104]. Russell's viper (Daboia
russelli russelli) venom contains a fibrinolytic enzyme that also shows hemorrhagic activity.
Exposure to 90°C irreversibly destroys the hemorrhagic activity of this enzyme while its
tibrinolytic activity could be restored on cooling [105]. Caffeic acid phenethyl ester (CAPE), a
phenolic compound found in honey bee product has been reported to have fibrinolytic activity
[106].

Microbial fibrinolytic enzymes have been isolated from bacteria (e.g. Streptomyces sp, Actino-
myce sp etc), fungi, and algae. Streptokinase and staphylokinase are two well-known plasmi-
nogen activators from Streptococcus hemolyticus and Streptococcus aureus, which have been
found to be effective in thrombolytic therapy. Fibrinolytic enzymes have also been purified
from fermented products like Japanese natto, Korean Chungkook-Jang soy sauce, dochi,
fermented shrimp paste, salt-fermented fish, fermented vegetables, e.g. Kimchi and Indonesia
soy products, e.g. Tempeh [107]. The first commercial fibrinolytic enzyme, nattokinase was
purified and characterized from natto, a popular soybean food in Japan, which is fermented
by Bacillus subtilis natto [108]. Fibrin(ogen)olytic enzymes have been identified from mush-
rooms like Pleurotus ostreatus, Armillaria mellea, Tricholoma saponaceum, Cordyceps militaris,
Ganoderma lucidum, Fomitella fraxinea, Cordyceps sinensis, Flammulina velutipes, Fusarium sp. and
Schizophyllum commune [107].

Antioxidant therapy using vitamin C showed satisfactory result in patients having type 2
diabetes with CAD by regulating the fibrinolytic system [109]. High dosages of vitamin C and
vitamin E in combination have been reported to improve endothelial function and decrease
plasma levels of PAI-1, von Willebrand factor and PAI-1/tPA ratio in chronic smokers, thereby
keeping under control the excessive thrombotic trend in these patients [110]. Astaxanthin, a
red pigment carotenoid found in salmons and crustacean species, protects experimental
animal models from vascular oxidative damage, hypertension and cerebral thrombosis [111].
It has been found that folic acid, vitamin B6 and vitamin B12 are very effective at lowering
homocysteine and thereby prevent thrombosis [112]. Therapeutic approaches using these
natural product-derived fibrin(ogen)olytic enzymes and antioxidants showed promising
results in both experimental and clinical settings. However, there are no reports regarding the
application of these molecules for prevention of abnormal fibrin clot formation.
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9. Conclusion

Abnormal blood clots are formed by a variety of reasons leading to variable structures of the
clots. Therefore, it is difficult to conceive that they could be treated by a general protocol.
Information on this part is scanty. Our ongoing investigations indicate that there are fibrino-
lytic enzymes from plant and mammalian sources that are capable of efficient degradation of
the fibrin-plasma protein co-aggregates (P. Bhattacharjee and D. Bhattacharyya, manuscript
to be communicated elsewhere). Whether these enzymes may be upgraded to drugs remains
speculative at this stage. We have a feeling that remedies for combating abnormal clots will
be available from natural sources in due course.
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