
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900

11

Hybrid Tabu Search for Re-Entrant Permutation
Flow-Shop Scheduling Problem

Jen-Shiang Chen1, Jason Chao-Hsien Pan2 and Chien-Kuang Wu2

1Far East University,
2National Taiwan University of Science and Technology,

Taiwan,
R.O.C

1. Introduction

The assumption of classical shop scheduling problems that each job visits each machine only
once (Baker, 1974) is often violated in practice. A new type of manufacturing shop, the re-
entrant shop has recently attracted attention. The basic characteristic of a re-entrant shop is
that a job visits certain machines more than once. For example, in semiconductor
manufacturing, consequently, each wafer re-visits the same machines for multiple
processing steps (Vargas-Villamil & Rivera, 2001). The wafer traverses flow lines several
times to produce the different layer on each circuit (Bispo & Tayur, 2001). A re-entrant flow-
shop (RFS) refers to situations in which every job must be processed on machines in the
order, M1, M2, …, Mm, M1, M2, …, Mm, …, and M1, M2, …, Mm. Every job can be decomposed
into several layers each of which starts on M1 and finishes on Mm. In the RFS case, if the job
ordering is the same on any machine at each layer, then no passing is said to be allowed,
since no job is allowed to pass any former job. The RFS scheduling problem in which no
passing is allowed, is called a re-entrant permutation flow-shop (RPFS) problem.
The assumptions made for the RPFS scheduling problems are summarized here. Every job
may visit certain machines more than once. Machine order is the same for each of the n jobs.
Job order is the same for each of the m machines at each layer. The classical permutation
flow-shop scheduling problem can be modified to suit the RPFS scheduling problem by
relaxing the assumption that each job visits each machine no more than once. This study
considers the RPFS scheduling problems with the objective of minimizing makespan of jobs.
Hwang & Sum (1998) addressed a two-machine flow-shop problem with re-entrant
workflows and sequence dependent setup times, which have a special structure, to
minimize makespan. Demirkol & Uzsoy (2000) proposed a decomposition method to
minimize maximum lateness for a RFS with sequence-dependent setup times. Graves et al.
(1983) modeled a wafer fabrication as a RFS, where the objective is to minimize average
throughput time subject to meeting a given production rate. Drobouchevitch & Strusevich
(1999) developed a heuristic algorithm for the two-machine re-entrant shop problem to
minimize the makespan. Kubiak et al. (1996) considered a class of re-entrant shops in which
jobs followed the route of M1, M2, M1, M3,…, M1, Mm, M1 with the objective of minimizing
the mean flow time. They showed that the shortest-processing-time (SPT) rule was optimal

Source: Local Search Techniques: Focus on Tabu Search, Book edited by: Wassim Jaziri, ISBN 978-3-902613-34-9, pp. 278,
October 2008, I-Tech, Vienna, Austria

O
pe

n
A

cc
es

s
D

at
ab

as
e

w
w

w
.i-

te
ch

on
lin

e.
co

m

www.intechopen.com

 Local Search Techniques: Focus on Tabu Search

222

provided certain restrictive conditions held. Wang et al. (1997) proposed the scheduling of a
chain-reentrant shop in which each job is first processed on a machine called the primary
machine, then on other machines in a fixed sequence, and finally back to the primary
machine for last operation. The objective of the problem is to minimize the makespan.
Tabu search (TS) is a meta-heuristic that guides a local heuristic search procedure to explore

the solution space beyond local optimality. The local procedure is a search that uses an

operation called move to define the neighborhood of any given solution. One of the main

components of TS is its use of adaptive memory, which creates a more flexible search

behavior. Memory-based strategies are the hallmark of TS approaches (Glover & Languna,

1997). It has been shown to be a remarkably effective approach in a wide spectrum of

problem areas from general integer and nonlinear programming to sequencing and

production scheduling problems. Tabu search is a local search based optimization method

that has been successfully used to solve many difficult combinatorial optimization

problems, particularly in the scheduling area. These methods suggested by Glover (1989)

can be sketched as follows: starting from an initial feasible solution, at each step we choose a

move to a neighboring solution in such a way that we move stepwise towards a solution

giving hopefully the minimum value of some objective function. Nowicki & Smutnicki

(1996, 1998) developed effective TS methods for job-shop, flow-shop, and flow-shop with

parallel machines problems to optimize the makespan criterion. These algorithms employ a

classical insertion neighborhood, which is significantly reduced by a candidate list strategy

for removing useless moves, in order to concentrate on “the most promising part” of the

neighborhood.

As to the n/m/J/Cmax problem which has been studied for a long time and is known to be

NP-hard (Garey et al., 1976), the algorithm given by Adams et al. (1988), called shifting

bottleneck uses the iterative solutions of a single bottleneck machine problem to build up

and improve a schedule. Better solutions than the ones given by deterministic algorithms

were found using simulated annealing but at the cost of longer computations. Tabu search

was the first applied to job-shop by Taillard (1989), who proposed a sequential and a

parallel algorithm. Dell’Amico & Trubian (1993) applied TS to the notoriously difficult job-

shop scheduling problem.

For n/m/F/Cmax problems, Palmer (1965) developed a quick method of obtaining a near
optimum and Campbell et al. (1970) presented a heuristic algorithm as well. Widmer &
Hertz (1989) used a simple insertion heuristic based on an analogy with the traveling
salesman to the flow-shop problem to generate the starting order of the jobs and tried to
improve this solution using TS techniques. In direct competition with the heuristic
developed by Nawaz et al. (1983), TS method performed superiorly for 58% of the problems
and matched the best solutions found for 92% of the problems.
Pan & Chen (2003) presented three extended mixed binary integer programming

formulations and six extended effective heuristics for solving RPFS scheduling problems to

minimize makespan. The TS method has been used to solve classical flow-shop problems

and has performed well. This study considers RPFS scheduling, and applies hybrid tabu

search (HTS) to minimize the makespan of jobs. The hybridization method is used to

improve pure TS performance. The HTS is compared to the optimal solutions generated

using the integer programming technique (Pan & Chen, 2003), and to the near optimal

solutions generated by pure TS and other heuristics proposed by Pan & Chen (2003).

www.intechopen.com

Hybrid Tabu Search for Re-Entrant Permutation Flow-Shop Scheduling Problem

223

2. The optimization model

A classical (permutation) flow-shop problem assumes that all operations of each job visit

every machine exactly once in the order of M1, M2, …, and Mn. Define this order of
processing to be a level, then the routing requirement of a job in a RPFS problem can be
decomposed into several levels. Hence, a classical permutation flow-shop is a special case of
a RPFS with a single level and some of its formulations can be extended to solve the RPFS.
To illustrate the concept of level decomposition, consider job i consisting of six operations to
be processed on two machines, where (i, j, k) denotes that operation j of job i must be

processed on Mk and thus its routing is (i, 1, 1)→ (i, 2, 2)→ (i, 3, 1)→ (i, 4, 2)→ (i, 5, 1)→ (i, 6,
2) and the corresponding processing time of each operation is orderly 8, 2, 7, 4, 5, and 1. The

processing requirement of job i can be decomposed into three levels, where (i, 1, 1)→ (i, 2, 2)

is the first level, (i, 3, 1)→ (i, 4, 2) is the second, and (i, 5, 1)→ (i, 6, 2) is the third. Let i

lk
O be

the operation of job i on machine k at level l, i

lk
p be the processing time of the operation of

job i on machine k at level l. Consequently, iO
11

= (i, 1, 1), iO
12

= (i, 2, 2), iO
21

= (i, 3, 1), iO
22

= (i,

4, 2), iO
31

= (i, 5, 1), iO
32

= (i, 6, 2), ip
11

= 8, ip
12

= 2, ip
21

= 7, ip
22

= 4, ip
31

= 5, and ip
32

= 1.

2.1 Notations

 M = a very large positive number;
 m = number of machines in the shop;
 n = number of jobs for processing at time zero;
 L = number of levels of job i;

 i

lk
p = the processing time of the operation of job i on machine k at level l;

 xij = 1, if job i is scheduled in the jth position at each level; 0, otherwise;
 hklj = the starting time of the operation scheduled at jth position of level l on machine k;
 Cmax = the maximum completion time or makespan;

2.2 Formulation

Pan & Chen (2003) were the first authors to present the integer programming model for
solving the reentrant permutation flow-shop problem. The binary variable xij that the model
uses is restricted by a single permutation of the numbers 1, 2, …, n that specifies the order in
which jobs are processed on any machine at each level. The model is as follows.
Minimize

 Cmax (1)

Subject to ∑
=

n

j

ij
x

1

= 1 i = 1, 2, ..., n (2)

 ∑
=

n

i

ij
x

1

= 1 j = 1, 2, ..., n (3)

 h111 = 0 (4)

 h1,1,j+1 = h11j + ∑
=

n

i

i

ij
px

1

11
 j = 1, 2, …, n − 1 (5)

www.intechopen.com

 Local Search Techniques: Focus on Tabu Search

224

 h1,l,j+1 ≥ h1lj + ∑
=

n

i

i

lij
px

1

1
 l = 2, 3, …, L; j = 1, 2, …, n − 1 (6)

 h1,l+1,1 ≥ h1ln + ∑
=

n

i

i

lin
px

1

1
 l = 1, 2, …, L − 1 (7)

 h1,l+1,j ≥ hmlj + ∑
=

n

i

i

lmij
px

1

 l = 1, 2, …, L − 1; j = 1, 2, …, n (8)

 hk,l,j+1 ≥ hklj + ∑
=

n

i

i

lkij
px

1

 k = 2, 3, …, m; l = 1, 2, …, L; j = 1, 2, …, n − 1 (9)

 hk,l+1,1 ≥ hkln + ∑
=

n

i

i

lkin
px

1

 k = 2, 3, …, m; l = 1, 2, …, L − 1 (10)

 hk+1,1,1 = hk11 + ∑
=

n

i

i

ki
px

1

11
 k = 1, 2, …, m − 1 (11)

hk+1,l,j ≥ hklj + ∑
=

n

i

i

lkij
px

1

 k = 1, 2, …, m − 1; l = 1, 2, …, L; j = 1, 2, …, n;

 (l, j) ∉ {(1, 1)} (12)

 hk+1,l+1,1 ≥ hkln + ∑
=

n

i

i

lkin
px

1

 k = 1, 2, …, m − 1; l = 1, 2, …, L − 1 (13)

 Cmax = hmLn +∑
=

n

i

i

Lmin
px

1

 (14)

Cmax ≥ 0, hklj ≥ 0 k = 1, 2, …, m; l = 1, 2, …, L; j = 1, 2, …, n;

 xij = 0 or 1 i = 1, 2, ..., n; j = 1, 2, ..., n (15)

Constraint (1) describes the objective function. Constraints (2) to (5) and (11) are essentially

definitional, while constraints (6) to (10), (12) and (13) enforce the precedence relationships.

Constraint (14) defines Cmax to be the finish time of the last job processed on Mm at the last

level. The non-negativity and binary restrictions on hklj and xij, respectively, are specified in

(15).

3. Hybrid tabu search

The HTS method differs from pure TS that it is not likely to trap in local optimum. The main

idea of HTS is that when neighboring solutions are not able to update the current best

solution for a period of time, a good problem-specific heuristic or dispatching rule is

combined in pure TS to explore new solution region. With this feature, HTS is able to avoid

falling into local optimum and move toward a better solution.

www.intechopen.com

Hybrid Tabu Search for Re-Entrant Permutation Flow-Shop Scheduling Problem

225

3.1 Initial solution

The classical (permutation) flow-shop problem has been proved to be NP-complete
(Coffman, 1976; Rinnooy Kan, 1976). Hence, many heuristics have been proposed to provide
a quick and good solution. Some of the well-known heuristics include the methods
proposed by Campbell et al. (1970), Dennenbring (1977), Johnson (1954), Nawaz et al. (1983),
and Palmer (1965). Pan & Chen (2003) made appropriate modifications to these six heuristics
to solve the RPFS scheduling problems by taking the reentry property into account. The
results showed that heuristic NEH (Nawaz et al., 1983) outperform the other algorithms in
the set of problems with unknown optimal solutions. Hence, NEH is used to generate initial
solution for RPFS problems.

3.2 Neighborhood search

Neighborhood search starts from current solution and seeks to find feasible, hopefully
better, solutions in its neighborhood. If the neighboring solution is better than current one,
this current solution is replaced by the neighboring solution until stopping rules satisfied.
When dealing with RPFS problems, we have to focus on the jobs. The main reason is that
once the processing sequence is determined, every machine follows the same order for all
jobs. The problem will be simpler when we focus on jobs instead of operations. The
neighborhood solutions are produced by interchanging the job order of the initial solution.

3.3 Choosing a move

First, the makespan for each neighborhood solution is calculated. Second, the solution that
has the minimal makespan among others and outside tabu list or meets aspiration criterion
is selected as a move.

3.4 Recording in tabu list

Nowicki & Smutnicki (1996) suggested recording the number of jobs exchanges of the move
in tabu list. By doing so, whether two jobs had performed exchange or not can be held in the
tabu list. A move v = (x, y) is added to tabu list T in the following standard way. The tabu
list T is shifted one position forward and put v in the last position in the list, that is, Tj = Tj+1,

j = 1, 2, …, maxt − 1, and Tmaxt = v. In this study, the length of tabu list is set to seven and
first-in-first-out (FIFO) rule is adopted; that is, when the tabu list is full, the new move
replaces the earliest one entering tabu list and adds the maximal searching times by one.

3.5 Recording the best-so-far solution

If the solution after the move is better than the current best-so-far solution, replace the best-
so-far solution and reset the non-improvement times to zero; otherwise, add non-
improvement times by one.

3.6 A hybrid method

When a new best solution cannot be found for longer than a predetermined number of
iterations, that is, count > threshold, the search switches to heuristic phase. Normal TS in
this situation usually calls for intensification or diversification strategies to get out of a local
optimum. Typical intensification or diversification strategies keep memory structures for
storing rather a rather long history of recent search activities and use these structures to

www.intechopen.com

 Local Search Techniques: Focus on Tabu Search

226

guide future search directions (Hwang et al., 2002). The idea of Hwang et al. (2002) is cited
to find the hybrid occasion of TS and heuristic. When the non-improvement times increase
continuously, it means that best-so-far solution is not replaced by neighborhood solutions
for a period of time, which is a signal that TS is likely to entrap in local optimum. In this
situation, a hybrid method is introduced to explore new solution region. A threshold is set
to twenty, which means that once the non-improvement times were cumulated to twenty,
NEH is hybridized into TS to find a new solution. After that, non-improvement times are
reset to zero and the searching process proceeds based on the new solution until stopping
rules are satisfied. The overall procedure for the HTS algorithm is as follows.
Pseudo-code for the HTS algorithm
Find an initial solution x
Define tabu structure and set Count = 0
Repeat until stopping condition is met
Generate neighborhood sets of x: S1, S2, ..., Sk

Select the best non-tabu solution x′ from S1∪S2∪…∪Sk

x ← x′
if x is better than the current best-so-far solution then
 Count = 0
else

 Count = Count + 1
end if

if Count > threshold then
 Update x by calling NEH heuristic and set Count = 0
end if

This hybrid method is illustrated in Fig. 1. Suppose the sequence of a schedule is (1, 2, 3, 4, 5,

6, 7, 8, 9, 10, 11, 12), two position C1, C2 are selected randomly from 1 to 12, representing the

starting and end point of the substring (C1, C2). This substring is then treated as a sub-

problem and solved by NEH heuristic. The new sequence then replaces the original

substring (C1, C2). By doing this, a new solution is generated and serves as a new starting

point of TS in order to get rid of local optimum.

3.7 Stopping rules

There are two stopping rules considered in this study and they are stated below.

(1) Non-improvement times:
 This rule counts the number of non-improvement moves for TS. When the best-so-far

 solution cannot be replaced after one iteration, this counter adds by one.

(2) Max iteration:
 This is the maximal iteration number that a TS takes. Once this number is reached, the TS
 is terminated.

4. An illustrative example

A small size problem of RPFS is given in this section. In the example, it is assumed that there

are five jobs (n = 5), three machines (m = 5), and each job reenter twice (L = 2) in the shop. In

a RPFS problem, the job sequence on each machine is the same and any sequence change on

one machine will result in the sequence change in the rest machines.

www.intechopen.com

Hybrid Tabu Search for Re-Entrant Permutation Flow-Shop Scheduling Problem

227

1 2 3 4 5 6 7 8 9 10 11

Select two random points C1,
C2 (C1 < C2).

C1 C2

The substring is solved
by heuristic.

The new sequence obtained by
heuristic replaces the original one
resulting a new solution.

C1 C2

12

5 6 7 8 9 10

5 6 7 8 9 10

1 2 3 4 7 6 5 9 8 10 11 12

Fig. 1. A hybrid tabu search

4.1 Initial solution

In RPFS problems, NEH heuristic is used to generate an initial solution. For example, the

schedule by NEH is (3, 5, 1, 4, 2) which represents the job sequence on each machine in the

shop. If this sequence is changed, the processing order of jobs on each machine changes

accordingly.

4.2 Neighborhood search

First, (3, 5, 1, 4, 2) is the starting point and the pair-wise exchange method is applied on it, as

shown in Table 1. Next, the neighboring solution with the least makespan value and outside

of the tabu list is selected as a move.

4.3 Record into tabu list

It is found that neighboring solution 2 has the minimal makespan among these

neighborhood solutions (see Table 1), and this schedule is obtained by exchanging job 3 and

job 1. Therefore, it is needed to check whether job 3 and job 1 are in tabu list. If they are not

in tabu list, a move is made and iteration number is added by one; otherwise, the

www.intechopen.com

 Local Search Techniques: Focus on Tabu Search

228

neighboring solution with second least makespan is checked. If it is in tabu list, too, the third

least one is checked. This procedure continues until none of the exchanged operations are in

tabu list and a move can be made.

Number Neighborhood solution Makespan

1 5 3 1 4 2 340

2 1 5 3 4 2 335

3 4 5 1 3 2 347

4 2 5 1 4 3 337

5 3 1 5 4 2 348

6 3 4 1 5 2 355

7 3 2 1 4 5 340

8 3 5 4 1 2 348

9 3 5 2 4 1 358

10 3 5 1 2 4 345

Table 1. The sequence and makespan of neighborhood solutions

4.4 Record best-so-far solution

Compare the makespan (= 335) of neighboring solution 2 to that of the best-so-far solution

(= 343). If it is better than the best-so-far solution, update the best-so-far solution and reset

the non-improvement times to zero; otherwise, the best-so-far solution is kept and non-

improvement times is added by one.

4.5 Hybrid method

The hybrid method for RPFS is described briefly. First, the new solution (3-5-1-4-2) is use to

search better neighborhood solutions until stopping rule are satisfied. In the following,

several iterations are omitted to describe the hybrid method directly. In RPFS example, the

threshold value is also set to 3. After several iterations, the neighboring solution (3-2-1-5-4)

is generated. Then, two points are selected randomly, say C1 = 2, C2 = 4 to define an interval

(i.e., a substring). This substring is then treated as a RPFS subproblem and rescheduled by

NEH heuristic. The new sequence then replaces the original substring to form a new

solution, as shown in Fig. 2. Finally, we base on this new solution to search new

neighborhood solutions and find a neighboring solution with makespan of 327 is better than

the best-so-far solution (= 335). These neighborhood solutions based on above searching

procedures repeats until the stopping rules are satisfied.

5. Computational results

The experimental environment and the meaning of each parameter are described as follows.

n is the number of jobs, m is number of machines, and L is number of layers. The problem

n×m×L is a RPFS problem with n jobs, m machines, L layers. The test problems are classified

www.intechopen.com

Hybrid Tabu Search for Re-Entrant Permutation Flow-Shop Scheduling Problem

229

into 3 categories: small problems, medium problems, and large problems. Types of small

problems include 3×3×3, 4×4×4, 5×4×3, 5×5×4, 6×8×5, 7×8×4, 8×8×4, 9×7×4, 9×9×3, and

10×6×3. Types of medium problems include 11×17×5, 12×20×6, 13×19×7, 14×18×9, 15×17×6,

16×16×7, 17×15×8, 18×16×6, 19×12×10, and 20×15×8. Types of large problems include

25×25×10, 30×30×7, 40×40×6, 50×50×5, 60×60×3. The processing time of each operation for

each type of problem is a random number generated from [1, 100] since the processing times

of most library benchmark problems are generated in this range (Beasly, 1990).

In order to demonstrate the performance of HTS, it is compared to optimal solution

obtained by integer programming (IP) for small problems. The IP model is proposed by Pan

and Chen (2003) for solving RPFS scheduling problems. For medium and large problems,

HTS is compared to its initial solution or to the pure TS solution. In this study, IP model is

solved by ILOG CPLEX software. The programs for heuristics are coded in Visual C++

language and implemented on PC with Pentium IV 1.6 GHz.

3 2 1 5 4

Two points (C1 = 2, C2 = 4) are
selected randomly.

C1 = 2 C2 = 4

Apply NEH to solve the
substring.

The new sequence obtained by
NEH replaces the original one
resulting a new solution.

2 1 5

1 2 5

3 1 2 5 4

Fig. 2. The hybrid method of RPFS example

5.1 Small problems

In the experiment, ten instances are generated for each problem type and the average

makespan is analyzed. For each problem type, the average makespan of HTS is compared to

that of optimal makespan. The difference of these two average values is a measure of the

efficiency of HTS. Similarly, HTS is also compared with its initial solution to obtain the

improvement rate. The encoding scheme is based on jobs rather than on operations. The

maximal number of iterations is set to 3,000 and non-improvement times are set to 1,500.

www.intechopen.com

 Local Search Techniques: Focus on Tabu Search

230

The results for the type of small problem are shown in Table 2. The solutions of HTS are also
close to optimum (0.004% above optimum on the average). These results show that HTS is
efficient and has good solution quality of less than 1% above optimal. Then the percentage
error of HTS is defined as:

Percentage error =
)IP(

)IP()HTS(

max

maxmax

C

CC −
 × 100%

Where Cmax(HTS) and Cmax(IP) are the makepan obtained by HTS and IP, respectively.

5.2 The medium problems

For medium problems, the solutions obtained by HTS are compared to initial solutions and

those obtained by pure TS, where the initial solutions are generated by heuristic NEH (Pan

& Chen, 2003). The maximal iteration number is 2000 and non-improvement time is 1000.

The comparison results of all medium problems are displayed in Table 3. Table 3 shows that

the quality of solutions generated by HTS is 2.83% better than its initial solution obtained by

NEH. Additionally, the performance of HTS is 0.57% better than pure TS.

5.3 Large problems

Large problems are tested with the same basis as those of medium problems and the types

of large problems tested are shown in Table 4. The maximal iteration number is 1200 and

non-improvement time is 600. The performance difference between HTS and NEH, HTS and

pure TS is reported, respectively. It is shown that the solution quality of HTS is 2.53% better

than its initial solutions generated by NEH. For comparison of the performance between

HTS and pure TS, the efficiency of HTS is 0.81% better than that of the pure TS. It is noted

that improvement rate increases as the number of jobs increases.

IP HTS
Types

Time (s) Time (s) Avg. percentage error (%)

3×3×3 0.03 0 0

4×4×4 0.11 0.007 0.041

5×4×3 0.18 0.42 0

5×5×4 0.32 0.41 0

6×8×5 2.33 0.60 0

7×8×4 6.93 0.76 0

8×8×4 32.83 2.15 0

9×7×4 71.93 2.56 0

9×9×3 90.63 2.41 0

10×6×3 20.52 5.43 0

Table 2. Comparison of all small problems solved by IP and HTS

www.intechopen.com

Hybrid Tabu Search for Re-Entrant Permutation Flow-Shop Scheduling Problem

231

CPU time(s) Comparison

Types

HTS TS NEH
The improvement rate

of HTS over TS (%)
The improvement rate
of HTS over NEH (%)

11×17×5 3.05 3.18 0.01 0.62 2.29

12×20×6 5.63 5.03 0.01 0.61 2.12

13×19×7 8.46 8.35 0.01 0.48 2.13

14×18×9 15.89 12.37 0.02 0.46 2.11

15×17×6 12.04 8.64 0.02 0.81 3.07

16×16×7 16.53 13.34 0.02 0.47 2.98

17×15×8 19.86 19.97 0.02 0.37 3.13

18×16×6 23.28 19.78 0.02 0.56 3.74

19×12×10 28.59 25.98 0.02 0.60 3.12

20×15×8 38.39 37.00 0.02 0.71 3.64

Table 3. The improvement results of all medium problems

CPU time(s) Comparison

Types

HTS TS NEH
The improvement rate

of HTS over TS (%)
The improvement rate
of HTS over NEH (%)

25×25×10 155.22 132.67 0.02 0.78 2.53

30×30×7 242.60 179.28 0.21 0.79 2.63

40×40×6 612.24 481.94 0.31 0.81 2.43

50×50×5 1006.44 872.64 0.76 0.83 2.46

60×60×3 1195.09 1104.5 0.85 0.83 2.61

Table 4. The improvement results of all large problems

6. Conclusions and suggestions for future study

This study applies HTS to solve RPFS scheduling problems with objective to minimize

makespan. In pure TS, if the solution cannot escape from local optimum, the improvement

rate can hardly be increased even a great amount of computational time is spent. The

proposed HTS is used to improve the efficiency of TS. The heuristic method is hybridized

into pure TS to find better solution regions.

In RPFS, job-based encoding is adopted to deal with different types of problems. The results

show that HTS obtains favorable solutions within reasonable time. For small problems, the

percentage of HTS finding optimal solutions is near 100%. For medium problems,

www.intechopen.com

 Local Search Techniques: Focus on Tabu Search

232

comparisons are made between HTS and the initial solutions obtained by NEH. It is found

that HTS improves the initial solution favorably. For large problems, HTS is superior to

heuristic NEH. For the medium and large problems, HTS is compared to pure TS method.

The results show that HTS is superior to pure TS. Moreover, it is found that the

improvement rate of HTS over TS increases with the increase of problem size. Hence, it is

clear that the incorporation of appropriate heuristic with pure TS is indeed effective.

Some future study suggestions are given as follows:

(1) A static tabu list is used in this study. A dynamic tabu list may be used in future study to

 investigate whether the solution quality can be improved.

(2) A thorough study of the effect of maximal iteration number and non-improvement times

 on solution quality may be carried out in future studies.

(3) Other exchanging method to obtain neighborhood solutions can be investigated and the

 techniques of experimental design may be applied to find out the best way of

 neighborhood search.

7. References

Adams, J., Balas, E., & Zawack, D. (1988). The shifting bottleneck procedure for job shop

scheduling. Management Science, Vol. 34, No. 3, 391-401, ISSN: 0025-1909.

Baker, K. R., (1974). Introduction to sequencing and scheduling, John Wiley & Sons, ISBN: 0-471-

04555-1, New York.

Beasly, J. E. (1990). OR-library: distribution test problems by electronic mail. Journal of the

Operational Research Society, Vol. 41, No. 11, 1069-1072, ISSN: 0160-5682.

Bispo, C. F. & Tayur, S. (2001). Managing simple re-entrant flow lines: theoretical foundation

and experimental results. IIE Transactions, Vol. 33, No. 8, 609-623, ISSN: 0740-817X.

Bowman, E. H. (1959). The scheduling-sequence problem. Operations Research, Vol. 7, 621-

624, ISSN: 0030-364X.

Campbell, H. G., Dudek, R. A., & Smith, M. L. (1970).. Management Science, Vol. 16, No. 10,

B630-B637, ISSN: 0025-1909.

Coffman, E. G. (1976). Computer and Job Shop Scheduling. Wiley, ISBN: 0471163198, New

York.

Dell’Amico, M., & Trubian, M. (1993). Applying tabu search to the job-shop scheduling

problem. Annals of Operations Research, Vol. 41, No. 3, 231-252, ISSN: 0254-5330.

Dannenbring, D. G. (1977). An evaluation of flow shop sequencing heuristics. Management

Science, Vol. 23, No. 11, 1174-1182, ISSN: 0025-1909.

Demirkol, E. & Uzsoy, R. (2000). Decomposition methods for re-entrant flow shops with

sequence-dependent setup times. Journal of Scheduling, Vol. 3, No. 3, 155-177, ISSN:

1094-6136.

Drobouchevitch, I. G., & Strusevich, V. A. (1999). A heuristic algorithm for two-machine re-

entrant shop scheduling. Annals of Operations Research, Vol. 86, 417-439, ISSN: 0254-

5330.

Garey, M. R.; Johnson, D. S. & Sethi, R. (1976). The complexity of flow-shop and job-shop

scheduling. Mathematics of Operations Research, Vol. 1, No. 2, 117-129, ISSN: 0364-

765X.

www.intechopen.com

Hybrid Tabu Search for Re-Entrant Permutation Flow-Shop Scheduling Problem

233

Glover, F. (1989). Tabu search– Part I. ORSA Journal on Computing, Vol. 1, 190-206, ISSN:

0899-1499.

Glover, F., & Languna, M. (1993). Tabu Search– Modern heuristic techniques for

combinatorial problems. Colin R. Reeves (Ed.), 70-150, Blackwell Scientific

Publications, ISBN: 0470220791, Oxford.

Glover, F., & Languna, M. (1997). Tabu Search. Colin R. Reeves (Ed.), Blackwell Scientific

Publications, ISBN: 079239965X, Oxford.

Graves, S. C.; Meal, H. C.; Stefek, D. & Zeghmi, A. H. (1983). Scheduling of re-entrant flow

shops. Journal of Operations Management, Vol. 3, No. 4, 197-207, ISSN: 0272-6963.

Hwang, H. and Sun, J. U. (1998). Production sequencing problem with re-entrant work

flows and sequence dependent setup times. International Journal of Production

Research, Vol. 36, No. 9, 2435-2450, ISSN: 0020-7543.

Hwang, J., Kang, C. S., Ryu, K. R., Han, Y., & Choi, H. R. (2002). A hybrid of tabu search and

integer programming for subway crew paring optimization. Proceedings of the

Sixth IASTED International Conference on Artificial Intelligence and Soft

Computing (ASC-2002), 72-77, Banff, Canada.

Johnson, S. M. (1954). Optimal two- and three-stage production schedules with set up times

included, Naval Research Logistics Quarterly, Vol. 1, No. 1, 61-68.

Kubiak, W.; Lou, S. X. C. & Wang, Y. (1996). Mean flow time minimization in re-entrant job-

shops with a hub. Operations Research, Vol. 44, No. 5, 764-776, ISSN: 0030-364X.

Nawaz, M., Enscore, E. E., & Ham, I. (1983). A heuristic algorithm for the m-machine n-job

flow-shop sequencing problem. OMEGA, Vol. 11, No. 1, 91-95, ISSN: 0305-0483.

Nowicki, E., & Smutnicki, C. (1996). A fast taboo search algorithm for the job shop problem.

Management Science, Vol. 42, No. 6, 797-813, ISSN: 0025-1909.

Nowicki, E., & Smutnicki, C. (1996). A fast taboo search algorithm for the permutation flow-

shop problem. European Journal of Operational Research, Vol. 91, No. 1, 160-175, ISSN:

0377-2217.

Nowicki, E., & Smutnicki, C. (1998). Flow shop with parallel machines: A tabu search

approach. European Journal of Operational Research, Vol. 106, No. 2-3, 226-253, ISSN:

0377-2217.

Palmer, D. S. (1965). Sequencing jobs through a multi-stage process in the minimum total

time– A quick method of obtaining a near optimum. Operational Research Quarterly,

Vol. 16, No. 1, 101-107, ISSN: 0030-3623.

Pan, J. C. H. & Chen, J. S. (2003). Minimizing makespan in re-entrant permutation flow-

shops. Journal of the Operational Research Society, Vol. 54, No. 6, 642-653, ISSN: 0160-

5682.

Rinnooy Kan, A. H. G. (1976). Machine scheduling problems: classification, complexity and

computations, Martinus Nijhoff, ISBN: 90.247.1848.1, The Hague, Holland.

Taillard, E. (1989). Parallel taboo search technique for the job shop scheduling problem.

Internal Report ORWP89/11, Department de Mathematiques, Ecole Polytechnique

Federale de Lausanne, Lausanne.

Vargas-Villamil, F. D. & Rivera, D. E. (2001). A model predictive control approach for real-

time optimization of re-entrant manufacturing lines. Computers in Industry, Vol. 45,

No. 1, 45-57, ISSN: 0166-3615.

www.intechopen.com

 Local Search Techniques: Focus on Tabu Search

234

Wang, M. Y.; Sethi, S. P. & Van De Velde, S. L. (1997). Minimizing makespan in a class of re-

entrant shops. Operations Research, Vol. 45, No. 5, 702-712, ISSN: 0030-364X.

Widmer, M., & Hertz, A. (1989). A new heuristic method for the flow shop sequencing

problem. European Journal of Operational Research, Vol. 41, 186-193, ISSN: 0377-2217.

www.intechopen.com

Tabu Search

Edited by Wassim Jaziri

ISBN 978-3-902613-34-9

Hard cover, 278 pages

Publisher I-Tech Education and Publishing

Published online 01, September, 2008

Published in print edition September, 2008

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

The goal of this book is to report original researches on algorithms and applications of Tabu Search to real-

world problems as well as recent improvements and extensions on its concepts and algorithms. The book’

Chapters identify useful new implementations and ways to integrate and apply the principles of Tabu Search,

to hybrid it with others optimization methods, to prove new theoretical results, and to describe the successful

application of optimization methods to real world problems. Chapters were selected after a careful review

process by reviewers, based on the originality, relevance and their contribution to local search techniques and

more precisely to Tabu Search.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Jen-Shiang Chen, Jason Chao-Hsien Pan and Chien-Kuang Wu (2008). Hybrid Tabu Search for Re-Entrant

Permutation Flow-Shop Scheduling Problem, Tabu Search, Wassim Jaziri (Ed.), ISBN: 978-3-902613-34-9,

InTech, Available from: http://www.intechopen.com/books/tabu_search/hybrid_tabu_search_for_re-

entrant_permutation_flow-shop_scheduling_problem

© 2008 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

