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1. Introduction

Mean field dynamics have been extensively applied for organizing neural networks in
the field of computational neuroscience, since Hopfield pioneered collective decisions
of interconnected processing elements for combinatorial optimization [1–6] and memory
association [7, 8]. Both nonlinear transfer functions and synapses in a Hopfield neural
network are a subsequence of mean field dynamics that characterize the mean configuration
of a large scaled physical system at thermal equilibrium in the field of statistical mechanism.
In the past decades, the mean field dynamics has been extensively applied for deriving
interactive neural dynamics of solving complex tasks, such as combinatorial optimization
[4, 6, 9], self-organization [10], clustering analysis [11][12], independent component analysis
[13], and regression [14][15].

Mean field equations characterize feasible configurations for problem solving. Let si ∈ {−1, 1}
denote a binary random variable for modeling a stochastic two-alternative processing element
and s = {si}i represent a configuration for problem solving. The feasibility of s to the attacked
problem is inversely quantified by an energy function E(s). Minimizing E(s) with respect to
s means to seek the optimal solution. Under the Boltzmann assumption, the joint probability
of all si is proportional to exp(−βE(s)), where β denotes the inverse of a temperature-like
parameter. As in previous works [4][5][6], the Kullback-Leibler divergence between the
product of marginal probabilities and the joint probability of all si induces a tractable free
energy function ψ that depends on the expectation of si, denoted by 〈si〉, for all i.

The following mean field dynamics exactly characterize the saddle point of a typical tractable
free energy function,

ui = −
∂E(〈s〉)

∂ 〈si〉
(1)

〈si〉 = f (ui) ≡ tanh(βui) (2)
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where ui denotes an external field, f ≡ tanh is a sigmoid-like transfer function and 〈si〉
denotes the mean activation. In previous works [4][6], E is quadratic and ui measures a
weight sum of activations other than 〈si〉, such as

ui = ∑
j 6=i

wij

〈

sj

〉

+ ci (3)

where wij denotes the synapse that connects neural processing elements i and j. For fixed
β, equation (2) defines the transfer function of interconnected processing elements and
equation (3) sketches synapses. The realized information processes are distributed and
with computational features of fault tolerance and collective decision. All interconnected
processing elements in a Hopfield neural network asynchronously operate to seek a stable
configuration under an annealing process [6] that carefully scheduling β from sufficiently
small to large values.

At each intermediate β, a stable configuration means a result of minimizing the mean energy
function against maximizing the entropy for emulating thermal equilibrium of statistical
mechanism. At the end of the annealing process, by equation (2), 〈si〉 ∈ {−1, 1} and
the mean configuration 〈s〉 is a vector of N binary values, well representing a feasible
solution for problem solving. Empirical results in previous works [4][6] have extensively
shown that the physical-like annealing process guarantees effectiveness and reliability of
seeking the global or near global minimum of E(s) for problem solving. In previous works
[15–18], mean field dynamics have been extended for multi-state Potts modeling and applied
for unsupervised learning and supervised learning of neural networks toward solving self
organization, independent component analysis, function approximation and discriminate
analysis.

However from the perspective of numerical simulations, asynchronous operation of
interconnected processing elements means one-by-one sequential updating of neural
variables. It is more efficient to simulate synchronous and parallel updating of neural
variables by vector codes. Multilayer perceptrons or Adalines have been organized for
parallel and synchronous processes. Significant computational features include synchronous
data transmission and parallel signal processes through multilayer perceptrons. A network
of multilayer perceptrons is typically composed of input, hidden, output layers as well

as inter-connections among consecutive layers. The input x ∈ Rd transmits through
interconnections to form external fields,

h = Ax + c, (4)

and the nonlinear transfer function translates h to activations of hidden units,

v = F(h) = [ f (h1), ..., f (hM)]T , (5)

which is multiplied by a matrix of posterior weights, denoted by R, to form the network
output

y = Rv (6)
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Equations (4)-(6) describe synchronous data transmissions and parallel signal processes, by
which it only takes three time clocks to translate x to y.

A recurrent network of multilayer perceptrons is further equipped with circular connections
from the output to input layers. By feedback circular connections, the current output becomes
the network input at the upcoming time step. Let R be an identity matrix. Setting x to yn

and y to yn+1 leads to the following recursive function realized by recurrent multilayer
perceptrons

yn+1 = F(Ayn) (7)

Since perceptrons and adalines perform post-nonlinear projection, the organized multilayer
neural network realizes a high dimensional nonlinear mapping from the input domain to the
output range, which has been shown significant for solving complex tasks against traditional
linear systems. Recurrent multilayer perceptrons perform parallel and synchronous
computations for realizing the behavior of MIMO (multiple input multiple output) recurrent
relation or characterizing nonlinear autoregression of time series. Recurrent multilayer
perceptrons have been applied for nonlinear autoregressive modeling of chaotic time series
prediction [19] and financial time series [20].

This work applies recurrent multilayer perceptrons for tracking mean field dynamics by
synchronous and parallel computations. A systematic approach is proposed for translating
mean field dynamics (1) and (2) to the nonlinear recursive function (7) such that recurrent
multilayer perceptrons can track the saddle point of ψ by parallel and synchronous
computations. The strategy is to introduce time delays and auxiliary variables for expanding
local memories of storing individual states, and translate loosely coupled or densely coupled
first order mean field equations to a system of post-nonlinear recursive functions, which
can be evaluated directly by iterative synchronous computations of recurrent multilayer
perceptrons.

Section 2 applies parallel and synchronous computations of recurrent multilayer perceptrons
for tracking mean field dynamics. Asynchronous updating of tracking linear dynamics and
mean field dynamics is translated to equivalent synchronous updating. Section 3 applies the
transformation to derive synchronous updating of tracking mean field dynamics for solving
graph bisection problem and verifies the proposed approach by numerical simulations.
Section 4 further presents a hybrid of asynchronous and synchronous processes for tracking
sparse large scaled mean field dynamics of sparse connectivity for problem solving.

2. Synchronous computation of tracking mean field dynamics

By asynchronous updating at each time step numerical simulations select one processing
element and refine its mean activation under fixed mean activations of the others. Let ψi(〈si〉)

denote ψ with fixed
〈

sj

〉

, j 6= i,

ψi(〈si〉) = hi 〈si〉+ ci −

[

1 + 〈si〉

2
log

1 + 〈si〉

2
+

1 − 〈si〉

2
log

1 − 〈si〉

2

]

, (8)
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where β = 1 is considered. 〈si〉 = tanh(hi) minimizes the above equation. ψi(〈si〉) is an
approximation to the one-dimensional function obtained by cutting functional surface of ψ

along the direction of 〈si〉 for fixed
〈

sj

〉

, j 6= i. By asynchronous updating the coefficient hi

of the linear term in equation (8) always maintains an instance determined by fixing most
recently updated mean activations. Asynchronous updating is represented by

〈si〉 ← f



∑
j 6=i

wij

〈

sj

〉

+ ci



 . (9)

The asynchronous cutting and approximating strategy is very different from synchronous
updating that directly combines equations (2) and (3) for all i, such as

〈s〉 ← tanh(W 〈s〉) + c (10)

where W collects all wij. By synchronous updating, all hi use the copy formed by all mean
activations synchronously determined at the previous step. Numerical simulations have
verified synchronous updating based on equation (10) infeasible for relaxing of mean field
dynamics.

2.1. Linear system

Let f be a linear function and the asynchronous updating rule (9) is equivalent to

xi ← ∑
j 6=i

aijxj + ci (11)

where A = [aij] is a N × N matrix with aii = 0, ∀i = 1, · · · , N. To facilitate our
presentation, we first give an example with N = 4 for illustration. Figure 1 shows data flow
of asynchronous updating (11), where directed edges indicate the latest mean activations
employed for updating. Each time asynchronous updating insists on revising only one mean
activation. Without losing generality, consecutive steps of updating mean activations can be
listed as follows,

x1[k + 1] = 0 + a12x2[k] + a13x3[k] + a14x4[k] + c1

x2[k + 2] = a21x1[k + 1] + 0 + a23x3[k] + a24x4[k] + c2

x3[k + 3] = a31x1[k + 1] + a32x2[k + 2] + 0 + a34x4[k] + c3

x4[k + 4] = a41x1[k + 1] + a42x2[k + 2] + a43x3[k + 3] + 0 + c4

(12)

The system (12) is translated to synchronous updating by replacing k with k− 1, k− 2, k− 3
and k− 4 respectively in the four rows of equation (13)

x1[k] = 0 + a12x2[k− 1] + a13x3[k− 1] + a14x4[k− 1] + c1

x2[k] = a21x1[k− 1] + 0 + a23x3[k− 2] + a24x4[k− 2] + c2

x3[k] = a31x1[k− 2] + a32x2[k− 1] + 0 + a34x4[k− 3] + c3

x4[k] = a41x1[k− 3] + a42x2[k− 2] + a43x3[k− 1] + 0 + c4

(13)
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Figure 1. Asynchronous update.

for k ≥ 3. The matrix form is expressed by

x[k] = Bu[k] + c (14)

where x[k] = (x1[k], · · · , x4[k])
T and

u[k] =





x[k − 1]
x[k − 2]
x[k − 3]



 ,

T denotes transpose and

B =









0 a12 a13 a14

a21 0 0 0
0 a32 0 0
0 0 a42 0

∣

∣

∣

∣

∣

∣

∣

∣

0 0 0 0
0 0 a23 a24

a31 0 0 0
0 a42 0 0

∣

∣

∣

∣

∣

∣

∣

∣

0 0 0 0
0 0 0 0
0 0 0 a34

a41 0 0 0








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][kxB

c

+ 

]1[ kx

]2[ kx

]1[ Nkx



Figure 2. A linear recurrent system for synchronous computations. The triangle denotes time delay.

For initialization, x[0] is copied three times to form u[N] where N = 4. Figure 2 shows
a recurrent linear network for synchronous computations of equation (14). The circular
connection transmits the current output to the input layer at the upcoming step. In general,
u[k] is given by

u[k] =











x[k− 1]
x[k− 2]

...
x[k− N + 1]











which concatenates N − 1 consecutive steps of mean activations and B = [B1B2 · · · BN−1] is

composed of N − 1 submatrices. Figure 3 and 4 show the structure of matrices {Bn}
N−1
n=1 .

Distinct colors represent nonzero entries. Figure 5 shows the flow chart of creating matrix
B. Figure 6 shows the flow chart of simulating asynchronous updating by linear recurrent
computations where repmat is a matlab bulit-in function for matrix replication.

2.2. Mean field dynamics

Asynchronous updating (11) can be regarded as a special case of asynchronous updating (9)
of mean field dynamics. Let f denote a post-nonlinear function and vi = 〈si〉 for general
situations. Synchronous parallel updating is explored for emulating asynchronous updating
(9) for tracking mean field dynamics.

Asynchronous updating rule is rewritten as follows,

vi ← f



β



∑
j 6=i

wijvj + ci







 ≡ g(v1, · · · , vN , ci)
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Figure 3. The representation of matrix {Bk}
7

k=1
for N = 8.
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Figure 5. The flow chart of forming B.
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Figure 6. The flow chart of solving linear system by synchronous parallel computations.
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where vi = 〈si〉. Let v[0] = (v1[0], v2[0], · · · , vN [0]) denote the initial mean configuration.
The leave-one-out asynchronous updating is expressed as

v1[k + 1] = g(v2[k], v3[k], v4[k], · · · , vN [k], c1)
v2[k + 2] = g(v1[k + 1], v3[k], v4[k], · · · , vN [k], c2)
v3[k + 3] = g(v1[k + 1], v[k + 2], v4[k], · · · , vN [k], c3)

...
vn[k + n] = g(v1[k + 1], v2[k + 2], · · · , vn−1[k + n − 1], vn+1[k], · · · , vN [k], cn)

...
vN [k + N] = g(v1[k + 1], v2[k + 2], v3[k + 3], · · · , vN−1[k + N − 1], cN)

(15)

where vi[k] is the instance of vi at the kth step for k ≥ 0 and ci is a constant. The
mean activation of each processing element is asynchronously updated. The system (15)
is translated to synchronous updating by replacing index k + n with k in the row of updating
vn

v1[k] = g(v2[k − 1], v3[k − 1], v4[k − 1], · · · , vN [k − 1], c1)
v2[k] = g(v1[k − 1], v3[k − 2], v4[k − 2], · · · , vN [k − 2], c2)
v3[k] = g(v1[k − 2], v2[k − 1], v4[k − 3], · · · , vN [k − 3], c3)

...
vn[k] = g(v1[k − n + 1], v2[k − n + 2], · · · , vn−1[k − 1], vn+1[k − n], · · · , vN [k − n], cn)

...
vN [k] = g(v1[k − N + 1], v2[k − N + 2], v3[k − N + 3], · · · , vN−1[k − 1], cN)

(16)

where k ≥ N.

The matrix B can be determined by the flow chart in figure 5 for translating mean field
dynamics to the following form

v[k] = tanh (βBu[k]) (17)

where

u[k] =











v[k − 1]
v[k − 2]

...
v[k − N + 1]











and

v[k] = (v1[k], v2[k], · · · , vN [k])T

denotes the mean configuration at the kth step.

Tracking Mean Field Dynamics by Synchronous Computations of Recurrent Multilayer Perceptrons
http://dx.doi.org/10.5772/57217

291



B ) tanh(  ][kv

]1[ kv

]2[ kv

]1[ Nkv



Figure 7. Nonlinear recurrent multilayer perceptrons.
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Figure 8. The flow chart of synchronous evolutionary simulations of mean field dynamics.

The structure of MIMO recurrent multilayer perceptrons is shown in Figure 7. The derived
recurrent multilayer perceptrons track mean field dynamics by parallel and synchronous
computations. As in the previous work [6], an annealing process is employed to schedule β
from sufficiently small to large values for problem solving. Figure 8 shows the flow chart
of simulating synchronous and parallel computations of recurrent multilayer perceptrons for
tracking mean field dynamics.
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(a) (b) 

Figure 9. Errors of asynchronous update and asynchronous update along time steps.

3. Numerical simulation

3.1. Solving linear systems

The linear recurrent relation (14) is verified by numerical simulations for solving the

following linear system,

x1 = 0 + 1
10 x2 −

1
5 x3 + 0x4 + 3

5

x2 = 1
11 x1 + 0 + 1

11 x3 −

3
11 x4 + 25

11

x3 = −

1
5 x1 + 1

10 x2 + 0 −

1
10 x4 −

11
10

x4 = 0 − −

3
8 x2 + 1

8 x3 + 0 + 15
8

The flow charts in figures 5 and 6 are implemented in Matlab codes. The initial

value x[0] = [x1[0], x2[0], x3[0], x4[0]] is sampled from the hypercube [−1, 1]4 uniformly.

The experiment simultaneously simulates asynchronous updating (11) and synchronous

updating (14) of linear recurrence. Both asynchronous updating and synchronous updating

attain the numerical solution [1.0404, 1.991,−1.2067, 0.9775]T . Figure 9(a) shows errors of

asynchronous updating and synchronous updating along time steps and (b) shows errors

after the 25th step. The numerical results show the error of asynchronous updating coverages

slower than that of synchronous updating. This illustrates the advantage of synchronous

updating. When parallel computations like vector codes are employed, synchronous

updating is more efficient than asynchronous updating for numerical simulations.
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3.2. Graph bisection problem

The graph bisection problem [4] is stated to partition N nodes into two equal sets such that
net edges crossing two sets in size is minimized. Let si ∈ {−1, 1} denote the membership of
the ith node to two non-overlapping sets and Tij denote the connectivity, where

Tij =

{

1, if nodes i and j are connected
0, otherwise

si denotes the partition of node i to two disjoint subsets. Node i is in one subset if si = 1 and
belongs to the other if si = −1. As in [4], E(s) for problem solving is given by ,

E(s) = −
1

2

N

∑
i=1

N

∑
j 6=i

Tijsisj +
a

2

(

N

∑
i=1

si

)2

(18)

where a is the Lagrange multiplier which forces ∑
N
i=1 si to zero. Tijsisj is zero if Tij =0.

Otherwise, it is 1 if nodes i and j belong the same subset and −1 if node i belongs to one set
and node j to the other. Therefore, the first term quantifies the number of net edges crossing
two subsets. The last forces equal cut. As in Appendix A, E(s) can be rewritten as

E(s) = −
1

2

N

∑
i=1

N

∑
j 6=i

Wijsisj (19)

where Wij = Tij − A and Wii = 0.

We further explore the performances of synchronous updating by annealed recurrent
multilayer perceptrons for graph bisection. In our simulations, each connection Tij between

nodes i and j is set to one if a uniform random number within (0, 1) less than 0.2 is generated,
and zero otherwise. The parameter a is 2. The halting condition is set to χ(v) > 0.99 where

χ(v) =
1

N

N

∑
i=1

v2
i .

The temperature-like parameter β is always scheduled from sufficiently low to high values.

Figure 10 shows the convergence of annealed asynchronous updating (9) and annealed
synchronous updating (17) for tracking mean field dynamics of solving a 100-nodes graph
bisection problem, where the blue and red curves respectively show the change of the
stability and 1/β along time steps. Figure 11 shows the change of cutsize and free energy
by blue and red curve, respectively. The histograms of cutsize obtained by 50 executions
of annealed asynchronous updating and annealed synchronous updating are plotted in
Figure 12, where the mean of cutsize by annealed synchronous updating is 361.84, which
is compatible to 358.5 of annealed asynchronous updating.

Computational and Numerical Simulations294



(a) (b) 

synchronous updating asynchronous updating 

Figure 10. The change of the stability and 1/β for solving graph bisection problem by synchronous update and asynchronous
update.

(b) 

Annealed asynchronous updating Annealed synchronous updating 

(a) 

Figure 11. The change of cutsize and free energy for solving graph bisection problem by synchronous update and asynchronous

update.

4. Parallel and distributed processes of tracking mean field dynamics of

sparse connectivity

This section discusses the case of sparse interconnection among processing units. In the
case, a processing connects only with processing units in a small neighborhood. Sparsely
interconnected processing units are partitioned to K clusters such that the cutting size of
interconnections crossing distinct clusters is minimized. This formulates a typical problem
of K-set partition to a sparse graph. Mean field dynamics for K-set graph partition has been
proposed in [6]. As argued previously, parallel and synchronous computations by recurrent
multilayer perceptrons can be obtained for tracking mean field dynamics of resolving K-set
graph partition. Let {Sk}

K
k=1 be the partitioned K clusters of sparsely interconnected
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(a) 

(b) 

synchronous updating 

asynchronous updating 

Figure 12. The histograms of cutsize obtained by 50 executions of synchronous update and asynchronous update.

processing units and ck be the outer-input of processing units in Sk. ck contains nonzero
elements if there exists a processing unit in Sk that is connected with units not in Sk and
those nonzero elements are determined by mean activations of processing units outside Sk.
After K-set graph partition, all nodes are reindexed according to {Sk}

K
k=1. Ideally, there is

dense connectivity among processing units inside each Sk and sparse connectivity among
{Sk}

K
k=1 through {ck}

K
k=1 as illustrated in Figure 13.

In each cluster Sk when there is a processing unit connecting to processing units outside Sk

according to the approach in section 2, all processing units inside Sk are evaluated directly by
synchronous computations for fixed ck. The approach which combines synchronous update
of mean activations in side each Sk and sequential update among {Sk}

K
k=1 is proposed for
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Figure 13. Partition of all nodes into K clusters to attain dense interconnection in each cluster.

tracking mean field dynamics sparse connectivity. The idea follows parallel and distributed
processes. This approach decomposes a large system to several sparsely connected small
systems, updates mean activations inside each small system synchronously and updates
decomposed systems sequentially. Suppose that each Sk has the same number of nodes.
The size of nodes in Sk is |Sk| =

N

K
≪ N. Figure 14 shows the flow chart of the proposed

approach. The halting condition states to compare the stability χ(v) with a threshold. An
example with N = 12 for illustrating decomposition of a sparse system to three small systems
is given in Appendix C.

5. Conclusions

This paper has proposed a novel approach for tracking mean field dynamics by synchronous
computations of recurrent multilayer perceptrons. The strategy is to introduce time
delays and auxiliary variables and constructs equivalent recursive relations. This strategy
essentially constructs recurrent multilayer perceptrons for tracking densely coupled mean
field dynamics. The proposed approach is also extended to deal with large-scale sparsely
interconnected mean field dynamics. In the beginning, all processing units are partitioned
into K clusters by solving graph partition. The task is decomposed to K subtasks of
synchronous computations and different clusters are sparsely connected by outer-inputs. The
work combines synchronous updating inside each cluster with sequential updating among
K clusters.

Numerical simulations show that the proposed approach has successfully translated mean
field equations of solving the graph bisection problem to a system of post-nonlinear recursive
functions, and verified the consistency between the original mean field equations and
corresponding recurrent computations.
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Figure 14. The flow chart of parallel and distributed processes for tracking mean field dynamics of sparse connectivity.

6. Appendix

6.1. Appendix A. Rewriting energy function of graph bisection problem

E(S) = −
1

2

N

∑
i=1

N

∑
j 6=i

Tijsisj +
A

2

(

N

∑
i=1

si

)2

= −
1

2

N

∑
i=1

N

∑
j 6=i

Tijsisj +
A

2





N

∑
i=1

s2

i +
N

∑
i=1

N

∑
j 6=i

sisj





= −
1

2

N

∑
i=1

N

∑
j 6=i

(Tij − A)sisj +
A

2

(

N

∑
i=1

s2

i

)

= −
1

2

N

∑
i=1

N

∑
j 6=i

(Tij − A)sisj +
A

2
N
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Let Wij = Tij − A where Wii = 0. Since A
2 N is a constant, the energy function is rewritten as

E(S) = −
1

2

N

∑
i=1

N

∑
j 6=i

Wijsisj

6.2. Appendix B. An example decomposing sparse interconnection

A linear system is given by

x1 = 0 + a12x2 + a13x3 + 0 + 0 + 0 + 0 + 0 + 0
x2 = a21x1 + 0 + a23x3 + 0 + 0 + 0 + 0 + 0 + 0
x3 = a31x1 + a32x2 + 0 + 0 + 0 + 0 + 0 + a38x8 + 0
x4 = 0 + 0 + 0 + 0 + a45x5 + a46x6 + 0 + 0 + 0
x5 = 0 + 0 + 0 + a54x4 + 0 + a56x6 + 0 + 0 + 0
x6 = 0 + a62x2 + 0 + a64x4 + a65x5 + 0 + 0 + 0 + 0
x7 = a71x1 + 0 + 0 + 0 + 0 + 0 + 0 + a78x8 + a79x9

x8 = 0 + 0 + 0 + 0 + 0 + 0 + a87x7 + 0 + a89x9

x9 = 0 + 0 + 0 + 0 + 0 + 0 + a97x7 + a98x8 + 0

Let

A =





A11 A12 A13

A21 A22 A23

A31 A32 A33



 =





























0 a12x2 a13x3 0 0 0 0 0 0
a21x1 0 a23x3 0 0 0 0 0 0
a31x1 a32x2 0 0 0 0 0 a38x8 0

0 0 0 0 a45x5 a46x6 0 0 0
0 0 0 a54x4 0 a56x6 0 0 0
0 a62x2 0 a64x4 a65x5 0 0 0 0

a71x1 0 0 0 0 0 0 a78x8 a79x9

0 0 0 0 0 0 a87x7 0 a89x9

0 0 0 0 0 0 a97x7 a98x8 0





























be a sparse matrix and

S1 = {x1, x2, x3}

S2 = {x4, x5, x6}

S3 = {x7, x8, x9}

v1 = [x1 x2 x3]
T

v2 = [x4 x5 x6]
T

v3 = [x7 x8 x9]
T
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Figure 15. Dense interconnection in each cluster and sparse interconnection among three clusters.

Based on graph partition of K = 3, the system x = Ax has dense interconnection of Sk,

∀k = 1, 2, 3 and sparse interconnection among {Sk}
3
k=1 as shown in Figure 15. Let

d1 = d2 = d4 = d5 = d8 = d9 = 0

d3 = a38x8

d6 = a62x2

d7 = a71x1

and c1 = [d1 d2 d3]
T , c2 = [d4 d5 d6]

T and c3 = [d7 d8 d9]
T be the outer-input of three clusters

{Sk}
3
k=1. di is nonzero if there is a node xj connected to xi with weight aij 6= 0 where xi and

xj belong to different clusters. Therefore, the updating rule of {ck}
3
k=1 is

ck =
3

∑
j 6=k

Akjvj
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