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1. Introduction

The energy available in the electromagnetic spectrum

How much energy is available around us? Which use can we give to this energy? These are
two questions to which answers had been changing over time. What would be our particular
answer if a forefather or an ancestor would ask them to us? Some sources of energy like sun,
wind or sea waves have been present unaltered since the prehistoric times and before to
nowadays. Some others like oil and natural gas have been progressively reduced by the action
of man. But it is interesting to notice that there are some other sources, which we can name as
artificial sources, and that have emerged by man’s action, as a consequence of industrial and
technological development. Such modern or artificial energy sources are directly connected to
the energy harvesting technology since, for instance, most of the vibrations or temperature
gradients are produced by machines and engines. Also in the electromagnetic spectrum, we
can harvest energy not only from natural sun radiation, but also from all the artificial radio‐
frequency sources that are permanently increasing in number and which are a consequence of
one of the last technological revolutions: the Information and Communications Technology
(ICT) revolution.

Although when we think about electromagnetic (EM) waves at present time, we probably tend
to think about examples like radio, TV or cell phones, where the information part of the
electromagnetic signal is the protagonist, we should bear in mind that those signals are in fact
a combination of information and energy. In this chapter, we are not interested in describing
how information can be transmitted through electromagnetic waves but how the energy of
these waves is transmitted and collected to be harvested and used to supply ICT devices. In
order to calculate how much energy can be associated to an electromagnetic wave, we have to
consider the physical nature of these particular waves.
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Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
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1.1. Basic concepts

Electromagnetic waves in the electromagnetic spectrum (figure 1) are characterized by their
wavelength λ or, alternatively, by their frequency ν. Both magnitudes are related with the
propagation speed of such waves, the speed of light c, through:

c=λ⋅ν (1)

On the other hand, the frequency of EM radiation is directly related to the energy E of a photon
associated to this radiation, i.e. the quantum of EM radiation or the most fundamental
constitutive part of this radiation as defined by quantum mechanics, by

E=h⋅ν (2)

where h=6.626 10-34 J s is the Planck constant.
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Figure 1. Diagram of the electromagnetic spectrum with indications of the wavelength, λ, and frequency, ν, of the
most representative radiations from shorter and most energetic, cosmic rays, to the longer and less energetic radiofre‐
quencies. A zoom detail of the optical part of the spectrum shows that light radiations is in the hundred nm and THz
range of wavelengths and frequencies respectively.

Unlike what occurs in photovoltaics technology, where optical radiation energy is better
accounted in terms of photon energy since there the conversion mechanism is based in photon-
electron interactions, in rectenna technology it is more convenient to express the input EM
radiation in terms of the power or the power density of the EM wave.

An EM wave can be defined as a form of energy radiated by a source which results in a
combination of oscillating electric and magnetic fields. In most of materials, the direction of
the EM wave propagation is perpendicular to the electric and magnetic fields, which are also
oscillating in phase perpendicular to each other.
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The set of equations which describe how electric and magnetic fields propagate, interact and
how they are influenced by material properties are Maxwell’s equations. An EM wave can be
described with these equations, which must be met for a set of particular boundary conditions.
Maxwell’s equations are summarized in Table 1.

Table 1. Maxwell’s equations.

where E
→

 is the electric field intensity, B
→

 and H
→

 are the magnetic fields, J
→
 is the total current

density, D
→

is the electric displacement field and ρ is the total charge density.

The propagation of a plane EM wave can be described by the EM wave equation, which can
be derived from Maxwell’s equations. The homogeneous form of this second-order differential
equation can be written in terms of either the electric field or the magnetic field as
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where μ and ε are the permeability and the permittivity of the propagation medium, respec‐
tively.

Knowing that EM waves carry energy with them in the form of electric and magnetic fields,
we can compute their energy flow per unit area using the so called Poynting vector

S E H= ´
r ur uur

(4)

From the Poynting vector and considering a uniform plane wave the time-average power
density of the EM wave can be computed as [1]
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where E0 is the peak value of the electric field and η is the impedance of the propagating
medium. If the wave propagates in a loss-less dielectric medium η is a real number. Being this
medium the free space, the impedance can be computed as follows:

0
0

0 0 0
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c

e
h

m e
= =

×
(6)

where μ0 is the vacuum permeability, ε0 is the vacuum permittivity and c0 is the speed of light
in free space. The value for the impedance of the vacuum is about 377Ω.

A good approximation to the radiated power at a certain distance d from an emitter can be
computed considering that the emitter is an isotropic radiator (EM point source which radiates
the same power in all directions)

r 2P
4

rT
d

P
dp

=
× ×

(7)

where PrT  is the total radiated power and d  the distance from the emitter. Notice that real
antennas do not radiate isotropically, they have a certain radiation pattern which depends
mainly on the geometry of the antenna and the surrounding media.

In 1999 the Council of the European Union made some recommendations on the limitation of
exposure to electromagnetic fields [2]. Table 2 summarizes the maximum recommended
values for the electric field.

Frequency range E-field strength (V/m)

0-1 Hz −

1-8 Hz 10000

8-25 Hz 10000

0.025-0.8 kHz 250 / f

0.8-3 kHz 250 / f

3-150 kHz 87

0.15-1 MHz 87

1-10 MHz 87 / f0,5

10-400 MHz 28

400-2000 MHz 1,375 · f0,5

2-300 GHz 61

Table 2. Reference levels for electric fields from 0 Hz to 300 GHz.
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On the other hand, the IEEE International Committee on Electromagnetic Safety has made
some additional recommendations in order to protect human beings from harmful effects
caused by the exposure to electromagnetic fields [3]. Table 3 summarizes the maximum
recommended values for the RMS electric field, magnetic field and power density.

Frequency range (MHz)
RMS electric field

strength (V/m)

RMS magnetic field

strength (A/m)

RMS power density (E-field, H-field)

(W/m2)

0.1-1 1842 16,3 / f (9000 , 100000 / f2)

1-30 1842 / f 16,3 / f (9000 / f2 , 100000 / f2)

30-100 61,4 16,3 / f (10 , 100000 / f2)

100-300 61,4 0,163 10

300-3000 − − f / 30

3000-30000 − − 100

30000-300000 − − 100

Table 3. Reference levels for electric, magnetic fields from 0 Hz to 300 GHz.

Finally, although tables 2 and 3 give a good idea of the maximum energy available from RF
emissions in terms of electric field and power density, in table 4 power density values and
ranges corresponding to different applications are also summarized and compared to sunlight
in the visible range.

Application Power density (mW/cm2)

Old UHF TV band 10-9

FM radio @ 50 km from 100kW base station 10-7

ISM bands: Zigbee/Bluetooth/WIFI 10-8/10-7/10-6

Standard ambient level with no high power equipment 10-6 – 10-5

GSM, UMTS (3G telecom) @ 10 m from base station 10-6 – 10-4

Cellular phone @ 50 m from base station 10-4 – 10-2

Solar Power Satellite (SPS)

Wireless Power Transmission (WPT)
10-1 - 10

Solar radiation in the visible range 102

Table 4. Comparison of power densities for different applications with solar radiation in the visible range.

1.2. Photovoltaics versus rectenna technologies

When electromagnetic waves were experimentally observed, they were generated using
antennas and radiating elements. Along the development of radio emission, antenna design
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became a separate area of expertise where the geometry of those elements configured the
characteristics and capabilities of emission and reception of the EM waves. The shape and
orientation of those antennas determine the polarization and direction of the emission, and
reception. Electromagnetic spectrum was mastered and used in science and technology.
Fortunately, the wavelengths associated with the radioelectric and microwave spectra allowed
the manufacturing of radiating elements with the available fabrication tools. When increasing
the frequency of the electromagnetic radiation, the geometries were shrunk accordingly and
new fabrication strategies were used. Actually, an important leap in antenna design and
fabrication appeared when using planar antennas written on flat substrates by microlithogra‐
phy techniques. Millimeter waves and Terahertz still benefit from those fabrication techniques.
However, when the optical domain was placed as a feasible goal for antenna design, the use
of electron beam lithography, focused ion beam, and related nanometric precision manufac‐
turing tools were necessary. Even more, those metals traditionally used as materials for
antenna fabrication appeared to behave as non-perfect conductors, showing spectral disper‐
sion and a non-negligible penetration depth.

At the same time that antennas were clearly devoted to the emission and detection of EM wave
in the radioelectric, and microwave regimes, light and optical spectrum was covered with other
reliable technologies for emission (incandescence lamps, spectral lamps, lasers, etc.) and
detection (Golay cells, thermoconductors, photovoltaics, etc.) mainly based for detection in the
quantified energy levels of semiconductors. Then, photodetectors improved their performance
in responsivity, signal-to-noise ratio, cut-off frequency, size, and biasing requirements.

Then, it is easy to understand that antennas did not find a suitable place to develop as optical
detectors. Semiconductor detectors were here to stay, fabrication of optical antennas is difficult
and requires high-tech machinery, and metals are non-perfect conductors anymore in the
optical regime.

However, some advances were made in using antenna-coupled detectors in the detection of
light at higher and higher frequencies, and in its use as frequency mixer or coupled to
bolometric devices. Besides, nanoscience has found optical antennas as promising elements to
explore materials and media with high spatial resolution. Plasmonic optics has become an
emerging field, where the collective oscillation of charges produces exotic phenomenologies
that are used for sensing and probing sub-wavelength structures.

Several reports and papers [4,5,6,7] have been published in the past years presenting optical
antennas and rectennas as harvesters of electromagnetic radiation in the infrared and visible
spectrum. They are based on the principle of rectification of the currents generated in an
antenna structure that resonates at the visible frequency. The idea, although appealing, has
been somehow over-estimated when promising efficiencies above 80%. However, as we will
see in this chapter, some important problems need to be addressed before fabricating an
operative device. Unfortunately, the task of rectifying electric fields oscillating at 1014-1015Hz
frequencies is formidable, and the efficiency figures obtained so far are well below the
announced limit. The bottleneck of the technology remains in the rectification process. At the
same time, some important advances have been made to tailor the impedance of optical
antennas to properly couple the electromagnetic field and also to transfer the power to the
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load, i.e., to the rectifier. Then, optical rectennas can be considered as a promising technology
with high potential. Based on the current results, more effort needs to be allocated to leap over
the rectifying mechanism with novel technologies.

Although it is limited to the solar region of the electromagnetic spectrum, the most mature
and standard technology (developed since the mid 70’s) to harvest energy from EM radiation
is photovoltaics (PV). According to the National Renewable Energy Laboratory (NREL), conver‐
sion efficiency of PV technologies has been increasingly evolved during the last 40 years (figure
2). From the most simple variant of the 1st generation represented by the silicon based cells, to
the 2nd and 3rd generations corresponding to thin-film and the most sophisticated multijunction
cells respectively, a trade-off between efficiency and production cost is defining the market of
each variant (table 5).

PV technology Efficiency (%) Market Share (%)

1st generation 20 90

2nd generation 5-12 10

3rd generation 40-50 --

Table 5. Efficiency versus market of the 3 different PV technology generations.

The basic element in PV technology is the photovoltaic/solar panel/module which is composed
of photovoltaic cells connected in parallel, when photogenerated current must be enhanced,
or placed in series, when the output voltage is the parameter that needs to be maximized (see
chapter 10: “Electronics for Power and Energy Management”).

The working principle of a photovoltaic cell is based on the photovoltaic effect, which was
firstly described by Alexander-Edmond Becquerel in 1839. As it is reviewed in chapter 3 about
Solar Energy Harvesting, the photovoltaic effect has the same quantum nature as the photo‐
electric effect, so both can only be described by considering that the energy of the electromag‐
netic radiation is quantized in quanta called photons, with an energy hν, as it has been
explained before (equation 2). As it is shown in figure 3.a, photovoltaic effect takes place at the
core of the cell, which is found at the junction of the two semiconductors that integrates a
typical PV cell. When an individual photon interact with an individual electron at the valence
band of the semiconductor, the energy of the photon (and the photon itself) can be absorbed
by the electron to get promoted to the conduction band, leaving a hole in the valence band.
This process called, photo-generation of an electron-hole pair, is only possible if the photon
energy is at least equal to the energy of the band-gap (energy distance between the conduction
and valence band). The population of photogenerated electrons and holes is then driven by
the electrical field in the depletion zone of the PN junction and can eventually contribute to a
photovoltage and the corresponding photocurrent, when an electric load is connected to the
PV cell. In this case, both the photovoltage and the photocurrent are dc magnitudes and their
product gives directly the electrical power converted by the PV cell.
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Instead, the radiofrequency rectenna (RFR) technology is based on the combined operation of
two basic elements: an electrical rectifier that follows an electromagnetic antenna (rectenna).
The operation principle (figure 3.b) does not require quantum mechanics to be explained since,
in this case, electrons in the metallic antenna are already in the conduction band, and do not
need to be promoted in energy by absorbing photons from the electromagnetic radiation. In
this case, the phenomenology is better explained by the interaction between the electrons in
the antenna and the electric field of an electromagnetic incident wave. Similarly to PV
technology, in rectenna technology matching conditions must be also satisfied. Now, the
wavelength of the EM incident wave has to be a multiple of the antenna characteristic length
in order to induce a resonant electrical current in the antenna. As opposite to a PV cell, an
antenna will generate at its output both an ac voltage and an ac current. For this reason, a
rectifier is needed as the first basic electrical component to transform ac values into dc values.

Optical rectenna (OR) technology can be considered as a particular case of rectenna technology
where the frequency of the electromagnetic radiation involved is in the optical range. So, from
this point of view, RFR technology covers the radiofrequency part of the electromagnetic
spectrum and OR the optical part (figure 4). However, as it will be described in a next section
of this chapter, OR technology cannot be considered just as an extrapolation of the RF rectenna
concept to the optical range, since neither the antenna element, in this case a nanoantenna, nor
the rectifier, typically a metal-insulator-metal (MIM) diode, have exactly the same properties
of the RF counterparts. New physics such as plasmon resonances have to be taken into account

Figure 2. Efficiency evolution of the main photovoltaic technologies (from National Renewable Energy Laboratory).
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in the optical antenna (OA), an antenna with characteristic lengths in the nanometer range
(nanoantenna) to match the wavelengths of light radiation. Also special structures and
materials are needed to achieve response times short enough to rectify signals in the THz range,
which are induced in the nanoantenna element by the incident optical radiation.

hn h+

e-

E
P

N

iPH

(a) (b) (c)

RF

antenna
(m-mm)

PN
diode

light

nanoantenna
(mm-nm)

MIM
diode

Figure 3. Scheme of the operation principle of three different technologies used to harvest energy from the electro‐
magnetic spectrum. (a) Photovoltaic technology (PV), (b) radiofrequency rectenna technology (RFR) and (c) optical rec‐
tenna technology (OR).
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RadiofrequencyRectenna Tech. (RFR)

Figure 4. Spectral range coverage of the RF and optical rectenna technologies.

When used as light detectors, optical antennas involving rectifiers perform quite well in several
specifications, especially in those related with their intrinsic electromagnetic nature. Table 6
shows these figures for a few technologies working in the visible and the infrared. We may
already see in this table that the responsivity of optical antennas is lower than the rest of
technologies. This figure is in accordance with the low efficiency of rectennas that has been
observed in actual experiments involving MIM, or Metal-Insulator-Insulator-Metal (MIIM),
junctions as transducers. Summarizing this table we may say that optical antennas are point
detectors, very fast, work at room temperature, can be integrated with some other elements
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and devices (for example with focusing optics), and they present a broad tuneability, and a
remarkable selectivity in direction and polarization.

Visible CCD/

CMOS
MIM Junctions

Avalanche

Photodetectors

Pyroelectric

Detectors

Bolometric

Detectors

Optical

Antennas

Size 102λ2 102λ2 102λ2 101-102 λ2 101-102 λ2 10-2-100 λ2

Polarization

selective,

directivity,

tuneability

No No No No No Yes

Cooling
Better

performance
No

Better

performance
No No No

Responsivity 103-104 V/W 0,7-0,9 A/W 0.7 A/W 103-104 V/W 103-104 V/W 0.1 V/W

Time response 100 ns 10 ps 9 ps 400 μs 400 μs 1 ps

Table 6. Four different photodetection mechanisms are compared with optical antennas technology.

Nowadays, space in urban areas, including work and home environments is strongly packed
with EM radioelectric waves at various bands and spectral regions: besides the ubiquitous
presence of radio and TV bands, cell phones and personal communications devices, a myriad
of wi-fi stations, Bluetooth gadgets, and remote emitters and detectors produce a non-
negligible amount of EM energy flowing around us. Then, from a harvesting point of view this
energy could be recycled and properly used by electronic systems with ultra-low power
requirements. This strategy may work in those environments with strong RF signals, where
signal-to-noise ratio of other operative elements is not compromised. This idea of RF and
microwave recycling has been developed some time ago in the form of antenna arrays and half
or full wave rectifiers. Optical rectennas can be seen as an evolution and transposition of those
designs and devices already working in the microwave region. In this band some designs have
demonstrated more than 75% of efficiency when used for power transmission [8]. These figures
are reduced when considering broad-band antennas designed to recycle microwave energy
from ambient background.

Unfortunately, so far the efficiency number obtained at those frequencies have not been
replicated at infrared or visible frequencies. The reasons are mostly derived from the inherent
behaviour of materials when frequency increases. Besides, the difficulties of designing THz
electronics and oscillators, metals begin to behave as dispersive materials and the currents
built on their surface penetrates within the structure.

In order to place the reader in a position to make an educated guess on the different technol‐
ogies we present here a brief comparison among the photovoltaics, radiofrequency rectifiers,
and optical rectennas (optical antennas coupled to rectifiers)
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Photovoltaics: Direct conversion of light into electric power using the photovoltaic effect
exhibited by semiconductor materials.

• Efficiency: The theoretical limit is around 41% for single junction solar cells, and reaches
87% for multiple junctions.

• Pros: Well established and mature technology. Fabrication issues have been solved due to
the intrinsic relation with semiconductor technology.

• Cons: The performance is strongly dependent on temperature, especially for multiple
junction cells.

Radiofrequency Rectifiers: Direct conversion of light into electricity using a rectifier working
at radio or microwave frequencies.

• Efficiency: The limit is set around 85%. Practical devices have been demonstrated with an
efficiency larger than 75%.

• Pros: Well known basic mechanism of rectification. Fabrication can be made using standard
photolithography on dielectric substrates.

• Cons: Polarization and spectral selectivity.

Optical Rectennas: Direct conversion of light into electricity using rectifiers working at optical
frequencies.

• Efficiency: The theoretical limit is around 85%.

• Pros: Antenna theory and its scaling to optical frequencies is known and antenna-coupled
detectors have been demonstrated in the infrared and the visible. Minimum size of about
λ2, allowing very high packaging. No dependence with temperature. Metals are used for
fabrication with some advances in the use of conducting graphene.

• Cons: The efficiency of working devices is well below 85%. Barrier rectifiers are not able to
follow optical frequencies and behave as square law rectifiers. Further advances are needed
to have feasible rectifying mechanisms. Nano-fabrication technologies are necessary (nano-
imprint could solve large scale fabrication numbers).

1.3. Historical overview of wireless power transmission

The precedents of the rectenna technology are found in the first attempts to transmit power
through radio waves. The early history of RF power transmission dates from the experiments
of Heinrich Hertz (1857-1894). Hertz was the first to rigorously prove the existence of electro‐
magnetic waves. The experiments carried out for this purpose (figure 5) were based on
transmitters and receivers of radio pulses that were combined with reflectors to create standing
waves between the emitter and the receiver. In such experiments, dc power was converted to
UHF radio waves by means of an LC oscillator connected to a device called spark gap. The
emitted UHF EM wave from the dipole antenna was directed to the receiving antenna, an open
loop ring with also a spark gap, by means of a parabolic reflector. When the emitted wave
impinged on the receiving loop, a current was induced and a spark was produced. Hertz was
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in this way able to verify experimentally the existence and propagation in free space of EM
radiated waves and to measure that such propagation is produced at the velocity of light.

Figure 5. Scheme of the experiments carried out in 1887 by Heinrich Hertz to demonstrate the existence and propa‐
gation of electromagnetic waves in free space.

It was some years later, at the turn of the century, that Nikola Tesla (1856-1943) became
interested in transmitting electrical power from one point to another wirelessly. Several
famous attempts are described elsewhere. In the first one, which was carried out in 1899 at the
Colorado Springs Laboratory, an approximately 60 m mast antenna with a 1 m diameter copper
ball on top was built. An enormous coil that was fed with 300kW of electrical power got in
resonance at a frequency of 150 kHz. When this coil was connected to the mast antenna, an RF
potential of 100 MV with respect to the Earth was produced. The only record from this attempt
were the discharges from the sphere to ground (figure 6 left), but no data about the power
radiated and the power collected at a certain point were reported.

Figure 6. Pictures of the Colorado Spring Laboratory experiments (left), Nikola Tesla (center) and Wardenclyffe plant
(right).
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Starting in 1901, a similar frustrated attempt to transmit power wirelessly was performed by
Tesla in the Wardenclyffe plant at Long Island (figure 6 right), New York. In this occasion, a
wooden tower 46 m tall was built to place a 30 m in diameter doughnut-like copper electrode.
With this giant installation, Tesla wanted to transmit electrical power across the Atlantic, from
the USA east coast to Great Britain. In 1914 the tower was demolished after Tesla lost funding
to continue this project.

During the 1930’s decade, less ambitious and more controlled experiments performed in the
Westinghouse Laboratory led H.V. Noble to successfully transfer hundred watts of power
between two 100 MHz dipoles placed 1.5m apart.

A retrospective analysis shows that the initial Teslas’s failures and the lack of a clear demon‐
stration of wireless power transfer during the first half of the past century is because power
transfer starts to be efficient at the microwave range and above in frequency. At that time the
technology to generate power in this wavelength range was not developed enough. It was not
until the development of the klystron and the magnetron, combined with the end of the World
War II that power transfer technology could start to be notably unfolded. A detailed descrip‐
tion of this ramp-up period of the modern history of wireless power transfer is done by one
of the most prominent protagonists, William C. Brown [9]. Brown is famous by the invention
of the crossed-field amplifier, also known as Amplitron, but he can be also considered as the
pioneer of the microwave power transmission and the first in developing a rectenna. Most of
Brown’s achievements were carried out at the Raytheon Company and at the Jet Propulsion
Laboratory (NASA), and were mainly driven by two applications respectively: the Raytheon
Airborne Microwave Platform (RAMP), a microwave-powered helicopter and the solar-power
satellite (SPS), with microwave power transfer to the Earth. The requirements demanded by
both applications gave rise to the development of the Amplitron and the first rectenna, as
solutions to the generation of high Continuous-Wave (CW) powers of microwaves to be
transmitted and to the direct conversion of the received microwaves into dc power, in order
to drive the motors of the helicopter rotor blades. Thus, in 1964, the first flight of a helicopter
prototype was demonstrated. It was propelled by the 270W dc provided by a 1.4 kg array-like
rectenna integrated by 4480 1N82G semiconductor diodes in a 0.4 m2 area, which corresponded
to a power to mass ratio of 5 kg/kW. Eight years later, in 1968, the improvements introduced
by the use of Schottky diodes produced an enhancement of this ratio of one order of magnitude.
Finally, in 1983, the introduction of the thin film etched-circuit rectenna technology made
possible dc to dc efficiencies of 85% and power to mass ratios of 1kW/kg.

Further advances in the wireless power transfer technology have been made during the last
part of the past century and the beginning of the present one. As a consequence of this last
evolution, a company called WiTricity Corp. and a technology called passive Radio Frequency
IDentification (RFID) have become the two most meaningful examples of successful applica‐
tion of wireless power transfer.

WiTricity Corp. was born in 2007 to commercialize the applications of a technology developed
at Massachussetts Institute of Technology (MIT) by Professor Marin Soljačić and co-workers
[10]. The operation principle of this technology is based in the non-radiative power transfer
between two self-resonant coils operating in the strong coupling regime.
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In figure 7, the setup used to demonstrate the WiTricity concept is shown. A single loop, A,
connected to a sinusoidal signal generator is magnetically coupled to a secondary 5-turns
emitter copper coil 60 cm in diameter. An identical receiver coil is coaxially placed at a 2m
difference from the emitter, and also coupled capacitivelly to a secondary single loop con‐
nected to a 60W bulb load. The system, which is designed to resonate at 9.9 MHz, transfers the
60W of power needed to light the bulb with an efficiency of around 45%. At a shorter distance
of 3 ft, the 60W are transferred with an efficiency of 90%.

2mTX RX

60cm in
diameter

Figure 7. Picture (top) and scheme (bottom) of the WiTricity concept experimental setup. In the inset, the team of
Prof. Soljačić at MIT is placed between both coils during operation, trying to demonstrate that the technology is harm‐
less.
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Finally, RFID technology is also drawing on wireless power transfer technology [11]. In the
active RFID variant, the RFID transponder, also called “tag”, get the energy from a battery to
supply its Application-Specific Integrated Circuit (ASIC). By contrast, in a passive RFID
technology, the voltage generated in the tag antenna by the transmitted RF signal during the
periods of unmodulated carrier is converted to a dc voltage. This voltage is used to power up
the active ASIC chip circuitry which controls the input impedance of its front end. Commu‐
nication between the base station (RFID reader) and the active tag is based on the modulation
of the back-scattered signal produced by the toggle of the input front end impedance between
two states (figure 8).

Figure 8. Scheme of an RFID system. When RFID is passive, the power transmitted by the reader during the unmodu‐
lated periods is converted in a dc power at the input of a passive circuitry of the tag to supply the rest of the active
chip [11].

2. Electromagnetic radiation energy harvesting. The rectenna approach

As it has been pointed out above, a rectenna is the basic element of the RF and optical rectenna
technologies. It basically consists (figure 9) of an antenna, in charge of efficiently collecting the
energy emitted from a radiative source in the EM spectrum, and a diode, in charge of rectifying
the ac voltage induced at the antenna terminals by the EM radiation. Eventually, a low pass
filter follows the diode in order to obtain a dc voltage from the rectified signal. Usually, a dc-
dc converter is also needed to adapt the voltage levels of the filter output with the level required
by the application, represented in figure 9 by its equivalent load. As in most of the energy
harvesters, control electronics will manage the flow of energy from the dc-dc converter to the
application load or to a storage device, usually a battery, depending on whether the energy
harvested by the rectenna can satisfy the application demand or, instead, it is better to store
the harvested energy until the load demand could be satisfied.
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The core of the rectenna, i.e. the antenna and the rectifier, can be replicated in an array
configuration in order to improve the collection efficiency. Thus, a 2D array of identical
rectenna elements can be connected in series or in parallel to increase the effective collection
area and to increase the output voltage or the output current respectively [12]. Another 2D
array configuration strategy is based on combining rectenna elements with different charac‐
teristics in order to match the different wavelengths of an EM sources set.

2.1. The antenna as transducer element

An antenna is a device made to transmit and/or receive EM waves. By converting an electric
current into an electromagnetic field on one end and converting this EM field into a voltage
on the other, a pair of antennas gives the capability of making a wireless link between two
points.

The most important parameters of a transmitter antenna are described below:

• Impedance: given the fact that the antenna must be connected to a transmitter, through a
transmission line, and radiate the maximum amount of power with the lowest losses, the
impedance of the transmitter, the transmission line and the antenna must be the same. The
antenna itself introduces losses in the system, normally ohmic. In almost all the EM antennas
the input impedance can be computed as the sum of the losses (RΩ) and the radiation (Rr)
resistance

in rZ R RW= + (8)

The total delivered power to the antenna should then be calculated as:

rPT in r inP P I R I RW W= + = × + × (9)

EM
source

antenna

diode

LPF
dc-dc

converter load

control

storage

Figure 9. Block diagram of a rectenna.
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• Efficiency: given the losses and radiation resistances the efficiency of an antenna can be
computed as

r
e

r

R
R R

h
W

=
+ (10)

• Directivity: the directivity of an antenna is defined as the relation between the radiated
power density in one particular direction and the radiated power density which would
radiate an isotropic antenna emitting the same power.

• Radiation pattern: the radiation pattern of an antenna describes the relative field strength
of the radiated EM waves in all the directions from the antenna, at a fixed distance. For
directional antennas the radiation pattern shows that there is a particular direction on which
the antenna emits more efficiently. For omnidirectional antennas the radiation patter is
almost equal for all directions.

• Gain: compared to an isotropic radiator, which will equally distribute the radiated power
in all directions, real antennas with either a directional or omnidirectional radiation pattern
will radiate less power in some directions and more in others. Therefore it can be considered
that there is a gain between the different radiation directions. This gain can be defined as
the ratio between the transmitted signal strength value at the more efficient direction and
the value using a reference antenna. If the reference antenna is an isotopic source the used
units will be dBi.

• Polarization: the polarization of an antenna is defined as the orientation plane in which the
radiated or absorbed electric field vibrates with respect to a reference plane, for example the
Earth’s surface. It is determined by the physical construction of the antenna and its orien‐
tation, especially by its radiating element. The most common polarizations are linear and
circular, which are particular cases of elliptical polarization. In the first one, the electric field
vector stays in the same plane whereas for the second one it appears to be rotating with a
circular motion around the direction of propagation.

• Bandwidth: most of the EM antennas operate efficiently over a relatively narrow frequency
span due to their geometry. As a consequence, they must be tuned in order to have the same
frequency band operation as the electronic system at which they are connected.

The most important parameter of a receiver antenna is

• The effective area: an antenna extracts power from the wavefront of an EM wave, thus it
represents a certain capture area or effective area. This area is defined as the relation between
the power delivered to the receiver circuitry and the power density of the incident wave.

Additionally, antennas comply with the law of reciprocity. This law states that given two
identical antennas placed at some distance, each of them can be operated either as a transmit‐
ting antenna or as a receiving antenna. Suppose that the one working as a receiver is kept intact,
while the performance is modified so that, for a fixed amount of radiated power, the signal
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received by the other antenna changes by a factor. If the same modified antenna is used for
receiving the transmitted signal by the unmodified one, its performance will also be changed
by the same factor. This theorem can be formally derived from Maxwell’s equations and its
validity can be easily verified.

As a consequence of this law, all the previous described antenna characteristics (efficiency,
radiation pattern, gain, polarization, bandwidth and effective area) are the same whether the
antenna takes part in a transmitter or a receiver scheme. Besides, when designing optical
antennas, this reciprocity law is used to simplify the calculation, for example, when calculating
the radiation/receiving patterns and some other important parameters of the antenna.

The simplest designs of radiofrequency antennas are developed as wires or loops of conductors
properly arranged and connected to an electronic element to produce and detect electromag‐
netic radiation with a wavelength scaled to the size of the antenna. An important step forward
was made when planar structures used the resonant properties of metal patches and planar
strips. These could be fabricated using photolithography in a very similar manner as it was
done with printed circuits. When the frequency increases the resolution of manufacturing
techniques also increases to produce thinner and finer structures. Then, when moving to
terahertzs and infrared frequencies only nanofabrication techniques are suitable to realize
those antennas. The reasons are twofold. On the one hand is the shrinking of the wavelength
towards the nanometric scale, and on the other hand the quality of the finishing elements in
terms of roughness and surface smoothness, which may interact with the currents and scatter
the charge carriers around non useful directions. These nanophotonic devices are still consid‐
ered as antennas because they can produce or detect electromagnetic radiation using wires or
resonant patches. In a simple manner, optical antennas are defined as resonant structures able
to produce an electric signal related with the incident optical radiation.

At the same time, taking into account the re-emission of electromagnetic radiation by resonant
structures, it is possible to define a new kind of element that changes the properties of the light
that interacts with it. We will name these elements as belonging to the “resonant optics” area.
Conventional, reflective or refractive, and diffractive optics relies on the geometrical and wave
models of light. Then, resonant optics uses the electromagnetic interaction of light waves with
geometrical structures, typically fabricated with conductors, which work building currents up.
They have been used as frequency selective surfaces, polarization elements, or phase shaping
devices. Some of the designs are scaled versions of their microwave counterparts, where they
were first demonstrated. In the recent past we have seen a growing number of scientific
contributions where these elements are analyzed and exploited for a variety of applications.
At the same time, they have been denoted with different names, mainly depending on the
origin of the research teams that develop them: metamaterial surfaces, flat optics, 2.5D
photonic crystals, etc.

Both optical antennas and resonant structures are determined by geometry and material
parameters. Geometry mostly drives the polarization and spectral selectivity. Intrinsically, the
size of the antenna is related with the wavelength. Therefore, when considering infrared and
optical radiation, optical antennas become, by nature, nanophotonic devices. For example, a
dipole antenna has a length of a few microns for far infrared radiation, and a few hundreds of
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nanometers for visible light. At the same time, the width of the dipole is limited by fabrication
constrains and can be as narrow as a few tens of nanometers. Consequently, the area of
detection of the incoming radiation, which extends a little farther from the antenna itself, is
about l2, depending on the geometry of the antenna. The far-field pattern of optical antennas
resembles that of their radiofrequency counterparts.

Also, as it happens with planar antennas written on dielectric substrates, the responsivity of
optical antennas is larger when light is incident from the substrate side than when it is incident
from the air, mostly because of the larger electric permittivity of the substrate. The ratio
between the power radiated, or received, by an antenna located between two media of electric
permitivities ε1 and ε2 is [13,14]

Γ=
P1

P2
= ( ε1

ε2
)

3

2 (11)

Besides, the effective wavelength at which the resonance takes place moves because of this
situation. This effective wavelength is given classically as

λeff =
λ0

ε1 + ε2
2

 (12)

and when considering the plasmon resonances as

λeff =n1 + n2
λ0

λp
 (13)

where n1 and n2 depend on the geometry and material parameters, and λp is the wavelength
of the plasmon resonance [15]. This equation already shows the influence of the material
parameters in the performance of optical antennas. At the infrared and visible frequencies
metals are no longer perfect conductors and behave as dispersive materials [16]. This means
that the radiation losses increase and the surface currents penetrate deeper within the mate‐
rials. However, metals also present interesting phenomena at optical frequencies. The optical
radiation can excite the collective resonance of the charge carriers. They now, oscillate as a
unique particle that is named as plasmon. The plasmonic resonances have been devoted
increased attention along the past years, producing a myriad of papers and novel applications.
In the area of optical antennas, plasmons play an important role because of their occurrence
at optical frequencies.

Although in this chapter we focus our attention on optical antennas, we have to mention the
important role that resonant structures may play in the improvement of photovoltaic solar
cells. It is known that when populating a surface with metal nano-structures, the interaction
of light with the structure changes. If the surface is that one of a solar cell, photons can be
scattered by the resonant structures and the optical path within the material is enlarged. Also
the enhancement of the electric field near the nano-structures may increase absorption, or
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directly, those photoexcited electrons can be injected into the cell, contributing to the total
current delivered by the cell [17]. Some advances have been made reporting 50% increase of
the transmittance of the surface using plasmonic nanoparticles [18]. This path is quite prom‐
ising for improving the performance of traditional photovoltaic cells.

2.2. Rectifying devices and technologies

Rectification is commonly performed by p-n junction diodes when RF radiation is in the kHz-
MHz low frequency range. However, when operation frequencies are in the GHz-THz range,
semiconductors and devices with shorter transit times and lower intrinsic capacitances like
GaAs Schottky diodes are needed. Typical maximum operation frequency of Schottky diodes
is 5 THz and although theoretical efficiencies approach 90%, only values of just around 50%
have been demonstrated experimentally.

In most common rectifying situations, which correspond to low frequency and high power
conditions (LFHP), diodes produce a half-wave rectification with an efficiency given by

ηLFHP = 1

1 +
vD

2vdc

(14)

where vD and vdc are respectively the voltage drop across the diode and the output rectified dc
voltage.

However, in the opposite conditions of high frequency and low power (HFLP), which
corresponds to those of RF signals to be harvested by a rectenna, rectification is much more
complex Since: first the incident power is not only low but fluctuant in value and, second,
because matching of the antenna and the diode is an issue. Consequently, the power at the
output of the rectenna, Pdc, will be obtained from the incident RF power, PRF, by

Pdc = PRF · ηHFLP(PRF , ρ) (15)

where the rectification efficiency, ηHFLP, depends explicitly on PRF and on the antenna to diode
matching ρ. This explicit dependence cannot be described analytically with a closed expression
like in the LFHP case and the problem of Pdc prediction has to be solved by simulation. Time-
domain analysis has been successfully applied to address this problem for single frequency or
narrow-band rectenna applications [19]. However, a frequency-domain approach based on the
harmonic balance (HB) method is more appropriated for wide-band applications [12], where
some characteristics of the diode as the nonlinearity of its capacitance, the reflected harmonic
energy at input/output or the self-biasing effects start to be relevant.

In the case of optical antennas, they work by combining the effect of two physical mechanisms.
One of them is the coupling of the optical radiation to the device. This task is in charge of the
metal structure. The other is the transduction mechanism used to provide the output signal.
So far, two main types of transducers have been demonstrated. The bolometric response of the
material is used to produce a change in the voltage measured from the device. However, this
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mechanism is dissipative and it does not provide a positive balance of power, and therefore it
is not useful for harvesting applications, at least directly. As an interesting outcome of the Joule
dissipation we find that when incorporating resonant elements to thermoelectric pairs, the
combination of localized heating and the Seebeck effect can be of use to produce electric power
[20,21]. The other mechanism is the rectification of currents using a diode. This is the case
implemented in rectennas. Metal-Insulator-Metal (MIM), and Metal-Insulator-Insulator-Metal
(MIIM) have been demonstrated as effective diodes from the microwave to the visible wave
ranges [22, 23, 24, 25]. Typical MIM materials are Cr/CrOx/Au, Nb/NbOx/Nb or Al/AlOx/Pt,
and state of the art MIM diodes can operate at frequencies up to 150 THz. These junctions work
as square-law rectifiers. The rectified current is given as

IDC =γ 
|V diode|2

4Rdiode
(16)

where γ represents the non-linearity of the current-voltage curve of the device. Non-linearity,
γ, which is defined from the i-v diode characteristic as γ≡(d2i/dv2)/(di/dv), should be at least 3
or larger to start getting reasonable values of conversion efficiency. Figure 10 shows the line
transmission schematics of the antenna-diode element. When optimizing this structure for
maximum efficiency the impedance of the antenna has to compensate the impedance of the
load (the diode). This means that the antenna has to present an imaginary part of the impedance
that is not typically included when maximizing the performance.

Figure 10. Transmission line schematics of a diode coupled to an antenna. The antenna is considered as having an
impedance of Rantenna.

On the other hand, the cut-off frequency of the element is given as

f cutoff = 1
2πRC  (17)
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where the RC constant should be smaller than 10-14 s-1 to reach the infrared and optical regions.
The junction itself works as a capacitor. To reduce its capacitance we cannot increase the
thickness of the junction because in that case tunnelling would be not possible. Because of that,
it has a thickness of about 2-3 nm, depending on the insulator. Therefore, in order to have a
low capacitance the junction area should be small. On the other hand, to efficiently transfer
the power to the load, the impedance mismatch should be corrected. These issues are being
addressed in several ways and some promising results have been already published [26,27].
However, when combining MIM diodes with antennas, the conversion efficiency given as the
ratio between the power obtained after rectification and the incident power is quite low for
these square law rectifiers [28]. The values for this efficiency is lower than 10-6, showing that
some better rectifying technologies need to be developed before practical devices based on
direct rectification of light, become competitive against other solar energy harvesters. In Figure
11 we show the response of an optical antenna placed in front of a black body at 1000°K,
demonstrating the existence of an output signal for this extreme condition.

Figure 11. Response of an optical antenna located on the image of a blackbody radiator at 1000°K. This image was
obtained by a relay optical system fabricated in ZnSe and having an F/# equal to 1 [29].

A modification of the traditional MIM diode, the travelling-wave metal-insulator-metal diode
(TW-MIM), allows obtaining a quantum efficiency of 3.6% in the IR region [30]. The TW-MIM
is based on the rectification of the surface plasmon excited by the antenna on a plasmonic
waveguide.
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Some interesting advances in rectification at terahertz and quasi-optical frequencies have been
proposed using a novel approach. The geometric rectifier (see Figure 12) has been demon‐
strated at GHz frequencies [31]. Here the rectification is given by deflecting the trajectories
followed by the charge carriers through an asymmetric channel. The simplest case is an arrow
shaped element that selectively directs charge carriers in a given direction, preventing the
movement of those carriers towards the opposite direction [32]. These geometric rectifiers need
materials and conditions where the carriers exhibit a free mean path longer, or much longer,
than the size of the rectifying structure, i.e., a few hundreds of nanometers. Besides the electric
properties of metals, exhibiting free mean paths in the range of a few tens of nanometers (for
example for Au this parameter is around 20 nm), the conduction properties of graphene can
be tailored to produce feasible devices having this effect [33].

Figure 12. Basic scheme of a geometric rectifier. The horizontal arms of a dipole antenna intersect at the feed point.
This feed point is shaped as an asymmetric defect that deflects charge carriers towards the bottom of the geometric
rectifier [34].

Also a device based on grapheme, the field effect transistor (G-FET) in common source
configuration, can potentially be a promising candidate as rectifier component for optical
rectennas. The extremely high mobility of graphene combined with the ambipolar transport
properties would allow to implement full-wave rectification at THz in a single device [35].

Finally, two examples of RF rectenna (RFR) and optical rectenna (OR) from the literature are
shown in figure 13 in order to compare dimensions and performances.
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The RF rectenna of figure 13 corresponds to a rectenna array configuration designed to operate
in the 2-18 GHz region and for input power densities from 10 nW/cm2 to 0.1 mW/cm2. The
spiral rectenna elements are distributed along the 324 cm2 array area with different orientations
in order to harvest energy from different polarized sources. So, considering an effective area
of Aeff=25 cm2, then input RF power will vary between PRF=250 nW and PRF=2.5 mW. If
rectification efficiencies for such input powers results to be η(250nW)=1% and η(2.5mW)=20%,
then the output dc power harvested by this array will theoretically vary between 2nW and 450
μW. Other examples of rectenna designs achieved efficiencies from 40-50% operating at 10-2

mW/cm2 [37] to 80% at 10 mW/cm2 [38].

By contrast, in the optical rectenna (figure 13 right bottom), designed to operate in the IR band,
the 19x23 mm2 area of the RF rectenna element is reduced to less than 1 μm2. In this case, an
Al/AlOx/Pt MOM diode is chosen to implement the rectifier, which is coupled to a dipole 1
μm long nanoantenna. However, as it has pointed out above, the maximum conversion
efficiency of 20% shown by the RF rectenna is reduced below 10-6 in optical rectennas like this
one.

3. Conclusions

In this chapter, the most important concepts needed to understand how energy from the
electromagnetic spectrum can be harvested by means of the rectenna technology have been
introduced. Main differences with the well stablished photovoltaic approach have been
analyzed and a comparative list of pros and cons has been provided. An historical overview

1mm

Figure 13. RF rectenna array (left) integrated by 64 single spiral rectennas (right top) [12]. Optical rectenna for the IR
range consisting on a dipole coupled to a MOM diode (right bottom) [36].
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of the first works on wireless power transmission has been useful to understand the origin of
the rectenna concept. The most relevant technical characteristics of both components of a
rectenna, the antenna and the rectifier device, have been also decribed, and the specific features
of each element have been explained for the readiofrequency and the optical range.
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