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1. Introduction

In wireless communications, the spectral efficiency can be improved by exploiting the
space domain when antenna arrays are used. In particular, space-division multiple
access (SDMA) [1–3] can be adopted with various beamforming techniques. If both the
transmitter and the receiver are equipped with multiple antennas, the resulting channel
becomes a multiple-input-multiple-output (MIMO) channel, which can provide a rich
spatial diversity gain. In MIMO systems, it is often desirable to use the maximum
likelihood (ML) detection to jointly detect received signals for optimal performance and full
receive diversity. However, since the complexity of the ML detection exponentially grows
with the number of transmit antennas, the ML detection approach becomes impractical
for high-dimensional detection problems. To derive low-complexity suboptimal MIMO
detectors, various approaches based on the properties of lattice are considered. For example,
using the Lenstra-Lenstra-Lovász (LLL) algorithm in [4], the lattice reduction (LR)-based
low-complexity detectors are proposed in [5–8], which can provide a full receive diversity
gain with a near-ML performance. The basic idea of the LR-based MIMO detection is
to generate a nearly orthogonal basis for a given channel matrix to mitigate the effect of
(multiple antenna) interference.

Due to users’ different locations and channel conditions, it is possible to exploit another
diversity gain in a multiuser system, where the throughput can be maximized by choosing
the user of the strongest channel gain at a time. The resulting diversity gain is called the
multiuser diversity gain [9]. Multiuser systems can be extended to the case of MIMO systems
[10], where the multiuser MIMO user selection plays a key role in increasing the throughput
of downlink channels [11]. It is noteworthy that, by viewing the multiuser MIMO system as
virtual antennas in a single-user MIMO system, various antenna selection techniques can be
applied to user selection [12, 13]. A mutual information-based criterion is proposed in [12] to
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select the antenna subset that maximizes the mutual information. In [13], a geometry-based
criterion is developed with an LR-based linear detector to minimum the error probability. In
general, user selection problems are combinatorial problems, and the complexity required to
solve the problems could be prohibitively high for a large multiuser MIMO system. Thus,
low-complexity suboptimal selection strategies are considered in [14–21], at the expense of
degraded performance. In [14–17], a single antenna is selected at a time to maximize the
throughput based on greedy selection schemes.

Although the achievable rate or related signal-to-noise ratio (SNR) can be used for the user
selection criterion, it would be more practical to use a certain performance measure that is
directly related to the performance of the actual detector or decoder employed. Therefore,
it is desirable to derive a user selection criterion that can maximize the performance of the
MIMO detector that is actually employed in a multiuser MIMO system.

In this chapter, for the user selection in uplink channels of a cellular system, where a single
user is selected to transmit signals to a base station (BS) at a time, the error probability is
used for the user selection criterion to choose the user with the smallest error probability for
given MIMO detectors. Various user selection criteria will be derived with the ML detector,
LR-based detectors and other low-complexity suboptimal detectors. It will be shown that
a near-optimal performance with a full diversity gain (i.e., multiuser diversity and multiple
antenna diversity) can be achieved using the proposed user selection criteria in this chapter
with LR-based detectors.

Based on the single user selection criteria derived, we will extend them to support multiple
users at a time. This extension of the user selection (i.e., multiple user selection) is
not straightforward, because the multiple-user selection problem becomes a combinatorial
problem. If an exhaustive search is used for multiple user selection when an LR-based
MIMO detector is employed, LR needs to be performed for all the possible channel matrices
composited by a group of subchannel matrices of the selected users. Unfortunately, this
results in a high computational complexity, because the number of user combinations
is large. Therefore, we will propose a greedy user selection algorithm to reduce the
computational complexity at the expense of degraded performance when LR-based detectors
are used. Moreover, to further reduce the computational complexity, an iterative LR updating
algorithm will be investigated. Based on a theoretical analysis in this chapter, we can
show that, with the combinatorial user selection, the LR-based detection can achieve the
same diversity as the ML detector. Through simulations, we will compare the performance
obtained by our selection criteria (i.e., combinatorial and greedy ones) to other existing
approaches.

With the LR-based detection employed, simulation results will confirm that our
combinatorial user selection can provide the best performance, whereas the performance
of the greedy user selection scheme could approach that of the combinatorial approach as
the correlation between possible composite channel matrices decreases. It will also be shown
that our greedy user selection provides a better performance and a significantly reduced
complexity compared with other approaches.
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2. System model

In this section, we introduce the model of multiuser MIMO system together with several
MIMO detection techniques.

2.1. Multiuser MIMO system

Consider the multiuser MIMO system with K users in uplink channels, where each user is
equipped with P transmit antennas, and the base station (BS) is equipped with N receive
antennas. Each user has an N × P channel matrix and a P × L signal matrix, which are
denoted by Hk and Sk, respectively, where k ∈ {1, 2, ..., K}. Here, L is the number of symbols
transmitted by a user. It is assumed that all the users share a common uplink channel and
that M users can access the channel at a time, where M = ⌊N/P⌋. The channel is assumed
to be a quasi-static block fading channel, with its channel matrix not varying over a time
slot duration of L symbols. Here, a set of the M users who can access the channel could be
updated for every time slot interval. Note that this selection problem can also be regarded as
that with virtual antennas in a single-user MIMO system, where MP antennas are selected
out of KP available antennas. Let k(m) be the mth selected user’s index. For convenience,

define the set of the selected users’ indexes as K =
{

k(1), k(2), ..., k(M)

}

. Then, over a slot

duration, the received signal at the BS is given by

YK = HKSK + N, (1)

where HK , SK , and N are the N × MP composite channel matrix, the MP × L transmitted
signal matrix, and the N × L background noise matrix, respectively. We assume that each
column vector of N is an independent zero-mean circularly symmetric complex Gaussian

(CSCG) random vector with E
{

nln
H
l

}

= N0I, where nl denotes the lth column of N. Note

that HK =
[

Hk(1) , ..., Hk(M)

]

and that SK =
[

Sk(1) , ..., Sk(M)

]

.

Throughout this chapter, we assume that the channel state information (CSI) is perfectly
known at the receiver. Furthermore, the following assumptions are used to derive user
selection methods.

A1) The elements of SK have a common signal alphabet, denoted by S , and S ⊂ Z + jZ,

where Z denotes the set of integer numbers and j =
√
−1. Furthermore, let SA represent

the A-dimensional Cartesian product of S .

A2) The transmitted signals are uncoded. This implies that the user selection criteria in this
chapter are based on uncoded bit error rate (BER). For uncoded signals, we can assume
L = 1 (Note that this assumption is used to simplify the derivation of user selection
criteria, while the length of slot can be any number). Thus, YK , SK , and N are vectors
and will be denoted by yK , sK , and n, respectively.

2.2. MIMO detection

MIMO detection plays an important role in MIMO receivers. Within this chapter, several
well known MIMO detectors including the ML detector, linear detectors, and successive
interference cancellation (SIC) detectors, together with LR are considered.
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2.2.1. ML and linear detection

For the sake of convenience, we omit the index set K. The ML detection is given by

ŝml = arg min
s∈SMP

‖y − Hs‖2 , (2)

where the complexity grows exponentially with MP.

Alternatively, an estimate of s can be obtained by a linear transformation as follows:

ŝ = Wy, (3)

where W is a linear filter that is given by W =
(

HHH + cI
)−1

H. If c = 0, the linear detector
corresponds to the zero-forcing (ZF) detector, while the minimum mean square error (MMSE)
detector is obtained if c = N0/Es. Here, Es is the symbol energy and it is assumed that

E
{

ssH
}

= EsI.

To improve the performance of the detector, the LR is performed in the LR-based detection.
A complex valued matrix can be converted into a real valued matrix for the LR as in [7].
Alternatively, the LR can be directly performed with a complex valued matrix as in [6], [8].
For convenience, in this chapter, we assume that the LR is performed with complex valued
matrices.

For a given channel matrix H, the LR basis can be found as follows:

H = GU, (4)

where U is an (complex) integer unimodular matrix and G is a matrix whose column vectors
are nearly orthogonal. The received signal can be rewritten as

y = Hs + n = Gc + n, (5)

Under the MMSE criteria, the linear filter of LR-based MMSE linear detector is given by

W =
(

GHG + N0
Es

UHU
)−1

GH.

2.2.2. SIC detection

An SIC detector is not a linear detector due to its cancellation operation. In [7], the LR-based
SIC detectors are proposed. To generalize the LR-based SIC detector, define the extended

channel matrix as Hex = [HT
√

cI]T. The LR basis can be found as

Hex = GexUex, (6)

where Uex is a complex integer unimodular matrix and Gex is a matrix whose column vectors
are nearly orthogonal. If the LR basis is not used, Uex = I (i.e., Gex = Hex).
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Note that the size of Hex is the same as that of Gex which is 2N × MP. Let the QR
factorization of Gex be Gex = QR, where Q is a matrix whose column vectors are
orthonormal and R is upper triangular. Let yex = [yT 0]T and nex = [nT −√

csT]T. This
results in yex = Hexs + nex. Then, the LR-based SIC detection can be carried out with the
following signal:

QHyex = QHGexUexs + QHnex = Rc + n̄, (7)

where c = Uexs and n̄ = QH
exnex. Since the statistical properties of n̄ and n are the same, we

will use n to denote n̄. Note that n also includes the self-interference as mentioned in [7].

The SIC detection can be carried out with (7). The elements of the last row, the MPth layer,
are detected first. Then, their contributions in the second last row are canceled and the
signals of the (MP − 1)th row are detected. This operation is repeated up to the first row.

3. Single user selection criteria

In this section, we derive user selection criteria depending on the type of actually employed
MIMO detector, where a single user is selected to transmit signals to a BS at a time. Suppose
that user k is chosen, the system model in (1) is simplified as

Yk = HkSk + N, (8)

For detection method, the ML detector and two suboptimal detectors will be considered: one
is the linear detector and the other is the SIC detector. As for the two suboptimal detectors,
the LR is applied for better performance [6][7].

3.1. ML detector

Assuming that user k is selected, we omit the user index k for the sake of simplicity. To
derive the selection criterion, we can consider the pairwise error probability (PEP). Suppose
that s(1) is transmitted, while s(2) is erroneously detected. Then, the PEP is given by

P

(

s(1) → s(2)

)

= Pr

(

∥

∥

∥y − Hs(2)

∥

∥

∥

2
≤

∥

∥

∥y − Hs(1)

∥

∥

∥

2
)

= Q





√

‖H∆‖
2N0



 , (9)

where Q(x) =
∫

∞

x

1√
2π

ez2/2dz and ∆ = s(1) − s(2). Then, the following upper bound can be

obtained as

P

(

s(1) → s(2)

)

≤ Q





√

‖Hd̄‖2

2N0



 , (10)
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where

d̄ = arg min
d∈D,d 6=0

‖Hd‖2. (11)

Here, D =
{

d = s − s′
∣

∣

∣s, s′ ∈ SP
}

⊂ Z
P + jZP. For convenience, denote by S(H) the length

of the shortest non-zero vector of the lattice generated by H. Then, we can see that S(H) =
‖Hd̄‖. From (10), if the ML detector is employed, the user selection criterion to minimize the
error probability becomes

k∗ = arg max
k

S(Hk). (12)

Throughout this chapter, the user selection criterion in (12) is referred to as the max-min
distance (MDist) criterion as S(H) is the minimum distance of the lattice generated by H.

The problem to find a non-zero shortest vector in a lattice is called the shortest vector problem
(SVP) and known to be NP-hard. For an approximation, the LLL algorithm in [4], which has
a polynomial time complexity, can be used.

Another approximation can be considered by relaxing the constraint on ∆. We have

‖H∆‖2 = ∆
H

H
H

H∆ ≥ ‖∆‖2
λmin

(

H
H

H

)

, (13)

where λmin(A) stands for the minimum eigenvalue of A. This shows that the selection
criterion can be based on the minimum eigenvalue of the channel matrix, i.e.,

k∗ = arg max
k

λmin

(

H
H
k Hk

)

. (14)

Thus, each user can feed back its minimum eigenvalue of the channel matrix and the user
who has the maximum λmin

(

HH
k Hk

)

can be selected to access the channel. This selection
criterion is referred to as the max-min eigenvalue (ME) criterion throughout this chapter.

3.2. Linear detectors

As the SNR increases, we have c → 0 (in this case, the MMSE detector becomes the ZF
detector) and the PEP has the following upper bound:

P
(

s(1) → s(2)

)

= Q

(

‖∆‖2

√

2N0∆H(HHH)−1∆

)

≤ Q





√

λmin(HHH)

2N0
‖∆‖2



 , (15)

Recent Trends in Multi-user MIMO Communications164



because Q(·) is a decreasing function and ∆
H(HHH)−1

∆ ≤ λmax(HHH)−1‖∆‖2 = ‖∆‖2

λmin(HHH)
.

Therefore, the ME criterion in (14) can be used for the user selection criterion.

It is important to note that this ME criterion is valid for the LR-based linear detectors [6], [7].
Let c(i) = Us(i), i = 1, 2. Then, from (15), the PEP is bounded as

P
(

s(1) → s(2)

)

≤ Q





√

λmin

(

GHG
)

‖∆U‖2

2N0



 , (16)

where ∆U = c(1) − c(2) = U
(

s(1) − s(2)

)

. From (16), the selection criterion becomes

k∗ = arg max
k

λmin

(

GH
k Gk

)

, (17)

where Gk is the reduced basis from Hk. This ME criterion is the same as that in (14) except
that the channel matrix Hk is replaced by its reduced one Gk.

3.3. SIC detectors

As the LR is performed, the column vectors of Gex would be nearly orthogonal. In other
words, the upper off-diagonal elements of R would be small. Thus the SIC detection
performance would mainly depend on the diagonal elements of R. For convenience, let

c = 0 (this is the case when N0 → 0 or high SNR). Let r
(k)
p,p denote the (p, p)th element of R

from the kth user’s channel Hk. Then, ignoring the interference terms (as they are canceled
when the detection of the lower layers is successfully carried out with no error), the SNR of

the pth layer of Hk becomes γ
(k)
p =

|r
(k)
p,p |

2

N0
. From this, the selection criterion can be given by

k∗ = arg max
k

{

min
p

∣

∣

∣r
(k)
p,p

∣

∣

∣

}

. (18)

This selection criterion is referred to as the max-min diagonal term (MD) criterion.

The MD criterion is also closely related to the minimum error probability criterion when the
SNR is high. For convenience, let x = QHy. Then, (18) is rewritten as

x = Rc + n. (19)

Let np denote the pth element of n. Then, the LR-based SIC detection at the Pth layer does

not have error if
|nP |
|rP,P |

<
1
2 or |nP|

2
<

|rP,P |2

4 . Thus, the LR-based SIC detection would have no

error across all the layers if |np|2 <
|rp,p |2

4 , for all p. The probability of no error can be lower
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bounded as

Pr(no error) ≥ Pr

(

|np|
2
<

|rp,1|
2

4
, ∀p

)

=
P

∏
p=1

Pr

(

|np|
2
<

|rp,p|2

4

)

. (20)

Since |np|2 is a chi-square random variable with 2 degrees of freedom (or an exponential

random variable), we have Pr
(

|np|2 <
|rp,p |2

4

)

= 1 − exp
(

−
|rp,p |2

4N0

)

. Thus, from (20), the

probability of error can be given by

Pr(error) ≤ 1 −
Q

∏
p=1

(

1 − exp

(

|rp,p|2

4N0

))

≃ exp

(

−min
p

|rp,p|2

4N0

)

as N0 → 0. (21)

Therefore, to minimize the probability of error, the user who has the maximum minp |rp,p|
can be selected.

4. Selection criteria with multiple users

To maximize the performance, if M = 1, the user who can have the minimum PEP is chosen
for a given MIMO detector. In Section 3, a few user selection criteria are derived, depending
on the types of actually employed MIMO detectors. Note that only one user is selected (i.e.,
M = 1) in Section 3. To extend the user selection criteria to the case of M > 1 here and in
the consecutive sections, we consider the combinatorial and greedy user selection criteria.

4.1. ML and MMSE selection criteria

For a given M > 1, the set of the users who can access the channel can be found using the
MDist or ME user selection criterion as follows:

KMDist = arg max
K

S (HK) (22)

or

KME = arg max
K

λmin

(

HH
KHK

)

(23)

respectively. If the ML detector is employed, the MDist user selection criterion can be used
to choose the M users who can have the lowest BER, whereas the ME criterion is used to
choose the M users with the highest worst SNR (i.e., max-min SNR).
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4.2. LR-based MMSE and MMSE-SIC selection criteria

In this subsection, the user selection criteria with LR-based detectors in Section 3 are
extended to the case of M > 1, where the number of transmit layers are extended to MP,
compared to P in the case of M = 1.

The MD criterion derived in Section 3, with M = 1 for the LR-based MMSE-SIC detection,
can be extended to the case with M > 1 as follows:

KMD = arg max
K

{

min
q

∣

∣

∣
r
(K)
q,q

∣

∣

∣

}

(24)

and the ME criterion for the LR-based MMSE detection can also be modified as

KME = arg max
K

λmin

(

GH
KGK

)

. (25)

The user selection based on (22), (23), (24), and (25) is called the combinatorial user selection,
because the users have to be selected by combinatorial (or exhaustive) search.

5. LR-based greedy user selection using an updating method

The computational complexity of the user selection under the criteria derived in Section 4
grows rapidly with M or K as they are all combinatorial optimization problems. Thus, it
is desirable to derive low complexity approaches for the user selection. In this section, we
propose low complexity greedy approaches for the user selection. Note that we focus on the
greedy user selection with a LR-based MIMO detector only as its performance is comparable
to that of the ML detector and, more importantly, we can derive a computationally efficient
LR updating method in conjunction with greedy user selection.

5.1. LR-based greedy user selection

The user selection approaches in Section 4 have the complexity that becomes prohibitively

high as M or K increases, because there are U = ∏
M−1
i=0 (K − i) possible user index sets.

For each user index set, an LR of an N × MP complex channel matrix is to be performed.
For example, when K = 10, M = N = 4 and P = 1, 10 × 9 × 8 × 7 = 5040 LRs of 4 × 4
complex-valued channel matrices should be carried out.

To reduce the computational complexity in the user selection, we consider a greedy approach
when a LR-based MIMO detector is employed. The resulting approach is called the LR-based
greedy (LRG) user selection, which is of course suboptimal. The LRG user selection
algorithm is summarized as follows:

1. Let m = 1 and K̄ = {1, . . . , K}. In order to select the first user, we can use any criterion.
For example, if the ME criterion is used, we have

k(1) = arg max
k∈K̄

λmin

(

GH
k Gk

)

, (26)
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where Gk represents the LBR matrix of Hk or Hex,k =
[

HT
k

√

N0
Es

IN

]T
(for the LR-based

MMSE detector). Once the first user is chosen, we update K̄ as K̄ ⇐ K̄ \
{

k(1)

}

. In

addition, we let H(1) = Hk(1)
.

2. Let m ⇐ m + 1 and H(m),k =
[

H(m−1) Hk

]

, k ∈ K̄. The mth user can be chosen if the ME

criterion is used as

k(m) = arg max
k∈K̄

λmin

(

GH
(m),kG(m),k

)

, (27)

where G(m),k is the LBR matrix of H(m),k or Hex,(m),k =
[

HT
(m),k

√

N0
Es

IN

]T
. Once the mth

user is found, we update as follows:

add k(m) to the index set of the selected users, K,

K̄ ⇐ K̄ \ k(m),

H(m) = H(m),k(m)
.

(28)

3. If m = M, stop. Otherwise, go to 2).

Note that in this algorithm, the N × mP complex-valued matrix H(m) denotes the channel
matrix for the first m selected users, while the N × P complex-valued matrix Hk(m)

represents

the channel matrix for the selected user in the mth selection with the index k(m), where

k(m) ∈ K̄ and K̄ = {1, . . . , K} \
{

k(1), . . . , k(m−1)

}

.

In the LRG user selection, the number of required LR operations is ∑
M
i=1(K − i + 1) and

the matrix size for LR in selecting the mth user is N × mP. Using the upper bound on
the average complexity of LR studied in [8], we can show that the complexity of LRG
is upper-bounded as ∑

M
i=1(K − i + 1)O

(

(iP)3N log(iP)
)

(Note that when P = 1, no LR is

required for the first user selection, where the complexity of LRG reduces to ∑
M
i=2(K − i +

1)O
(

(iP)3N log(iP)
)

). On the other hand, the number of required LR operations in the

combinatorial user selection according to (24) or (25) is ∏
M
i=1(K − i + 1) and the matrix

size for LR is always N × MP, which leads to its complexity that is upper-bounded as

∏
M
i=1(K − i + 1)O

(

(MP)3N log(MP)
)

. This shows a significant computational complexity
reduction. However, since the LRG user selection does not jointly select M users, there will
be performance loss.

Note that the ME criterion is used in above for illustration purposes. The MD criterion can
also be used for the LRG user selection with the LR-based MMSE-SIC detector.

5.2. A complexity efficient method for LR updating

We note that in the LRG user selection, the LR operation is repeatedly performed for each
updated channel matrix. For instance, at the mth user selection, a LR is carried out with the

complex-valued channel matrix H(m) =
[

H(m−1) Hk

]

as shown in (27), where Hk contains

P newly added column vectors and the other (m − 1)P column vectors in H(m) are already
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chosen and LBR. Instead of performing a new LR on all of the mP column vectors in H(m), by

utilizing the established (m − 1)P LBR vectors, we can derive a computationally efficient LR
updating method with new P column vectors, which is referred to as the Updated Basis LR
(UBLR) in this paper. The resulting user selection scheme is referred to as the UBLR-based
greedy (UBLRG)1 user selection.

The UBLR algorithm is based on the complex-LLL(CLLL) algorithm [8]. Suppose that LR
is performed by the CLLL algorithm in order to transform a given basis (a complex-valued
channel matrix N × mP H(m)) into a new N × mP basis G(m) consisting of nearly orthogonal
basis vectors. A basis G(m) is called a reduced basis of a lattice with parameter δ if G(m) is
QR factorized as G(m) = Q(m)R(m), where Q(m) is unitary, R(m) is upper triangular, and the
elements of R(m) satisfy the following inequalities:

| ℜ(rℓ,ρ) |≤
1

2
| rℓ,ℓ | and | ℑ(rℓ,ρ) |≤

1

2
| rℓ,ℓ |

for 1 ≤ ℓ < ρ ≤ mP (29)

and

δ|rρ−1,ρ−1|
2 ≤ |rρ,ρ|

2 + |rρ−1,ρ|
2 for ρ = 2, . . . , mP. (30)

Here, rp,q denotes the (p, q)-th element of R(m). The parameter δ is closely related to the

quality of the reduced basis. In this paper, we assume δ = 3/42 which is usually chosen for
complexity and performance trade-off. For the initialization, let A′

(m) = {Q′
(m), R′

(m), U′
(m)},

where the QR factorization H(m) = Q′
(m)

R′
(m)

and U′
(m)

= ImP. With {Q(m), R(m), U(m)} =

{Q′
(m)

, R′
(m)

, U′
(m)

} and ρ = 2, a version of CLLL algorithm is summarized as follows (note

that since CLLL is used in UBLR, in Table 1, CLLL becomes part of UBLR).

a) To fulfill (29), a size-reduction is performed with the 1st to ρth columns of R(m) and U(m)
(see rows (15)-(21) in Table 1).

b) As the basis of R(m) is size-reduced according to (29), let ρ ⇐ ρ + 1 and go to step a) if

(30) is fulfilled. Swap the (ρ− 1)th and ρth columns in R(m) and U(m) if (14) is not satisfied

and update {R(m), Q(m)}. Let ρ ⇐ max(ρ − 1, 2) and go to step a) (see rows (22)-(32) in
Table 1).

c) The algorithm is terminated if ρ = mP. The output of the CLLL reduced matrix G(m) is

given by the updated A(m) = {Q(m), R(m), U(m)}, i.e., G(m) = Q(m)R(m) = H(m)U(m).

In our LRG user selection, at the mth user selection, the channel matrix of size N × P(m − 1)
(denoted by H(m−1)) is obtained from the previous user selections. Under the assumption
that the CLLL has been performed with H(m−1) and its CLLL reduced matrix G(m−1) is

1 Since the performance of the LRG and UBLRG user selection schemes are the same (in fact, UBLRG is a
computationally efficient version of LRG), we now only consider UBLRG and assume that LRG and UBLRG are
interchangeable.

2 Here, δ is a factor selected to achieve a good quality-complexity trade-off [4]. We note that δ can be chose from ( 1
4 , 1)

and ( 1
2 , 1) for the real and complex LLL algorithms, respectively.
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INPUT: {A(m−1),B(m−1), H(m−1), Hk(m)
}.

OUTPUT: {A(m),B(m)}.

(1) H(m) ←
[

H(m−1) Hk(m)

]

(2) ω ← size(H(m−1), 2)

(3) ζ ← size(H(m), 2)

(4) [Q(m) R(m)]← qr(H(m))

(5) U(m) ← Iζ

(6) U(m)(1 : ω, 1 : ω)← U(m−1)

(7) Q(m) ← Q(m−1)

(8) R(m)(:, 1 : ω)← R(m−1)

(9) for ℓ = 1 : η(m−1)

(10) R(m)

(

fl(m−1,ℓ) − 1 : fl(m−1,ℓ), ω + 1 : ζ
)

← Θ(m−1,ℓ)R(m)

(

fl(m−1,ℓ) − 1 : fl(m−1,ℓ), ω + 1 : ζ
)

(11) end for
(14) ρ← ω + 1
(13) η(m) ← 0

(14) while ρ ≤ ζ
(15) for ℓ = 1 : ρ− 1
(16) µ← ⌈R(m)(ρ− ℓ, ρ)/R(m)(ρ− ℓ, ρ− ℓ)⌋

(17) if µ 6= 0
(18) R(m)(1 : ρ− ℓ, ρ)← R(m)(1 : ρ− ℓ, ρ)− µR(m)(1 : ρ− ℓ, ρ− ℓ)

(19) U(m)(:, ρ)← U(m)(:, ρ)− µU(m)(:, ρ− ℓ)

(20) end if
(21) end for
(22) if δ|(R(m)(ρ− 1, ρ− 1))|2 > |R(m)(ρ, ρ)|2 + |R(m)(ρ− 1, ρ)|2

(23) η(m) ← η(m) + 1

(24) Swap the (ρ− 1)-th and ρth columns in R(m) and U(m)

(25) Θ(m,η(m))
=

[

α∗ β
−β α

]

with
α =

R(m)(ρ−1,ρ−1)

‖R(m)(ρ−1:ρ,ρ−1)‖

β =
R(m)(ρ,ρ−1)

‖R(m)(ρ−1:ρ,ρ−1)‖

(26) fl(m,η(m))
← ρ

(27) R(m)(ρ− 1 : ρ, ρ− 1 : ζ)← Θ(m,η(m))
R(m)(ρ− 1 : ρ, ρ− 1 : ζ)

(28) Q(m)(:, ρ− 1 : ρ)← Q(m)(:, ρ− 1 : ρ)ΘT
(m,η(m))

(29) ρ← max{ρ− 1, 2}
(30) else
(31) ρ← ρ + 1
(32) end if
(33) end while

Table 1. The UBLR (based on the CLLL) algorithm at the mth user selection

available, we have H(m) =
[

H(m−1) Hk(m)

]

which is the channel matrix for the first m selected
users.

The UBLR algorithm is carried out to transform H(m) into a reduced basis G(m) by utilizing

a given set of already available matrices A(m−1) = {Q(m−1), R(m−1), U(m−1)} associated with
the CLLL reduced matrix G(m−1) in the previous m − 1 users selection, where G(m−1) =
Q(m−1)R(m−1) = H(m−1)U(m−1). The unimodular matrix U(m−1) is employed to represent
the column swaps in the CLLL, while R(m−1) satisfies (29) and (30). The transformation
algorithm for generating G(m) in UBLR is summarized as follows.
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Instead of starting the size-reduction of R′
(m) with the first two columns (the 1st to ρth

columns, where ρ = 2 in a)), UBLR reduces the iteration by starting the size-reduction with
ρ = (m − 1)P + 1. In this case, the iteration of size-reduction from that with ρ = 2 to that
with ρ = (m − 1)P + 1 need to be obtained by updating A′

(m) from A(m−1).

Since R′
(m−1) of size N × P(m − 1) and R′

(m) of size N × Pm are upper triangular, it is

straightforward to obtain that R′
(m−1) = R′

(m) (:, 1 : P(m − 1)), which results in that the size

reduction and column swapping performed on the first P(m − 1) columns of R′
(m)

are the

same as those on R′
(m−1). Using R(m−1), let A(m) = A′

(m)
and R(m)(:, 1 : P(m − 1)) = R(m−1).

Then, we have the 1st to P(m − 1)-th column vectors of R(m) satisfying (29) and (30). From
this, we can see that CLLL is partially performed on R(m) by employing UBLR. Similarly,
with Q(m) = Q(m−1) and U(m)(1 : P(m − 1), 1 : P(m − 1)) = U(m−1), {Q(m), U(m)} can be
updated with low computational complexity from {Q(m−1), U(m−1)}. Thus, from A(m−1),
UBLR is carried out to update the elements in A(m) as shown in rows (6)-(8) in Table 1.

In addition, we note that, in row (8) of Table 1, we do not consider updating R(m)(1 :
P(m − 1), P(m − 1) + 1 : Pm) in A(m). It can be observed that when we perform a CLLL
on H(m) with the same operations of the CLLL for previous user selections, R(m)(1 :
P(m − 1), P(m − 1) + 1 : Pm) will also be influenced. Hence, extra processing is necessary
to recover R(m)(1 : P(m − 1), P(m − 1) + 1 : Pm) in A(m). To this end, we define that
B(m−1) = {Θ(m−1), fl(m−1), η(m−1)}, where Θ(m−1) = {Θ(m−1,1), · · · , Θ(m−1,η)}, fl(m−1) =

{fl(m−1,1), · · · , fl(m−1,η)}, and η(m−1) = η. The operations of swapping and updating R(m−1)
and Q(m−1) are kept in η(m−1), γ(m−1), and Θ(m−1,η), where η(m−1) keeps the number of
swapping times, γ(m−1) keeps those columns involved in the swaps, and Θ(m−1,η) keeps
the operations of column swaps. From the CLLL (see row (27) in Table 1), we note that
R(m)(1 : P(m − 1), P(m − 1) + 1 : Pm) is generated by a transformation with Θ(m). Thus,
using the information kept in B(m−1), we can generate R(m)(1 : P(m − 1), P(m − 1) + 1 : Pm)
as shown in rows (9)-(11) of Table 1.

With an updated A(m), one CLLL can be carried out to generate the reduced basis G(m).
The calculation of this new basis generation starts with ρ = (m − 1)P + 1. Hence, the
computational complexity of UBLR is evidently reduced as compared to employing one
CLLL starting with ρ = 2. Note that since UBLR and CLLL generate the same LBR G(m),
they are expected to provide the same performance.

The UBLR algorithm of the mth user selection is summarized in Table 1. The inputs of the
algorithm of the mth user selection are {A(m−1),B(m−1), H(m−1), Hk(m)

}, while the outputs are

{A(m),B(m)}. Note that for the first user selection, with its channel matrix Hk(1)
as the input,

instead of using the UBLR, one CLLL is carried out to generate {A(1),B(1)} as the output.
Since the outputs of the mth user selection are regarded as the inputs at the (m + 1)-th user
selection, the algorithm is recursively carried out from m = 2. The algorithm is terminated if
m = M.

The complexity of CLLL and UBLR algorithms highly depends on the number of column
swaps, which is denoted by the output parameter η. In Table 2, the average value of η per
iteration is shown when the CLLL-based MMSE-SIC detector is used with the proposed
LRG and UBLRG user selection. It is assumed that K = 10 and N = 8 for the two
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Average value of η

Number of columns in HK 2 3 4 5 6 7 8 Sum

LRG1 0.2909 0.9029 1.8022 3.0633 4.7711 7.2925 12.1228 30.2457

UBLRG1 0.2904 0.5851 0.8940 1.2708 1.7653 2.5620 4.7728 12.1404

LRG2 0.2926 n/a 1.7977 n/a 4.7663 n/a 12.0856 18.9422

UBLRG2 0.2879 n/a 1.4952 n/a 3.0191 n/a 7.3761 12.1783

Note that the superscript 1 denotes the case of K = 10, N = 8, (M, P) = (8, 1) and the superscript 2

denotes the case of K = 10, N = 8, (M, P) = (4, 2), respectively.

Table 2. The average value of η in the LRG and UBLRG user selection with the CLLL based MMSE-SIC detector is used.

possible cases of (M, P) = (8, 1) and (M, P) = (4, 2). Based on these results, we can
observe that the complexity is significantly reduced if UBLR is employed. We also note
that with the LRG, the complexity for the case of (M, P) = (8, 1) is higher than that of
(M, P) = (4, 2) as expected (a large M implies a higher complexity). We can also show
that the complexity of UBLRG is upper-bounded as (K − M + 1)O

(

(MP)3N log(MP)
)

+

∑
M−1
i=1 O

(

(iP)3N log(iP)
)

. Compared to the complexity of LRG which is upper-bounded as

∑
M
i=1(K − i + 1)O

(

(iP)3N log(iP)
)

, the UBLRG scheme has a lower complexity, especially
when large K and M are considered.

6. Diversity Analysis and Numerical Results

In this section, we consider the diversity gain of the combinatorial user selection approaches
with various detectors, such as the ML, MMSE, and LR-based SIC detectors. We derive
lower bounds on the diversity gain of them. Since the diversity gain analysis of the proposed
greedy user selection approach is difficult, we rely on simulations, from which we can show
that our proposed LRG/UBLRG user selection approach has a similar diversity gain and
comparable performance to the combinatorial one. Throughout this section, we assume that
the elements of the channel matrix HK are independent zero-mean CSCG random variables
with variance σ2

h .

6.1. Diversity Gain Analysis from Error Probability

Through the following diversity gain analysis, we can see the impact of each MIMO detector
on the performance of multiuser systems.

6.1.1. Diversity Gain of Combinatorial User Selection with ML and MMSE Detectors

Using the pairwise error probability (PEP), we can find the diversity order from multiple
receive antennas as well as multiple user selection.

Theorem 6.1. The average PEP of the ML detector with the M selected users under the MDist user

selection criterion, denoted by P
ml

e , is upper-bounded as

P
ml

e ≤ c1

(

‖σ2
h d‖2

N0

)−N⌊ K
M ⌋

+ o

(

(

‖σ2
h d‖2

N0

)−N⌊ K
M ⌋+1

)

, (31)

where c1 > 0 is constant, and d = s(1) − s(2) (here, s(i) ∈ SMP and s(1) 6= s(2)).
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Proof. See Section 8.1.

This theorem shows that a full receive diversity gain of N together with a partial multiuser
diversity gain of at least ⌊ K

M ⌋ can be achieved by the ML detector under the MDist user

selection criterion. This result is derived under the fact that there are at least ⌊ K
M ⌋ statistically

independent alternative combinations of the composite channel matrix HK for M users.
Hence, this result is a lower bound on the diversity gain. In fact, there are more combinations
for HK , which are not independent, that can increase the multiuser diversity gain. By
simulations, we will further demonstrate the impact of the combinations of M selected users
that are not independent.

Theorem 6.2. The average PEP of the MMSE detector with the selected M users under the ME user
selection criterion, denoted by P

mmse

e , is upper-bounded as

P
mmse

e ≤ c2

(

σ
2
h‖d‖2

N0

)−(N−P+1)⌊ K
M ⌋

+ o





(

σ
2
h‖d‖2

N0

)−(N−P+1)⌊ K
M ⌋+1



 , (32)

where c2 > 0 is constant.

Proof. See Section 8.2.

This theorem shows that for the MMSE detector, the ME user selection criterion may not be
able to exploit a full receive diversity.

6.1.2. Diversity Gain of Combinatorial User Selection with LR-based Detector

Theorem 6.3. The average PEP of the LR-based SIC detector with the selected M users under the

MD user selection criterion, denoted by P
lr

e , is upper-bounded as

P
lr

e ≤ c3

(

‖σ
2
h d‖2

N0

)−N⌊ K
M ⌋

+ o

(

(

‖σ
2
h d‖2

N0

)−N⌊ K
M ⌋+1

)

, (33)

where c3 > 0 is constant.

Proof. See Section 8.3.

This theorem shows that a full receive diversity gain of N together with the same partial
multiuser diversity gain, ⌊ K

M ⌋, as with the ML detector, can be achieved by the LR-based
detector under the MD user selection criterion. From these results, we can see that the
LR-based detector is as good as the ML detector with respect to the diversity gains.
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6.2. Numerical results

In this subsection, we present simulation results with the MIMO channels of σ
2
h = 1. The

SNR is defined by the energy per bit to the noise power spectral density ratio Eb/N0. We used
16 quadrature amplitude modulation (16-QAM) for signaling with Gray mapping. CLLL is
carried out for the lattice basis reduction.

6.2.1. Single user selection

In order to illustrate the impact of the diversity gain to multiuser MIMO systems, we first
present the bit error rate (BER) performance of various multiuser MIMO systems in Fig. 1,
where only a single user is selected at one time (i.e., M = 1). Five multiuser MIMO systems
are considered with P = N = 4 and K = 10, namely:

1. MMSE detection under ME criterion: MMSE (ME).

2. ML detection under MDist criterion: ML (MDist).

3. LR-based MMSE-SIC detection under maximize mutual information (MMI) criterion:
LR-based MMSE-SIC (MMI).

4. LR-based MMSE-SIC detecton under optimal decision region (ODR) criterion: LR-based
MMSE-SIC (ODR)

5. LR-based MMSE-SIC detection under MD criterion: LR-based MMSE-SIC (MD)
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Figure 1. BER performance of various multiuser MIMO systems with 16-QAM, P = N = 4, M = 1, and K = 10.

From Fig. 1, we can observe that the optimal performance is guaranteed by the ML
detection under MDist criterion. On the other hand, the conventional MMSE detector with
the ME criterion provides poor performance as they cannot fully exploit spatial diversity.
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Alternatively, the LR-based SIC detector with the MD criterion can exploit a full diversity as
the ML detector with the MDist criterion. It it noteworthy that a full diversity gain cannot
be achieved by the LR-based MMSE-SIC detection with the MMI criterion, although the
performance can be improved by using the ODR criterion, there is still a BER gap compared
to the one with the MD criterion. Overall, it is shown that the best user selection criterion for
the LR-based MMSE-SIC detection is the MD criterion.

6.2.2. Multiple users selection
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MMSE (ME Criterion)

ML (MDist Criterion)

LR−based MMSE−SIC (MD Criterion)

LR−based MMSE−SIC (UBLRG)

Figure 2. BER performance of various multiuser MIMO systems with 16-QAM, M = P = 2, N = 4, and K = 5.

To see the performance of different multiple users selection criteria, the BER results are
shown in Fig. 2 for the case of M = P = 2. We assume that K = 5 and N = 4. It is shown
that, when BER drops from 10−5 to 10−6, SNR increases by approximately 1.2 dB. Thus, an
estimate of the diversity gain from the simulation becoms G ≃ 8.3, which is greater than
the lower bound, Glow = N⌊K/M⌋ = 8, derived from the theoretical analysis in Section 6.1.
Moreover, it is shown that the user selection approach with the LR-based detectors has the
same diversity gain as in the ML detector, whereas the approach with the MMSE detector has
a lower diversity gain. In general, we can show that system of LR-based MMSE-SIC detector
with UBLRG can provide a reasonably good performance. Note that, compared with the
LR-based MMSE-SIC detector with MD criterion and combinatorial selection, the proposed
UBLRG system provides a similar performnace; however, as shown in Table 2, by decreasing
the number of column swapping, complexity can also be reduced remarkably with more
efficient implementations for the proposed UBLRG approach.

Lattice Reduction-Based User Selection in Multiuser MIMO Systems
http://dx.doi.org/10.5772/57130

175



7. Conclusion

In this chapter, we studied the user selection based on the error probability of an actually
employed MIMO detector in multiuser MIMO systems. As the complexity becomes
prohibitively high if the user selection is based on exhaustive search (i.e., the combinatorial
user selection), we considered a greedy user selection approach to keep the complexity low.
We showed that low-complexity suboptimal detectors (i.e., the LR-based MMSE-SIC detector)
with the MD criterion for the user selection can fully exploit both multiuser and receive
diversity and provide good performance even though their complexity is low, which has
been confirmed by both theoretical analysis and simulation results. Moreover, according to
the simulation results, it was also shown that the LR-based detection with our proposed
greedy user selection approach can achieve a similar diversity gain and have a comparable
performance with that based on a combinatorial approach.

8. Appendix

8.1. Proof of Theorem 6.1

Proof. With the selected M users by the combinatorial user selection approach under the
MDist criterion, suppose that we jointly detect M users’ signals with the N × MP channel
matrix HK using the ML detector. The PEP in detecting M users’ signals has the following
upper bound:

Pr
(

s(1) → s(2)

)

≤ erfc





√

‖HKd̄‖2

2N0



 , (34)

where

d̄ = arg min
d∈D,d 6=0

‖HKd‖2,

D =
{

d = s − s′ | s 6= s′ ∈ SMP
}

⊂ Z
MP + jZMP, (35)

and erfc(x) is the complementary error function of x, i.e., erfc(x) = 2√
π

∫ +∞

x e−z2
dz.

Let V(HK) denote the length of the shortest non-zero vector of the lattice generated by HK .
Then, we have

Pr
(

s(1) → s(2)

)

≤ erfc





√

V2(HK)
2N0



 , (36)

where

V(HK) = ‖HKd̄‖. (37)
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For the case that the MDist criterion is employed, we have

Pr
(

s(1) → s(2)

)

≤ erfc





√

maxK V2(HK)

2N0



 , (38)

Note that

max
K

V2(HK) = max
K

min
d∈D,d 6=0

d
H

H
H
KHKd, (39)

Let wK = HKd. Note that wK is a zero-mean CSCG random vector and

E
[

wKw
H
K

]

= σ
2
h‖d‖2

I. (40)

We can show that XK = ||wK ||
2 is a chi-square random variable with 2N degrees of freedom

and its pdf is

fX(xK) =
1

(σ2
h‖d‖2)N(N − 1)!

xN−1
K e−xK/(σ2

h‖d‖2). (41)

The cumulative distribution function (cdf) is

FX(xK) = 1 − exK/(σ2
h‖d‖2)

N−1

∑
q=0

(xK/(σ2
h‖d‖2))q

q!
. (42)

To obtain an upper bound on the error probability, we note that the number of alternative
combinations of the channel matrices, which are statistically independent with each other,
for selecting HK with the MDist selection is at least ⌊ K

M ⌋. Let HK1
, HK2

, . . . , HK
⌊ K

M ⌋

represent such ⌊ K
M ⌋ independent alternative combinations of the channel vectors. Then,

there are at least ⌊ K
M ⌋ of wK , i.e., wK1

, wK2
, . . . , wK

⌊ K
M ⌋

, which are independent. Let

V = max
{

X1, X2, . . . , X⌊ K
M ⌋

}

, where Xm = ||wKm
||2. Using order statistics, the pdf of V

is given by

fV(v) = KF
⌊ K

M ⌋−1
X (v) fX(v) = c′1vN⌊ K

M ⌋−1 + o(vN⌊ K
M ⌋−1+ǫ), (43)

where c′1 > 0 is a constant, and ǫ > 0. Thus, we have

P
ml

e ≤ ∑
d∈D,d 6=0

EV



erfc





√

maxK dHHH
KHKd

2N0









= c1

(

‖σ
2
h d‖2

N0

)−N⌊ K
M ⌋

+ o





(

‖σ
2
h d‖2

N0

)−N⌊ K
M ⌋+1



 , (44)
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where c1 > 0 is a constant. This completes the proof.

8.2. Proof of Theorem 6.2

Proof. It can be shown that under the ME criterion, for a given HK , an upper bound on the
error probability in detecting M users’ signals is expressed as

P
mmse

e ≤ erfc





√

maxK λmin(H
H
KHK)||d||2

2N0





= erfc





√

σ2
h ||d||

2 maxK X̃K

2N0





= erfc





√

σ2
h ||d||

2V

2N0



 , (45)

where X̃K = λmin(H
H
KHK)/σ

2
h and V = maxK X̃K .

Using the pdf of V (with the same derivation for the ML case in the last subsection), it can
be deduced that

P
mmse

e = EHK
[Pr
(

s(1) → s(2)

)

]

≤ EV



erfc





√

σ2
h ||d||

2V

2N0







 . (46)

For independent alternative combinations of the channel matrices HK1
, HK2

, . . . , HK
⌊ K

M ⌋
,

similar to the proof of Theorem 5.1, we can obtain that

P
mmse

e ≤ EV



erfc





√

σ2
h ||d||

2V

2N0









≤
∫ +∞

0
erfc





√

σ2
h ||d||

2v

2N0



 fV(v)dv

= c2

(

σ
2
h‖d‖2

N0

)−(N−P+1)⌊ K
M ⌋

+ o





(

σ
2
h‖d‖2

N0

)−(N−P+1)⌊ K
M ⌋+1



 , (47)

where c2 > 0 is constant. This completes the proof.
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8.3. Proof of Theorem 6.3

Proof. In the LR algorithm, we transform the given channel matrix, e.g., H, into a new
basis, e.g., denoted by G. Here, we have L(G) = L(H) ⇐⇒ G = HT, where T is an
integer unimodular matrix and L(A) denotes the lattice generated by A. Then, G is called
LLL-reduced with parameter δ if G is QR factorized as G = QR where Q is unitary, R is
upper triangular, and the elements of R satisfies (29) and (30) with m = M. We rewrite (30)
as

δ | rρ,ρ |2≤| rρ,ρ+1 |2 + | rρ+1,ρ+1 |2, ρ = 1, 2, . . . , MP − 1. (48)

Then, we can obtain the following inequalities:

| rρ+1,ρ+1 |2≥ β−1 | rρ,ρ |2, (49)

where β = (δ − 1
4 )

−1
>

4
3 , and

min
ρ

| rρ,ρ |2≥ β−MP+1 | r1,1 |2 . (50)

Since G = QR, we have | r1,1 |2= ‖g1‖
2 and

‖g1‖
2 ≥ min

d∈D,d 6=0
‖Hd‖2 = V2(H). (51)

Thus, we have

min
ρ

| rρ,ρ |2≥ β−MP+1V2(H). (52)

In the proposed user selection for selecting M users with the LR-based SIC detectors, (52)
becomes

min
ρ

| rρ,ρ |2≥ β−MP+1V2(HK), (53)

where K is the index set of the selected users.

Note that the LR-based SIC detection is considered. Let nρ denote the ρth element of ñ. Then,

the LR-based SIC detection does not have error across all the layers if we have
|nρ |
|rρ,ρ |

<
1
2 or

|nρ|2 <
|rρ,ρ |2

4 for all ρ. Thus, the error probability of the LR-based SIC detector can be
estimated by

Pr(error) ≃ exp

(

−min
q

|rρ,ρ|2

4N0

)

. (54)

Note that the approximation in above becomes accurate as N0 → 0 (or high SNR).
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Substituting (53) into (54), we have

Pr(error) ≤ exp
(

−β−MP+1S2(HK)
)

≤ ∑
d∈D,d 6=0

exp

(

−β−MP+1 maxK dHHH
KHKd

2N0

)

. (55)

Then, with the same approach used in the proof of Theorem 5.1, we can show that the upper
bound on the average PEP is

P
lr

e ≤ c3

(

‖σ2
h d‖2

N0

)−N⌊ K
M ⌋

+ o





(

‖σ2
h d‖2

N0

)−N⌊ K
M ⌋+1



 , (56)

where c3 > 0 is constant. This completes the proof.
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