
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

2

A Modelling and Optimization Framework for
Real-World Vehicle Routing Problems

Tonči Carić1, Ante Galić1, Juraj Fosin1, Hrvoje Gold1 and Andreas Reinholz2

1Faculty of Transport and Traffic Sciences, University of Zagreb
2TU Dortmund

1Croatia,
2Germany

1. Introduction

The globalisation of the economy leads to a rapidly growing exchange of goods on our
planet. Limited commodities and transportation resources, high planning complexity and
the increasing cost pressure through the strong competition between logistics service
providers make it essential to use computer-aided systems for the planning of the
transports. An important subtask in this context is the operational planning of trucks or
other specialized transportation vehicles. These optimization tasks are called Vehicle
Routing Problems (VRP). Over 1000 papers about a huge variety of Vehicle Routing
Problems indicate the practical and theoretical importance of this NP-hard optimization
problem. Therefore, many specific solvers for different Vehicle Routing Problems can be
found in the literature. The drawback is that most of these solvers are high specialized and
inflexible and it needs a lot of effort to adapt them to modified problems. Additionally, most
real world problems are often much more complex than the idealized problems out of
literature and they also change over time. To face this issue, we present an integrated
modelling and optimization framework for solving complex and practical relevant Vehicle
Routing Problems. The modular structure of the framework, a script based modelling
language, a library of VRP related algorithms and a graphical user interface give the user
both reusable components and high flexibility for rapid prototyping of complex Vehicle
Routing Problems.

1.1 Vehicle routing problem
The problem of finding optimal routes for groups of vehicles, the Vehicle Routing Problem
(VRP), belongs to the class of NP-hard combinatorial problems. The fundamental objectives
are to find the minimal number of vehicles, the minimal travel time or the minimal costs of
the travelled routes. In practice the basic formulation of the VRP problem is augmented by
constraints such as e.g. vehicle capacity or time interval in which each customer has to be
served, revealing the Capacitated Vehicle Routing Problem (CVRP) and the Vehicle Routing
Problem with Time Windows (VRPTW) respectively. The real-world problems mostly
encompass the capacity and time constraints. For solving VRPTW problems, a large variety
of algorithms has been proposed. Older methods developed for the VRPTW are described in O

pe
n

A
cc

es
s

D
at

ab
as

e
w

w
w

.i-
te

ch
on

lin
e.

co
m

Source: Vehicle Routing Problem, Book edited by: Tonci Caric and Hrvoje Gold, ISBN 978-953-7619-09-1, pp. 142, September 2008,
I-Tech, Vienna, Austria

www.intechopen.com

 Vehicle Routing Problem

16

the survey (Cordeau et al., 2002) and (Laporte, 1992). Most of the new methods tested on
Solomon’s benchmarks are comprised in (Bräysy & Gendreau, 2005a; Bräysy & Gendreau,
2005b). The methods that applied the two-phase approach for solving VRPTW are found to
be the most successful (Bräysy & Dullaert, 2003). During the first phase the constructive
heuristic algorithm is used to generate a feasible initial solution. In the second phase an
iterative improvement heuristics is applied to the initial solution. The mechanism for
escaping the local optima is often implemented in the second phase, too.
For the real-world application that solves VRP it is essential to perform a fast selection of
methods (constructive heuristics, neighbourhood operators and escaping mechanisms)
which produce the desired improvement of the objective function. Commercial VRP
applications mostly converge to self-adaptive procedures with major aim of robustness to
solve the problem with minimal human intervention in algorithms tuning. On the other side
tailor-made solution needs easy-to-use prototyping tool with the well defined performance
measure for estimating the optimal number of restarts and iterations of the implemented
algorithms. To speed up the prototyping a new VRP framework has been developed.

2. Framework

The framework consists of the Framework Scripting Language (FSL), library of VRP-related
algorithms and graphical user interface which enables loading of standard benchmarks and
real-world problems, Fig. 1.

Fig. 1. VRP working environment and Framework Scripting Language

The VRP framework provides the working environment and the reusable code modules
such as constructive heuristic methods and common improvement operators. This
programming environment leaves more time for the developer to focus on the
implementation and testing of the new ideas. The whole library is written in the framework
language so that the included programming modules can be easily adapted to the needed
functionality.

www.intechopen.com

A Modelling and Optimization Framework for Real-World Vehicle Routing Problems

17

2.1 Framework scripting language
Like many other programming languages, the Framework Scripting Language (FSL) has a
core set of basic data types (boolean, int, double, string) and program control statements (if,
for, while, repeat). The FSL structure is the improved version of the previously developed
VRP solving oriented language (Galić et al., 2006a). The VRP problem is described with
Problem data structure which stores all customers in the list Customers and all vehicles in the
list Vehicles. Each Customer and Vehicle is instances of the corresponding data type whose
attributes describe in detail the concrete problem being solved. The VRP-related data types
and the corresponding attributes and methods which are available for use in FSL are
depicted in Fig. 2. Every solution of the VRP problem can be stored in an instance of Solution
data type which holds the routes of vehicles (visiting order of customers) and other
information which describe specific solution such as the number of used vehicles, total
travelled distance and total estimated time which is the sum of the driving, serving and
waiting time for each used vehicle. Using the SetCurrentSolution method it is possible to
switch between different solutions of the same VRP problem.

Fig. 2. VRP Framework Scripting Language data types, attributes and methods

2.2 Library
The library includes a variety of constructive heuristics, e.g. Clark and Wright, Solomon
Insertion I1, Coefficient Weighted Distance Time Heuristic and neighbourhood operators,
e.g. relocate, exchange, cross exchange. The included examples of procedures for escaping
the local optima like Simulated Annealing, Iterated Local Search and Variable
Neighbourhood Search present the proposed programming style of modules ‘gluing’. VRP
solver produced by this prototyping tool is an algorithm which can be composed by
choosing and tuning modules from a library and that guides the search through local
optima to achieve a better solution.

2.2.1 Constructive heuristics
The first step of the heuristic VRP solving is the construction of a feasible initial solution. In
the lucky case when handmade solution already exists, it can be considered as a substitution

www.intechopen.com

 Vehicle Routing Problem

18

for the constructive heuristics. Generally, constructive heuristics follows the idea that
customers are selected on some cost minimization criterion and routes are constructed
matching capacity and time constrains. Methods with sequential approach construct one
route at a time, while parallel methods build several routes simultaneously. Some
constructive methods are two-phase methods and can be divided into two classes: cluster-
first, route-second methods and route-first, cluster-second methods. In the first case,
customers are first organized into feasible clusters, and a vehicle route is constructed for
each of them. In the second case, a tour is first built on all customers and then segmented
into feasible vehicle routes.

2.2.1.1 Nearest Neighbour Heuristic for CVRP

The Nearest Neighbour Heuristic (NNH) is a constructive method for generating initial
feasible solution for CVRP with the simple idea of inserting the nearest neighbour of the last
inserted customer in the route. The first inserted customer on the route can be selected
randomly or with some arbitrary criteria like the farthest distance customer from the depot.
From this seed route, every other customer is inserted by the criteria of the nearest
neighbour from the last inserted customer until the capacity of the vehicle is exhausted
according to the definition of the CVRP problem where every customer has its own demand
for the delivery or pick up. This method is derived from Travelling Salesman Problem (TSP)
heuristic approach (Flood, 1956).

2.2.1.2 Nearest Addition Heuristic for CVRP

The Nearest Addition Heuristic (NAH) is an extended version of NNH where one of the
unserved customers is selected for insertion and added to the existing route between two
already visited neighbours. The total price of insertion has to be the minimal value that is
calculated by adding two new distances produced by linking of the unvisited customer with
neighbours and by subtracting the distance between the visited neighbour’s customers in
the selected route.

2.2.1.3 Sweep Heuristic for CVRP

One of the most known two-phase constructive methods for CVRP is the sweep algorithm
(Gillet & Miller, 1974). This is a two-phase algorithm that belongs to the cluster-first, route-
second methods. In the first phase the algorithm decomposes the CVRP problem by
clustering customers in m-TSP problems. The customer clustering is conducted by two
criteria. The positions of all customers are transformed in polar coordinates with the depot
in the origin of the coordinate system. The first criterion for grouping customers is the
minimal angle. The second criterion matches the capacity of the vehicle which is assigned to
the cluster, so that the total demands of all the selected customers has to be less than or
equal to the capacity of the vehicle. The first and the second criteria are combined so that the
assignment of customers to groups is performed by increasing the angular coordinate from
0 to the value where capacity of the assigned vehicle for that cluster is exhausted. The last
step optimizes each vehicle route (cluster) separately by solving the corresponding TSP.

2.2.1.4 Clark and Wright Heuristic for CVRP

This method is one of the first originally developed heuristics for CVRP and it is frequently
used. The algorithm starts from the initial solution where each route has only one customer
and a corresponding vehicle. At the start, the number of vehicles is equal to the number of
customers. Every new iteration should reduce the number of vehicles unifying two routes
that give maximal savings, e.g. reduction of overall distance or time. There are two variants
of algorithm: one with sequential and other with parallel construction of routes. The parallel
version yields better results (Clarke & Wright, 1964).

www.intechopen.com

A Modelling and Optimization Framework for Real-World Vehicle Routing Problems

19

2.2.1.5 Solomon’s Sequential Insertion Heuristic I1 for CVRPTW

The seed customer for a new route can be set on various criteria (e.g. the farthest unrouted
customer, unrouted customer with the earliest deadline or unrouted customer with the
biggest demand). For each unrouted customer the feasible insertion place in the emerging
route with its minimal insertion cost as a weighted average of additional distance and time
is computed first. The next step is to select a customer for whom the cost difference between
insertion in a new route and in the emerging route is the largest. The selected customer is
then inserted in the route and the new calculation and selection is repeated until the time or
capacity resource is exhausted. New resources are generated with new route/vehicles. It is
not trivial to find the suitable weighted average for real-world problems. A good starting
point for the tuning algorithm can be found in the original paper (Solomon, 1987).

2.2.1.6 Coefficient Weighted Distance Time Heuristics for CVRPTW

Based on the assignment of weights to the closing part of a time windows and distances to

the serving places, the Coefficient Weighted Distance Time Heuristics (CWDTH) has been

developed (Galić et al., 2006b; Carić et al., 2007). In each iteration the algorithm

simultaneously searches for the customer with the soonest closing time of requested

delivery and minimum distance from the current vehicle position. The route is designed

starting with one vehicle. In each subsequent iteration the customer who best matches the

given criteria is served. When the vehicle has used all of the available capacity that can be

utilized regarding the amount of demands, it returns to the depot. A new vehicle is engaged

and the described process is repeated. At the moment when all customers have been served,

the algorithm stops. Automatic parameter adjusting is implemented for the weighting of

distance over delivery closing time.

2.2.2 Local search
The local search starts from the initial solution (e.g. provided by constructive heuristic

method) and subsequently moves from the present solution to a neighbouring solution in

the search space where each solution has only a relatively small number of feasible

neighbour solutions and each of the moves is determined by neighbourhood’s operators.

The library includes two groups of operators. Operators from the first group move one or

more customers from one position in the route to another position in the same route and are

called Intra Route operators, Fig. 3.

Fig. 3. Intra Route operators for CVRPTW

www.intechopen.com

 Vehicle Routing Problem

20

Fig. 4. Inter Route operators for CVRPTW

They are used for the reduction of the overall distance. The other group, called Inter Route

operators, work with two routes, Fig. 4. They are used to reduce overall distance but in

some cases they can reduce the number of vehicles as well.

2.2.2.1 Intra Route Relocate for CVRPTW

To be served in the new order between b0 and b1 the customer a1 is relocated from the

original position between a0 and a2, (see Fig. 3a). Relocation is performed only when the

saving (reduction of length of the route) is positive. The saving is calculated by maximizing

the result of subtraction x-y where x is derived as the result of three arc deleting operations

(a0, a1), (a1, a2) and (b0, b1) and y is derived as the result of three arc adding operations of

(a0, a2), (b0, a1) and (a1, b1).

2.2.2.2 Intra Route Exchange for CVRPTW

Intra exchange operator swaps the position of two customers a1 and b1 (see Fig. 3b). To be

served in the new order between a0 and a2 customer b1 is relocated from the original

position between b0 and b2. Also, customer a1 is relocated from the original position

between a0 and a2 to the new position between b0 and b2. The exchange is performed only

when the saving (reduction of length of the route) is positive. The saving is calculated by

maximizing the result of subtraction x-y as in the Intra Relocate operator. This operator

could be considered as execution of two relocate operators, but sometime because of hard

time windows the intermediate solution is not feasible.

www.intechopen.com

A Modelling and Optimization Framework for Real-World Vehicle Routing Problems

21

2.2.2.3 Intra Route 2-Opt for CVRPTW

Intra route 2-Opt operator transforms the intersection of arcs if savings exist after we change

the direction of the arcs between a1 and b0 and delete and add the appropriate arcs (see Fig.

3c).

2.2.2.4 Intra Or-Opt for CVRPTW

If savings exist, the intra route operator Or-Opt transforms the intersection of arcs with

reordering customers on a route (see Fig. 3d). This operator is practical because it is very

fast. The alternative slower scenario is two relocate operator execution.

2.2.2.5 Inter Route Relocate for CVRPTW

The inter route Relocate operator moves customer a1 from one route to another between b0

and b1 if savings exist (see Fig. 4a).

2.2.2.6 Inter Route Exchange for CVRPTW

The Exchange operator swaps two customers a1 and b1 from two different routes if savings

exist (see Fig. 4b).

2.2.2.7 Inter Route Cross-Exchange for CVRPTW

The Cross-Exchange operator swaps two groups of customers from one route to another (see

Fig. 4c). The groups consist of one up to maximally five customers. Bigger groups are

inefficient mainly because of slow execution time. To prevent neighbourhoods from being

interlaced (exchange and cross-exchange) only one group a1-a2 or b1-b2 can have only one

customer in the group. In that case a1=a2 or b1=b2.

2.2.2.8 Inter Route Icross-Exchange for CVRPTW

The Icross-Exchange operator swaps two groups of customers the same way as Cross-

Exchange but reverse in order of customers in both groups (see Fig. 4d). Further extension of

Icross and Cross operator can be to leave the order of one group and to reverse the order of

another.

2.2.2.9 Inter Route 2-Opt* for CVRPTW

Inter Route 2-Opt* can be considered like Cross-Exchange where b2 and a2 customers are

depot (see Fig. 4e).

2.2.3 Escaping mechanism
By applying only the neighbourhood’s operators in local search in most of the cases leads

the optimization to the local optima where operators cannot yield better solutions any more.

To escape from the local optima the escaping mechanisms such as Simulated Annealing,

Iterated Local Search and Variable Neighbourhood Search are implemented and their scripts

in FSL can be found in the Appendix.

2.2.3.1 Simulated Annealing

Simulated Annealing (SA) is a stochastic relaxation technique that finds its origin in

statistical mechanics (Kirkpatrick et al., 1983; Cerny, 1985; Metropolis et al., 1953). Simulated

Annealing uses stochastic approach to guide the search. The method allows the search to

continue in the direction of the neighbour even if the cost function gives inferior results in

that direction. The starting solution is obtained by constructive heuristics, described in

section 2.2.1

www.intechopen.com

 Vehicle Routing Problem

22

2.2.3.2 Iterated local search

The local search process is started by selecting an initial candidate solution and then
proceeds by iteratively moving from one candidate solution to the neighbouring candidate
solution, where the decision on each search step is based on a limited amount of local
information only. In Stochastic Local Search (SLS) algorithms, these decisions as well as the
search initialization can be randomized (Hoos & Stützle, 2005). Generally, in the Iterated
Local Search (ILS) two types of SLS steps are used (Laurenço & Serra, 2002). One step for
reaching the local optima as efficiently as possible and the other step for efficiently escaping
local optima.

2.2.3.3 Variable Neighbourhood Search

Another way to escape local optima is the idea that one solution which is a local optima for
one neighbourhood generated by one operator need not be a local optima for another
neighbourhood generated by some other operator. The procedure of Variable
Neighbourhood Search (VNS) approach is to change the neighbourhood (operator)
whenever local optima is reached. The starting neighbourhood is usually generated by the
simplest operator in the pool of available operators. When currently selected operator does
not produce improvement the next operator is selected and process continues. If any of the
available operators produce an improvement, whole process starts again with first
(simplest) operator from the pool. In case when neither one of the operators (including last
one) produces improvement the shake move (perturbation) is executed to escape local
optima. A new cycle starts again from first i.e. simplest operator. Function DoOperator (see
Appendix) is called from VNS function to execute desirable operator by passing integer
variable that represents index of operator.

2.3 Examples of using the framework scripting language
2.3.1 Solving the travelling salesman problem
In order to demonstrate the scope and the usage of FSL, a simple example of solving a TSP
problem (one-vehicle VRP) by two algorithms from library is described, Fig. 5. The initial
solution is calculated by the nearest neighbour constructive heuristic, described in section
2.2.1.1, and further improvements are done by simplified Intra Route Relocate operator,
described in 2.2.2.1. In line 3, method Clear() deletes all the previous routes (if there are any)
and prepares the problem for solving from scratch. In line 4, the initial solution construction
is obtained by TspNearestNeighbour function call. From line 5 to line 7, the current solution is
improved in a loop which breaks after the IntraRelocate operator has yielded no
improvement. Inside of the TspNearestNeighbour method, the select statement in line 11 is
used for finding one customer among all Customers that satisfies two conditions (customer is
not Depot and not served at the moment) and minimizes the objective function. The result of
the search is stored in the variable of Customer data type called nearest.
The objective function defined in line 14 represents the distance between the current
position of vehicle v and candidate customer nearest. The objective function is calculated
only for those Customers for which both conditions have been fulfilled and the selecting
process is ended with the Customer which has the lowest value of objective function. In other
words, this query (lines 11-15) selects the nearest customer to the current position of the
vehicle which is not depot and which is not being served at the moment. Despite similar
syntax the FSL statement select should not be confused with SQL SELECT statement.
Statements v.MoveTo(nearest) and v.ReturnToGarage() are examples of methods that have

www.intechopen.com

A Modelling and Optimization Framework for Real-World Vehicle Routing Problems

23

impact on the current solution of the active problem. By moving vehicle v to the nearest
customer or its garage (default is depot), the state of the active problem solution will be
changed. For example, by moving vehicle v to customer A, the vehicle route will be updated
and the attribute of its position will gain value of A.

Fig. 5. Complete script of simple Travelling Salesman Problem solved in Framework
Scripting Language

www.intechopen.com

 Vehicle Routing Problem

24

The statement select from line 26 to 38 execute a selective search for two customers a1 and b1
from the route of vehicle v with the aim of maximizing the objective function defined in line
37. Lines between select and endselect labelled by colon are search constraints. Unlabelled
lines are regular statements which are executed for each iteration of search to update the
variables used as part constraints or objective function. Constraints in lines 27 and 28
request that customers, a1 and b1, cannot be equal to depot. Constraint in line 29 does not
allow the case when customers a1 and b1 are two neighbours on the route. The final
constraint, defined in line 36 assures that every improvement has to be positive and it
resolves the problem regarding acceptable error in comparison to the floating point
numbers. The objective function is calculated only for those values of the required variables
at which all the set conditions have been fulfilled. If one of the conditions is never to be
satisfied, the search will be unsuccessful, and will result in non-initialized variables. In that
case, after the statement select has been performed, the variables can be tested and the
decision about the next action can be made. It should be noted that at the end of the search,
the variables a1 and b1 acquire values for which the conditions are satisfied and for which
the variable improvement yields maximal value. In other words, the results of the search are
customer a1 and the position located before customer b1 on the same route for which we
obtain maximal saving by performing the relocate operation. With the statements
v.RemoveFromRoute(a1) and v.InsertBefore(b1.PositionInRoute, a1) the relocation is made.

2.3.2 Operators and guiding optimization
In order to demonstrate the proposed programming style of module “gluing” a simple local
search mechanism coded in FSL is presented in Fig. 6. This local search is declared as
LocalSearch function that returns the solution. The call of LocalSearch function preserves the

Fig. 6. Example of library components gluing for Local Search used in Simulated Annealing
and Iterated Local Search escaping mechanisms

current state of the problem. Before the local search is started the problem solution is stored
in the variable current, line 2, and restored at the end of the function, line 18. The initial

www.intechopen.com

A Modelling and Optimization Framework for Real-World Vehicle Routing Problems

25

solution for LocalSearch function is passed by argument s, and the result of the search is
returned, line 19, by variable improved. The local search is defined in while loop, line 5-17,
which is stopped when the current solution obtained by the operators is not better than the
one stored in variable improved, line 11. In the body of the loop, line 6-10, the operators
Relocate, Exchange, Cross, Icross, TwoOptInter, one by one, try to improve the solution
until local optima is reached. All of these operators return the first best feasible solution
from their neighbourhoods. In line 12, the result is additionally improved by intra route
operators Relocate, Exchange, 2-Opt and Or-Opt.

3. Performance measure protocol

The results of most heuristics and metaheuristics for Vehicle Routing Problems depends on
the initialisation (i.e. starting solution, seed solution, etc.) of the algorithm, so that multiple
starts with different initialisation can lead to better solutions than a single run. Additionally,
the search process of most metaheuristics is influenced by explicit or implicit stochastic
decisions (i.e. starting solution, selecting a candidate solution in a neighbourhood for the
next iteration, mutation operators in Evolutionary Algorithms (EA), kick moves in ILS,
shake moves in VNS, etc.). Therefore, we are using a performance measure for multi-start
approaches that is able to handle both deterministic and stochastic algorithms (Reinholz,
2003). This performance measure is motivated by following question: How often do we have
to run an algorithm with a concrete parameter setting so that the resulting solutions are
equal or better than a requested quality threshold at a requested accuracy level (i.e. 90%,
95%, and 99%). The lowest number of runs that assures these requests is called multi-start
factor (MSF).
DEF 1:
The multi-start factor MSF of an algorithm A with concrete parameters P, accuracy level AL,
quality threshold T, and success probability p (T) is defined by

MSF (A, P, T, AL) := min(k ∈ N with 1 − (1 − p (T)) k ≥ AL)

The MSF multiplied by the average runtime of the fixed parameterized algorithm is the
performance measure PM that has to be minimized.
DEF 2:
The performance measure PM of an algorithm A with concrete parameters P, average
runtime AvRT (A, P), accuracy level AL, and quality threshold T is defined by

PM (A, P, T, AL) := MSF (A, P, T, AL) x AvRT (A, P)

The estimation of the MSF in a statistical method is based on the fact that the success
probability p of being better than the requested threshold quality in one run is Bernoulli-
distributed. Therefore, we can use a parameterized maximum likelihood estimator to
determine the success probability p for one run. This implies that the success probability for
k runs (in k runs there is at least one successful run) is exactly 1 - (1 - p) k and that the MSF
for reaching a requested accuracy level AL can be easily computed using a geometrical
distribution with success probability p. The accuracy of the estimation of PM and MSF
depends on the number of runs that are used to estimate AvRT (A, P) and p (T).
Two important key parameters of iterative multi-start algorithms are the number of
algorithm restarts and the maximal number of iterations. The statistic method for estimating
the performance measure PM for a requested quality threshold and accuracy level can be

www.intechopen.com

 Vehicle Routing Problem

26

used in an elegant way to determine the best combination out of these two parameters by
simply computing the PM for the intermediate results after each iteration and identifying
the iteration with the best PM value.
This shows again the importance for the output of intermediate results of an algorithm
when making an empirical investigation. Having done R runs of an algorithm for I iterations
with the output of intermediate results, then you have also the data out of R runs for a
statistical analysis of the algorithm with stopping criteria 1, 2, … , I.
In this paper we have used the statistical data out of 30 runs for each algorithm and the
problem instance to estimate the success rates and the average runtimes for all the stopping
criteria up to 100 iterations. The statistical analysis was applied to a series of combinations
out of three accuracy levels and two quality thresholds. For the accuracy levels we have
used the predefined values 90%, 95%, and 99%. The quality thresholds were chosen out of
the data by the following procedure: The first quality threshold T1 was defined by the
quality value that was reached by the worst out of 25% of the best runs after 100 iterations.
The second quality threshold T2 was defined by the quality value that was reached by the
worst out of 10% of the best runs.

4. Computational results

4.1 Benchmark results
The efficiency of VRP solver is usually measured by cumulative result of the Solomon
benchmarks (Solomon, 1987). Three different scripts for ILS, SA and VNS are tested in order
to check the relevance of the proposed Framework library and language, Table 1.

 R1 R2 R3 R4 R5 R6 CM CPU

HG
12.08

1211.67
2.82

950.72
10.00
828.45

3.00
589.96

11.50
1395.93

3.25
1135.09

408
57422

P400
3 / 1.6

BC
12.08

1209.19
2.73

963.62
10.00
828.38

3.00
589.86

11.50
11389.22

3.25
1143.70

407
57412

P933
1 / 512

PR
11.92

1212.39
2.73

957.72
10.00
828.38

3.00
589.86

11.50
1387.12

3.25
1123.49

405
57332

P3000
10 / 2.4

MBD
12.00

1208.18
2.73

954.09
10.00
828.38

3.00
589.86

11.50
1387.12

3.25
1119.70

406
56812

P800
1 / 43.8

ILS
13.08

1192.87
3.27

936.25
10.00
828.38

3.00
589.86

12.88
1371.97

4.00
1073.73

442
56353

P2000D
5 / 9

SA
13.00

1193.51
3.27

933.82
10.00
828.38

3.00
589.86

12.88
1373.05

4.00
1067.13

441
56290

P2000D
5 / 9

VNS
12.92

1200.84
3.27

951.94
10.00
832.46

3.00
598.46

12.88
1379.63

4.00
1091.96

440
56934

P2000D
5 / 9

Table 1. Comparison of the results for the number of vehicles and distances obtained by ILS,
SA and VNS to the best recently proposed results for Solomon’s VRPTW problems. CM =
cumulative values, P = Intel Pentium, D = duo, r / m = number of run(s) / minutes. HG =
(Homberger & Gehring, 2005), BC = (Le Bouthillier & Crainic, 2005), PR = (Pisinger &
Röpke, 2005), MBD = (Mester et al., 2007)

The modules (Solomon I1, Intra and Inter operators) of the framework are glued in two
different ways (LocalSearch and DoOperator) with three different escaping mechanisms (SA,

www.intechopen.com

A Modelling and Optimization Framework for Real-World Vehicle Routing Problems

27

ILS and VNS). The outline of the tested scripts is shown in the Appendix. Further
development for reaching a better cumulative result of the Solomon benchmarks should
focus on the methods for reducing the number of vehicles like ejection pool (Lim & Zhang,
2007) or ejection chain (Bräysy & Dullaert, 2003).

4.2 Characteristics of real-world problems
The four real-world VRPTW problems VRP1, VRP2, VRP3 and VRP4 are considered for
optimization. Distribution of customers and vehicle routes are shown in Fig. 7. The set of
standard VRP problems found in the literature and used to validate the performance of VRP
solving algorithms use the Euclidian metric of distances. In contrast, solving the real-world
VRP problems, due to the traffic rules and transport network topology requires the use of
the traffic matrix. In the bidirectional traffic matrix the distances between the pairs of points
stored in the transport layer of the Geographic Information System are not necessarily
symmetric. This is most obvious for the routes in the urban areas while routes between
urban areas are mostly symmetric. Solving the time constrained problems, as in the case of
VRPTW, an additional matrix containing forecasted travel times data between each pair of
customers has to be available.

a) VRP1 b) VRP2

c) VRP3 d) VRP4

Fig. 7. Maps showing customer’s locations and vehicle routes

www.intechopen.com

 Vehicle Routing Problem

28

Therefore the problems are defined by two traffic matrices: the distance asymmetric look-up
matrix and the related forecasted travel time matrix. The calculation of travel time matrix is
based on the average velocity on a particular street or road segments. If such information is
not available then the calculation is based on the rank of the road segments. In the example
the road ranking follows the classification which divides them into sixteen categories.
Customers for problems VRP1, VRP2 and VRP4 are located in the area of the city of Zagreb,
the capital of Croatia and customers for VRP3 are located in a wider area of Zagreb. All
described problems have heterogeneous fleet with two types of vehicles regarding different
transport capacities (7 vehicles 2500 kg, 3 vehicles 3500 kg). The road networks are spread
within big urban area, small cities and rural parts which gravitate to the capital and along
inter-city highways. The number of customers varies for each problem (154, 234, 146 and
162). Overall loads per each problem are 11.1, 23.11, 14.8 and 14.6 tonnes of goods for
delivery. Most of the customers have wide time widows from 7:00 a.m. till 2:00 p.m., except
for a few customers who are located in the downtown area. The average customer service
time is 10 minutes with little variation.

4.3 Real-world problems results
Table 2 shows which algorithm produces the best result for each of the real-world problems.
Cost function was calculated by multiplication of a number of vehicles and overall distance.
The quality thresholds T1 and T2 that are used in the comparative analysis are calculated by
the procedure described in Section 3. Table 2 also shows average running time for each
algorithm on each problem. That average time has important role in finding optimal number
of iteration in performance measure protocol.

 ARTA

ALG VEH DIST T1 T2

ILS SA VNS

VRP1 VNS 9 941117 8562195 8543250 4,42 4,43 2,97

VRP2 SA 10 1344551 14365330 14216120 13,68 14,16 8,87

VRP3 ILS 9 1287100 11659950 11626146 3,73 3,91 2,51

VRP4 ILS 9 847891 7711902 7655945 6,18 6,42 4,54

Table 2. Best results, thresholds and average running time of algorithms ILS, SA and VNS
for real-world problems VRP1, VRP2, VRP3 and VRP 4. ALG = best performing algorithm,
VEH = number of vehicles in solution, DIST = overall distance in meters, T = value of cost
function, ARTA = average running time of algorithm in minutes

4.4 Comparative analysis of real-world problems results
The final results of the conducted experiments of performance measure protocol (see Section
3.) are shown in Table 3 and Table 4. The examination pool of results was constructed by 360
runs of the developed ILS, SA and VNS algorithms.
In order to determine which strategy needs less time, i.e. number of restarts multiplied by
the number of iterations, to produce a solution below the threshold with some accuracy,
each problem was solved 90 times with 30 runs of each algorithm.
Table 3 shows optimal parameters of the winning strategy for all problems. Parameters from
Table 3 guarantee reaching of the threshold interval T1 or T2 in minimal time with 90%
accuracy. For example, VRP1 needs to be restarted 4 times with halting criteria set to 89

www.intechopen.com

A Modelling and Optimization Framework for Real-World Vehicle Routing Problems

29

iterations per start for ILS algorithm to reach threshold T1 with 90% accuracy. If we increase
the accuracy level the number of restarts increases.
Table 4 shows which algorithm, multi-start factor and halting number of iterations are
optimal to reach threshold T1 or T2 with accuracy level 90%, 95% or 99.9% respectively and
obtained by performance measure protocol. The thresholds are defined in such a way that
all the results obtained by ILS, SA and VNS are sorted in a list where the value of the
objective function on the last iteration is the number on which the sorting is done. Threshold
T1 is calculated so that 25% of the runs in the sorted list are in the T1 threshold interval.
Threshold T2 has 10% of the best runs.

AL VRP1 VRP2 VRP3 VRP4

90% ALG MSF IT ALG MSF IT ALG MSF IT ALG MSF IT

T1 ILS 4 89 SA 6 99 ILS 68 5 VNS 34 6

T2 ILS 9 93 VNS 22 95 ILS 68 5 VNS 34 30

Table 3. Optimal tuning parameters for real-world benchmark problems VRP1, VRP2, VRP3
and VRP4. AL = accuracy level, T = threshold, ALG = algorithm, MSF = multi-start factor, IT
= optimal number of iterations per each run

 VRP1 VRP2

T1 T2 T1 T2
AL

ALG MSF IT ALG MSF IT ALG MSF IT ALG MSF IT

90.0% ILS 4 89 ILS 9 93 SA 6 99 VNS 22 95

95.0% ILS 4 99 ILS 12 93 SA 10 75 SA 21 81

99.9% ILS 10 89 ILS 26 93 SA 23 75 VNS 66 95

 VRP3 VRP4

T1 T2 T1 T2
AL

ALG MSF IT ALG MSF IT ALG MSF IT ALG MSF IT

90.0% ILS 68 5 ILS 68 5 VNS 34 6 VNS 34 30

95.0% ILS 89 5 ILS 89 5 VNS 44 6 VNS 44 30

99.9% ILS 204 5 ILS 204 5 VNS 101 6 VNS 101 30

Table 4. Multi-start factors for real-world benchmark problems VRP1, VRP2, VRP3 and
VRP4. AL = accuracy level, T = threshold, ALG = algorithm, MSF = multi-start factor, IT =
optimal number of iterations per each run

The statistical analysis of 30 runs of each algorithm ILS, SA and VNS on each of the

problems VRP1, VRP2, VRP3, VRP4 reveals that number of iterations which is 100 in the

considered experiments is acceptable value for problems VRP3 and VRP4. In the case of

other two problems VRP1 and VRP2 all optimal numbers of iterations are clearly grouped

near the number 100 what leads us to the conclusion that the convergence of algorithms is

not finished. The empirical study should be continued under the same protocol with the

increased number of iterations for the problems VRP1 and VRP2. From the results in a

Table 4, we can state that ILS is best performing algorithm for solving VRP3 which

converges very early, but the number of restarts should be very large. With the large

www.intechopen.com

 Vehicle Routing Problem

30

numbers of restarts from 68 to 204 and only 5 iterations per run, the time duration to reach

the threshold with ILS is more acceptable than time duration obtained by SA and VNS

algorithms. The best performing algorithm for VRP4 problem is VNS algorithm.

5. Conclusion

For real-world application that solves the Vehicle Routing Problem it is essential to perform
a fast selection of methods (constructive heuristics, neighbourhood operators and escaping
mechanisms) which produce the desired improvement of the objective function. To speed
up the prototyping a new flexible VRP framework has been developed and described.
The framework consists of the Framework Scripting Language (FSL), a library of coded
methods and real-world benchmarks. Even new optimization ideas can use the advantages
of this programming environment with tools considering commands that operate with VRP
entities like moving vehicle, change customer position in routes, displaying the solving
process of the current problem graphically, etc. The framework offers a set of programming
tools to speed up the development, testing and tuning of heuristic algorithms.
The knowledge of solving practical problems by known methods is stored in the library
which can be easily adapted for tailor-made application.
A new statistical approach for estimating the optimal number of restarts and iterations of
the implemented algorithms is described and integrated in a general performance measure.
This performance measure calculates for every solver the expected time that is necessary to
compute solutions above a requested quality thresholds with respect to a demanded
accuracy level.
The framework and the performance measure protocol are implemented on the standard
benchmark and practical VRPTW problems.

6. References

Bräysy, O. & Dullaert, W. (2003). A Fast Evolutionary Metaheuristic for the Vehicle Routing
Problem with Time Windows. International Journal on Artificial Intelligence Tools, Vol.
12, No. 2, (June 2003) pp. 153-172, ISSN 0218-2130

Bräysy, O. & Gendreau, M. (2005a). Vehicle Routing Problem with Time Windows Part I:
Route construction and local search algorithms. Transportation Science, Vol. 39, No.
1, (February 2005) pp. 104-118, ISSN 0041-1655

Bräysy, O. & Gendreau, M. (2005b). Vehicle Routing Problem with Time Windows Part II:
Metaheuristics. Transportation Science, Vol. 39, No. 1, (February 2005) pp. 119-139,
ISSN 0041-1655

Carić, T.; Fosin, J.; Galić, A.; Gold, H. & Reinholz, A. (2007). Empirical Analysis of Two
Different Metaheuristics for Real-World Vehicle Routing Problems, In: Hybrid
Metaheuristics 2007, Bartz-Beielstein, T. et al. (Eds.), Lecture Notes in Computer
Science (LNCS) 4771, pp. 31-44, Springer-Verlag, ISBN 978-3-540-75513-5,
Berlin/Heidelberg

Cerny, V. (1985). A Thermodynamical Approach to the Travelling Salesman Problem: An
Efficient Simulation Algorithm. Journal of Optimization Theory and Applications, Vol.
45, No. 1, (January 1985) pp. 41-51, ISSN 0022-3239

Clarke, G. & Wright, J.W. (1964). Scheduling of Vehicles from a Central Depot to a Number
of Delivery Points, Operations Research, Vol. 12, No. 4, (July-August 1974) pp. 568-
581, ISSN: 0030-364X

www.intechopen.com

A Modelling and Optimization Framework for Real-World Vehicle Routing Problems

31

Cordeau, J.-F.; Desaulniers, G.; Desrosiers, J.; Solomon, M. & Soumis, F. (2002). The Vehicle
Routing Problem with Time Windows. In: The Vehicle Routing Problem, Toth, P. &
Vigo, D. (Eds.), pp. 157-193, SIAM Publishing, ISBN 0-89871-498-2, Philadelphia

Flood, M.M. (1956). The Traveling Salesman Problem, Operations Research, Vol. 4, No. 1,
(February 1956) pp. 61-75, ISSN: 0030-364X

Galić, A.; Carić, T. & Gold, H. (2006a). MARS - A Programming Language for Solving
Vehicle Routing Problems. In: Recent Advances in City Logistics, Taniguchi, E. &
Thompson, R. (Eds.), pp. 48-57, Elsevier, ISBN 0-08-044799-6, Amsterdam

Galić, A.; Carić, T.; Fosin, J.; Ćavar, I. & Gold, H. (2006b). Distributed Solving of the VRPTW
with Coefficient Weighted Time Distance and Lambda Local Search Heuristics.
Proceedings of the 29th International Convention on Information-Communications
Technology, pp. 247-252, Opatija, May 2006, MIPRO, Rijeka, Croatia

Gillett, B.E. & Miller, L.R. (1974). A Heuristic Algorithm for the Vehicle-Dispatch Problem,
Operations Research, Vol. 22, No. 2, (March-April 1974) pp. 340-349, ISSN: 0030-364X

Homberger, J. & Gehring, H. (2005). A two-phase hybrid metaheuristic for the vehicle rout-
ing problem with time windows. European Journal of Operational Research, Vol. 162,
No. 1, (April 2005) pp. 220–238, ISSN 0377-2217

Hoos, H. & Stützle, T. (2005). Stochastic Local Search: Foundation and Application, Elsevier/
Morgan Kauffman, ISBN 1-55860-872-9658, San Francisco

Kirkpatrick, S.; Gelatt, C.D. & Vecchi Jr., M.P. (1983). Optimization by Simulated Annealing.
Science, New Series, Vol. 220, No. 4598, (May 13, 1983) pp. 671-680

Laporte, G. (1992). The Vehicle Routing Problem: An Overview of Exact and Approximative
Algorithms. European Journal of Operational Research, Vol. 59, No. 3, (June 1992) pp.
345-358, ISSN 0377-2217

Laporte, G. & Semet, F. (2002). Classical Heuristics for the Capacitated VRP, In: The Vehicle
Routing Problem, Toth, Toth, P. & Vigo, D. (Eds.), pp. 109-128, SIAM Publishing,
ISBN 0-89871-498-2, Philadelphia

Laurenço, H.R. & Serra, D. (2002). Adaptive search heuristics for the generalized assignment
problem. Mathware & Soft Computing, Vol. 9, No. 2-3, pp. 209-234, ISSN 1134-5632

Le Bouthillier, A. & Crainic, T.G. (2005). Cooperative parallel method for vehicle routing
problems with time windows. Computers and Operations Research, Vol. 32, No. 7,
(July 2005) pp. 1685-1708, ISSN 0305-0548

Lim, A. & Zhang, X. (2007). A Two-Stage Heuristic with Ejection Pools and Generalized
Ejection Chains for the Vehicle-Routing Problem with Time Windows, INFORMS
Journal on Computing, Vol. 19, No. 3, (Summer 2007) pp. 443-457, ISSN 1091-9856

Mester, D.; Bräysy, O. & Dullaert, W. (2007). A multi-parametric evolution strategies algo-
rithm for vehicle routing problems. Expert Systems with Applications, Vol. 32, No. 2,
(February 2007) pp. 508-517, ISSN 0957-4174

Metropolis, N.; Rosenbluth, A.W.; Rosenbluth, M.N. & Teller, A.H. (1953). Equations of State
Calculations by Fast Computing Machines. The Journal of Chemical Physics, Vol. 21,
No. 6, (June 1953) pp. 1087-1092, ISSN 0021-9606

Pisinger, D. & Röpke, S. (2005). A general heuristic for vehicle routing problems. Technical
Report, Department of Computer Science, University of Copenhagen, Copenhagen,
Denmark

Reinholz, A. (2003). Ein statistischer Test zur Leistungsbewertung von iterativen
Variationsverfahren. Technical Report 03027, SFB559, University of Dortmund (in German)

Solomon, M. (1987). Algorithms for the Vehicle Routing and Scheduling Problems with
Time Windows Constraints. Operations Research, Vol. 35, No. 2, (March-April 1987)
pp. 254-265, ISSN 0030-364X

www.intechopen.com

 Vehicle Routing Problem

32

Appendix – Pseudo code and main FSL scripts for SA, ILS and VNS
algorithms

www.intechopen.com

A Modelling and Optimization Framework for Real-World Vehicle Routing Problems

33

www.intechopen.com

 Vehicle Routing Problem

34

www.intechopen.com

Vehicle Routing Problem

Edited by Tonci Caric and Hrvoje Gold

ISBN 978-953-7619-09-1

Hard cover, 142 pages

Publisher InTech

Published online 01, September, 2008

Published in print edition September, 2008

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

The Vehicle Routing Problem (VRP) dates back to the end of the fifties of the last century when Dantzig and

Ramser set the mathematical programming formulation and algorithmic approach to solve the problem of

delivering gasoline to service stations. Since then the interest in VRP evolved from a small group of

mathematicians to a broad range of researchers and practitioners from different disciplines who are involved in

this field today. Nine chapters of this book present recent improvements, innovative ideas and concepts

regarding the vehicle routing problem. It will be of interest to students, researchers and practitioners with

knowledge of the main methods for the solution of the combinatorial optimization problems.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Tonči Carić, Ante Galić, Juraj Fosin, Hrvoje Gold and Andreas Reinholz (2008). A Modelling and Optimization

Framework for Real-World Vehicle Routing Problems, Vehicle Routing Problem, Tonci Caric and Hrvoje Gold

(Ed.), ISBN: 978-953-7619-09-1, InTech, Available from:

http://www.intechopen.com/books/vehicle_routing_problem/a_modelling_and_optimization_framework_for_rea

l-world_vehicle_routing_problems

© 2008 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

