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1. Introduction

The generation of electrical energy from thermal energy was originally discovered by
Thomas Johann Seebeck in 1822 when he first demonstrated that a thermoelectric voltage
was produced after providing a temperature difference across two materials. Jean Charles
Athanase Peltier then demonstrated in 1834 that the application of a current could be used to
pump heat, an effect with great potential for refrigeration. It was not until the 1850s that Lord
Kelvin worked out the physics of the Seebeck and Peltier effects attributing the reversible heat
flow discovered by Peltier must have an entropy associated with it and the Seebeck coefficient
was a measure of the entropy associated with the electric current. Further developments in
the theoretical understanding of thermoelectrics required quantum mechanics. The efficiency
of the thermoelectric generation process was derived in 1911 by Edmund Altenkirch.

2. Fundamental physics

Before describing and deriving the main thermodynamic properties and equations, it is
worthwhile having a brief review of the key parts of physics required for thermoelectrics.
One of the first effects that will be used to derive the thermoelectric efficiency is Joule’s law
of heating. Joule was the first to demonstrate that any current passing through a resistor
produces an amount of heat (Fig. 1(a)). Specifically the heat, Q (as a power i.e. energy /
time) generated by passing a current, I though a resistance, R is given by Joule’s first law

Q = I2R (1)

It should be clear that thermoelectrics have heat being transported through a range of
materials and some understanding of the transport of that heat is required. The heat
generated by any process will be transported through a material driven by any temperature
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Figure 1. (a) The heat power generated by Joule heating of a resistance, R with current, I flowing through the resistance. (b)

The thermal transport through a rod of area, A, length L and thermal conductivity κ as defined by Fourier’s law of thermal

transport.

gradients along the material (Fig. 1(b)). This is given by Fourier’s law of heat transport
which states for a material with area A and thermal conductivity κ that

Q = −κA∇T

(

= −κA
Tc − Th

L
for 1D transport along a length, L

)

(2)

Strictly speaking the heat transport could be in multiple directions in a complex material with
a range of different thermal conductivities in different directions but for most thermoelectrics
systems, the designs attempt to keep the heat flow simple by using 1 dimensional
constructs. The right hand term of equation 2 is the equation for 1D heat transport which is
predominantly the one used in thermoelectric devices and modules.

After discussing the generation and transport of heat, we can now discuss the thermoelectric
effects. It is far easier to understand the Peltier effect and so this will be discussed before the
Seebeck effect. We need to consider two materials in a thermocouple connected between a
hot reservoir of temperature, Th and a cold reservoir of temperature Tc (Fig. 2(a)). To produce
the Peltier effect, a current has to be applied and so Fig. 2(a) demonstrate the system with
the current being applied to the ends of material 2. The Peltier coefficient, Π, for this system
is given by

Π =

Q

I
(3)

The units of Π are the Volt since heat divided by current is Watts divided by Amps. The
physics of what is going on is relatively simple. The Peltier coefficient is the heat energy
carried by each electron per unit charge and time from the hot reservoir to the cold reservoir.

The Seebeck effect requires a similar circuit to be constructed but this time, the gap in
material two is left open circuit (Fig. 2(b)). The open circuit voltage is proportional to
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Figure 2. (a) The thermocouple system between two heat reservoirs required to demonstrate the Peltier effect (b) The

thermocouple system between two heat reservoirs required to demonstrate the Seebeck effect.

(Th − Tc) = ∆T and the constant of proportionality is called the Seebeck coefficient, α. More
generally the Seebeck coefficient is defined as

α =
dV

dT
(4)

The units for the Seebeck coefficient are V/K. The Seebeck coefficient is 1/q times the entropy
(Q/T) transported with each electron where q is the electron charge. Hence the Peltier effect
is just each electron in the electrical current transferring an amount of heat from one reservoir
to the other i.e. a heat pump.

To calculate the Seebeck or Peltier coefficients from theory requires one to solve the
Boltzmann transport equation in the relaxation time approximation. This is beyond the scope
of this text but a full derivation can be found in a range of solid state text books including
[1]. From this approach, the Seebeck coefficient can be written in terms of the energy of an
electron, E, Boltzmann’s constant, kB, the Fermi level in the thermoelectric material, EF and
the momentum relaxation time, τ, as

α = −

kB

q

∫
(E − EF)

kBT

σ(E)

σ
dE (5)

where the electrical conductivity

σ =
∫

σ(E)dE = q
∫

g(E)µ(E) f (E)(1 − f (E))dE (6)
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The functions are the density of states, g(E), the carrier mobility, µ(E) and the Fermi function,
f (E). The best thermoelectric materials are always semiconductors and so the equation for
the Seebeck coefficient can be integrated over either the conduction band or the valence band
to find the solution for n-type semiconductors and p-type semiconductors respectively. If we
only consider electrons in the conduction band for energies above the conduction band edge,
Ec then we have

α = −

kB

q











(Ec − EF)

kBT
+

∞
∫

0

(E−Ec)σ(E)dE
kBT

∞
∫

0

σ(E)dE











for E > Ec (7)

This equation is still quite complex and it is difficult to see exactly how to optimise
thermoelectric materials. Cutler and Mott [2] realised a more useful form for the Seebeck

coefficient. By differentiating the Fermi function it is easy to show that f (1 − f ) = −kBT
d f
dE

and then expanding g(E)µ(E) in a Taylor’s series around E = EF it can be shown that

α = −

π2

3q
k2

BT

[

d ln(µ(E)g(E))

dE

]∣

∣

∣

∣

E=EF

(8)

This equation is only valid for degenerately doped material, that is material that has doping
above the Mott criteria and so the Fermi energy is greater than the conduction band edge.
The doping density, nc given by the Mott criteria is

nc ≈

(

0.27

a∗B

)3

(9)

where a∗B is the effective Bohr radius given by

a∗B =
ǫ0ǫrh2

πm∗q2
(10)

with ǫ0 the permittivity of free space (8.85 × 10−12 Fm−1), ǫr the dielectric constant of the
semiconductor, h is Planck’s constant and m∗ is the effective mass of the charge carrier in the
semiconductor. In metal-insulator theory this makes the degenerate semiconductor doped
above Mott criteria metallic. The Cutler and Mott equation 8 now starts to suggests methods
for optimising thermoelectric materials. Materials where the mobility and/or the density of
states are varying by large amounts around the Fermi level have high Seebeck coefficients.

Further insights into how to increase the Seebeck coefficient can be found by taking the
approach by Ziman [1]. If we ignore energy dependent scattering so that the momentum

ICT - Energy - Concepts Towards Zero - Power Information and Communication Technology52



f(E) df(E)
dE

df(E)
dE

–g(E)

E

EF EF

g(E)

g(E)

(E–EF)

(a) (b) (c)

Figure 3. (a) The Fermi function demonstrating the carrier occupation as a function of energy for a degenerately doped

semiconductor. (b) The first derivative of the Fermi function with respect to energy and also the density of states for the same

semiconductor. (c) The product of the terms in (b) times (E − EF) which is related to the Seebeck coefficient as detailed in the
text. It is the asymmetry between the two red areas above and below the Fermi energy that determines the magnitude of the

Seebeck coefficient of the semiconductor.

relaxation time is given by τ(E) and the electron velocity by v(E) then the electrical
conductivity can be written as

σ =
q2

3

∫

τ(E)v2(E)

[

−g(E)
d f

dE

]

dE (11)

Zimen then demonstrated that the Seebeck coefficient can be written as

α =
q2

3Tσ

∫

τ(E)v2(E)

[

−g(E)
d f

dE

]

(E − EF)dE (12)

Fig. 3 provides a graphical plot of the terms
[

−g(E)
d f
dE

]

(E − EF) in this equation. With this

approach by Ziman, σ, τ and v are all constant and it is therefore the asymmetry between
the value of this term above and below the Fermi level that determines the magnitude
of the Seebeck coefficient. This results is important when low dimensional structures are
considered as large discontinuities of the density of states can potential provide significant
enhancements to the Seebeck coefficient.

William Thomson (Lord Kelvin), realised that the Seebeck coefficient varies with temperature
(Fig. 4) and so heat is both absorbed and generated in the thermocouples shown in Fig. 2.
The gradient of the heat flux is then given by

dQ

dx
= βI

dT

dx
(13)

where β is the Thomson coefficient. Kelvin then derived the Kelvin relationships that hold
for all materials which are
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Figure 4. The Thomson coefficient is required as there will be a temperature dependence along any thermoelectric

material connected to two heat reservoirs at different temperatures and this produces different Seebeck coefficients along

the thermoelectric material. In this diagram the Seebeck coefficient varies along the x-direction i.e. α = α(x)

Π = αT (14)

β = T
dα

dT
(15)

The Peltier and Thomson coefficients are extremely difficult to measure experimentally but
the Seebeck coefficient is relatively easy as it only requires a voltage measurement as a
function of ∆T across the thermoelectric material. The Kelvin relationships therefore allow
the measurement of the Seebeck effect to obtain the Peltier and Thomson coefficients.

3. Thermodynamic efficiency

We are about to derive the thermodynamical efficiency of thermoelectrics as first
demonstrated by Altenkirch in 1911. Before undertaking this, it is sensible to review the
Carnot cycle efficiency as this is the maximum efficiency for converting a given amount of
thermal energy into work done. It will therefore set a maximum amount for any thermal
system and will allow us to determine how much scope there may be for improving
thermoelectric materials.

Fig. 5 shows the Carnot cycle where the input work done, Wcom to a compressor increases
the pressure of the water. This input work done is adiabatic so there is no gain or loss of heat
within the complete system. The water flows from the compressor to a furnace where an
amount of heat, Q1 is input into the water at constant temperature (i.e. along an isotherm) so
that the water is converted from water into dry steam. Therefore all the heat energy is being
absorbed as the latent heat in this process of changing water into dry steam. The steam has a
larger volume than the liquid water and so the volume increases as shown in Fig. 5(b). This
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Figure 5. (a) The Carnot thermodynamical cycle showing a closed cycle water / steam system where input work,Wcom is done

of the water / steam by a compressor and the work done as output, Wt is that which is the output from a turbine. (b) The

temperature-volume phase diagram for the Carnot thermodynamic cycle shown in (a).

increase in volume can be used to turn a turbine and the kinetic energy from the volume
expansion can be recovered as work done on the turbine, Wt. The temperature is reduced
in this process. Then to allow the cycle to start again, the steam has to be condensed into
water, and the latent heat, Q2 which is removed at constant temperature can be recovered
and reused as an input. The process can then start again.

The efficiency of the Carnot cycle is given by

Efficiency = η =
net work output

net work input
=

Wt − Wcom

Q1
(16)

From the first law of thermodynamics (conservation of energy), we have

(Q1 − Q2)− (Wt − Wcom) = 0 (17)

and so the efficiency can be rewritten as

η =
Q1 − Q2

Q1
= 1 −

Q2

Q1
(18)

Carnot demonstrated using the temperature versus volume diagram for the Carnot cycle (Fig.
5(b)) that the maximum efficiency is only dependent on the maximum (Th) and minimum
temperatures (Tc) in the cycle and so the maximum efficiency known as the Carnot efficiency
becomes
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ηc = 1 −
Tc

Th
(19)

The Carnot efficiency is related to the Kelvin statement of the second law of thermodynamics
which states that no system operating in a closed cycle can convert all the heat absorbed
from a heat reservoir into the same amount of work. This is just a statement that no
thermodynamic heat engine is 100 % efficient. The equivalent Caussius statement is that
no process is possible whose sole result is the transfer of heat from a colder to a hotter body
when no work is done inside the system. Heat must always flow from a hotter to a colder
body. Heat can only be pumped from a colder to a hotter body by undertaking work on the
system. Hence the Peltier effect provides one mechanism to pump heat when a current and
electrical energy provides the work.

The equation clearly demonstrates that the efficiency can be increased by decreasing Tc or
increasing Th. More correctly the larger ∆T = Th − Tc becomes, the higher the efficiency.
Therefore for practical systems, the easiest way to increase the efficiency of any heat engine
is to increase the hot reservoir temperature, Th.

We have already described how a temperature gradient across a material results in heat
conduction through Fourier’s law when no electrical current flows in the system. If there is
an electrical current in the same direction due to the Seebeck effect then the Peltier effect will
attempt to oppose the applied temperature gradient. Therefore when the heat flows through
a thermoelectric material between hot and cold reservoirs (see Fig. 1(a)), we have to consider
not just the Fourier heat transport but also the Peltier effect.

We therefore need to write: Heat flux per unit area = Peltier term + Fourier term

Q

A
= ΠJ − κ∇T (20)

From the Kelvin relations we have Π = αT and the current density, J =
I
A . Therefore this

can be rewritten as

Q = αIT − κA∇T (21)

We will now derive the thermodynamic efficiency of a thermoelectric generator. Before we
can generate electricity, we need to build a circuit that can deliver power to a load. Fig. 6(a)
shows the basic thermoelectric circuit for generating electricity which consists of an n-type
and a p-type semiconductor connected electrically in series and thermally in parallel. The
output power is delivered to a load which in this case will just be a resistor, RL. For a Peltier
cooler, a similar circuit can be designed where the load is replaced by a current source or
battery as demonstrated in Fig. 6(b). The thermodynamic efficiency of the thermoelectric
generator is given by
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η =
power supplied to load

heat absorbed at hot junction
(22)

The power supplied to the load is just the Joule heating of the load resistor, RL which is equal
to I2RL. The heat absorbed at the hot junction is the Peltier term plus the heat withdrawn
from the hot junction as described above. The Peltier heat is given by ΠI = αITh. If the
resistance of the n-type and p-type semiconductor elements in series is R, then the current, I

flowing in the circuit is just given by Ohm’s Law as

I =

(

V

Rtotal

)

=
α(Th − Tc)

R + RL
(23)

The heat withdrawn from the hot junction is given by the Fourier term but as there will be
Joule heating from the generated current from the Seebeck voltage, some heat will also be
generated and returned to the hot junction. It is usual to assume that half of the Joule heat
will be transport and half will be returned to the hot junction and so

Qh = Fourier - Joule heating + half Joule heating returned (24)

= κA(Th − Tc)− I2R +
1

2
I2R (25)

= κA(Th − Tc)−
1

2
I2R (26)
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We can now move to calculate the efficiency by combining these terms and assuming that
the power supplied to the load is only through Joule heating to produce

η =
power supplied to load

heat absorbed at hot junction
(27)

=
power supplied to load

Peltier + heat withdrawn from hot junction (Qh)
(28)

=
I2RL

αITh + κA(Th − Tc)−
1
2 I2R

(29)

To find the maximum efficiency, this equation requires to be solved for
dη

d
(

RL
R

) = 0. With a

little algebra it can be shown that the solution is

ηmax = (1 −
Tc

Th

)

√

1 + ZT − 1
√

1 + ZT + Tc

Th

(30)

where T = 1
2 (Th + Tc) and the figure of merit for thermoelectrics is defined as

ZT =
α2σ

κ
T (31)

Equation 30 has two parts. The first part is just the Carnot efficiency given by (1 − Tc

Th
). The

second part accounts for losses and irreversible processes which reduce as the dimensionless
figure of merit, ZT, increases in value.

Fig. 7 demonstrates the Carnot efficiency and the maximum thermoelectric efficiencies
for different ZTs as a function of ∆T. Also included are typically efficiencies for other
thermodynamic cycles such as the Rankine and Stirling cycles for different thermal heating
schemes. It is clear from this figure that thermoelectrics have significantly less efficiency
today that Rankine or Stirling cycle engines. This is certainly true for power generation at
the large scale. Below about 100 W, however, the Rankine and Stirling cycles become more
difficult to sustain at high efficiencies and thermoelectrics have some advantages. This is
mainly due to the fact that fluids effectively become more viscous (lossy) when dimensions
are reduced below a certain length scale. A second major advantage of the thermoelectric
generators is that they have no moving mechanical parts and are therefore significantly more
reliable than Rankine or Stirling cycle engines which have compressors and turbines. Indeed,
this is the major reason NASA used radioisotope thermoelectric generators for the Voyager
space probes which have been operating for over 34 years and have now left the solar system.

So far we have made the assumption that the electrical and thermal properties of the
n-type and p-type semiconductor legs are identical. This is seldom, if ever, the case in real
thermoelectric materials. ZT needs to be redefined with the Seebeck coefficients, electrical
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conductivities and thermal conductivities defined for both n-type and p-type semiconductors
to give

ZT =
(αp − αn)2T

[√

κp

σp
+

√

κn
σn

]2
(32)

For n-type and p-type semiconductor legs of length (area), Ln (An) and Lp (Ap) respectively,
ZT is a maximum value when the total resistance of the legs times the thermal conductance
is a minimum value. This occurs when

Ln Ap

Lp An
=

√

σnκn

σpκp
(33)

Up to this point we have assumed that we have a ∆T applied across each of the n- and p-type
legs of the thermoelectric module. Since each leg has a given thermal conductivity, only a
finite ∆T can be sustained across the thermoelectric legs. This therefore sets a maximum ∆T
that can be sustained due to the thermal conductivity and in terms of ZT it is defined as

∆Tmax =
1

2
ZT2

c (34)

Thermoelectric Energy Harvesting
http://dx.doi.org/10.5772/57092

59



60

50

40

30

20

10

0

2

0

4

6

8

10

12

14

16

wavenumber

F
re

q
u

en
cy

 (
T

H
z)

E
n

erg
y

 (m
eV

)

optic modes - neighbours in antiphase

acoustic modes - neighbours in phase

+ –

X

TO
TO

LO
LO

TA

TATA

LA

LALAA

SiGe

NB acoustic phonons transmit 

most thermal energy

Figure 8. Left: The phonon energy dispersion versus wavenumber for Si. Right: schematic diagrams of the optic modes and

acoustic modes in terms of the spring model for the lattice bonds between atoms in the crystal for an alloy of Si0.5Ge0.5.

4. Thermal conductivity

The thermal conductivity is one of the key parameters that many researchers aim to
reduce to improve the ZT of a material. The thermal and electrical conductivities in bulk
materials are linked as was first demonstrated by Wiedemann and Franz. They made the
empirical observation that the thermal conductivity divided by the electrical conductivity
times temperature was a constant for all metals. One of the greatest successes of the Drude
theory of metals was the explanation of the Wiedemann-Franz law as it is now called. The
Drude model assumes that the bulk of the thermal transport in metals is by the conduction
electrons. This is now know to be incorrect and the success of the Drude model in explaining
the Wiedemann-Franz law was a fortuitous cancelation of two factors of 100. It is now known
that the Drude approach of applying the classical gas laws cannot be applied to electron gases
in solids. The Wiedemann-Franz law, however, is still correct for degenerately doped bulk
semiconductors and metals and provides substantial limitations when trying to optimize
thermoelectric materials.

Quantum theory now provides a more complete description of the thermal conductivity
which will be described. Phonons are the modes of vibrations of interacting particles in
elastic crystal lattices. Phonons are quasi-particles which describe the collective excitations
of the lattice (modes of vibrations). Fig. 8 shows the simple semi-classical interpretation
where the bonds between atoms in a lattice are considered as springs and then by solving
the Helmholtz wave equation for the vibrational modes of these springs throughout the
lattice, the energy dispersion curves for the phonons can be calculated. Whilst more accurate
description of the phonons requires much more detailed quantum mechanical calculations,
this simple picture provides the same overall physical picture of the modes. There are
two types of modes: optic and acoustic. The acoustic modes are where the oscillations
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of neighbours are in phase either in a transverse or longitudinal direction whilst the optics
modes have the neighbours oscillating in anti-phase and are therefore at higher energy.

The total thermal conductivity of a semiconductor or metal can be divided into the electrical
contribution, κel and the lattice contribution from phonons, κph, i.e.

κ = κel + κph (35)

For non-degenerate semiconductors (low carrier density), κel ≪ κph whilst for degenerate
semiconductors (high carrier densities including metals) , κel ≫ κph. An ideal thermoelectric
material should have both high carrier density and a decoupling of the thermal conductivity
with κel ≪ κph but Wiedemann-Franz prevents this in bulk semiconductors and metals.

In metals where κel dominates the the thermal conductivity, Wiedemann-Franz produces

σT

κ
=

3

π2

(

q

kB

)2

=
1

L
(36)

where L is the Lorenz number which is equal to 2.44 × 10−8 WΩK−2. There are a number of
examples where the Wiedemann-Franz law breaks down which include pure metals at low
temperature, alloys where the small κel from high electron scattering results in significant
contributions from κph and certain low dimensional structures where κph can dominate over
κel .

The lattice contribution is in quantum theory the phonon contribution to the thermal
conductivity where phonons are the quantised vibration of the lattice. The phenomenological
model using phonon scattering which is now used to calculate the phonon contribution to
the thermal conductivity this that first published by Callaway [3]. It assumes that the phonon
scattering processes can be represented by frequency-dependent relaxation times and uses a
formula derived from the Boltzmann transport equation to calculate the thermal conductivity.
The lattice thermal conductivity calculated by this approach is

κph =
kB

2π2

(

kB

h̄

)3 ∫

θD
T

0

τc(x)x4ex

υ(x)(ex − 1)2
dx (37)

where θD is the Debye temperature, x = h̄ω

kBT , h̄ is Planck’s constant divided by 2π, ω is the
phonon angular frequency, τc is the combined phonon scattering time and υ is the phonon
velocity. The integral has to include all the acoustic and optical phonon modes although
there are particular types of systems where for example transport of optical phonons can be
forbidden in small enough nanostructures.

The electrical contribution to the thermal conductivity was derived from the Boltzmann
transport equation by Nag [4]. For total electron momentum relaxation times of τ for
electrons of energy, E, the electron contribution to the thermal conductivity is
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κel =
σ

q2T

[

〈τ〉〈E2
τ〉 − 〈Eτ〉2

〈τ3〉

]

(38)

The clear result that is not ideal for optimising thermoelectric materials at high carrier
densities is that κel ∝ σ.

5. Optimising ZT

In bulk semiconductor thermoelectric materials, once a material with a particular
composition has been chosen, the only real parameter that can be varied to optimise ZT is the
doping density. The electrical and thermal parameters in bulk materials are coupled through
the Wiedemann-Franz law and so simply by improving one parameter through choosing a
better doping does not necessarily result in higher ZT. Fig. 9 shows a schematic diagram
of the electrical and thermal properties of the bulk thermoelectric semiconductor material
Bi2Te3 as a function of doping density. For this example, the maximum ZT is close to 1019

cm−3 whilst the maximum power factor is at 1020 cm−3. The figure also demonstrates the
coupling of the electrical and thermal conductivities at high carrier densities and the inverse

relationship between carrier density and the Seebeck coefficient (α ∝ n− 2
3 where n is the

carrier density).

A comparison of the best n-type and p-type ZT values as a function of temperature is
demonstrated in Fig. 10. The solid lines are the ZT values for bulk materials. The majority
of the 3D bulk results all have ZT values that are around 1 or less. No bulk material
has yet been found with a ZT significantly higher than 1. There have, however, been a
number of suggestions to improve ZT by going to lower dimensional structures where the
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Figure 10. Left: a comparison of ZT for p-type material as a function of temperature (p-Sb2Te3, p-PbTe, p- CeFe4Sb12,

p-Yb14MnSb11 [5], p-Si0.71Ge0.29 [6], 2D p-Bi2Te3/Sb2Te3 [7], 1D Si [8], 0D p-SiGe [9], p-(GeTe)0.85(AgSbTe)0.15 [10], 0D

p-BixSb2−xTe3 [11], 0D Mg2Si0.4Sn0.6 [12]). Right: a comparison of ZT for n-type material as a function of temperature (n-Bi2Te3,

n-PbTe, n-CoSb3 [5], n-Si0.7Ge0.3 [6], 0D PbSeTe [13], 0D n-SiGe [14], 0D n-PbSe0.98Te0.02/PbTe [15]).

Wiedemann-Franz rule can break down and quantum effects can be used to optimise the ZT
value which will be discussed in the next section.

The first major calculations to demonstrate the advantages of moving to low dimensional
structures was that of Mildred Dresselhaus [16]. There are multiple ways that low
dimensional structures can enhance the value of ZT.

5.1. Low dimensional structures

Before demonstrating the potential enhancements that low dimensional structures can bring
to the ZT of a thermoelectric material, the definition of lower dimensional samples must be
considered. If a sample is made with dimensions of length, L, width, w and thickness, t

then the dimensionality of the system and the appropriate transport regime for electrons or
phonons is inferred by comparing the sample dimension to the various scattering lengths
and characteristics lengths defined below. Care is always required for a sample can be, for
example, the 2D in terms of electrical transport but 3D in terms of thermal transport.

In the Drude model, the electrical conductivity is defined in terms of the elastic scattering
time, τ, the effective mass of the electrons in the material, m∗ and the carrier density, n as

σ =

nq2
τ

m∗
(39)

This equation is very simplistic in terms of the mechanisms which determine the
electrical conductivity and dependent on the temperature and material, additional transport
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and scattering mechanisms including disorder, electron-electron interactions, quantum
interference or ballistic transport have to be included. Generally the length scale, lx associated
with a scattering time, τx for some scattering process is linked through the diffusion constant,
D as

lx =
√

Dτx (40)

In this form the mobility is defined as µ =
q

m∗ τ and the Einstein relation relates the mobility
to the diffusion constant for an absolute temperature, T as

µ =
qD

kBT
(41)

In most electronic conduction it is only the electrons close to the Fermi level in energy that
need to be considered for which the relevant scale is the Fermi wavelength

λF =
2π

kF
=

√

2π

n
=

h
√

2m∗EF
(42)

The elastic scattering length of electrons is defined as the mean free path, ℓ. (Note - the
mean free path is strictly defined as the shortest scattering length between all the scattering
mechanisms which includes phase coherent scattering, inelastic scattering, electron-electron
scattering, but normally the elastic scattering length is the dominant.) The mean free path is
defined generally and for lower dimensions as

ℓ = vFτ =
h̄kF

m∗
τ (43)

ℓ3D =
h̄

m∗
(3π2 n

gv
)

1
3

µm∗

q
=

h̄µ

q
(3π2 n

gv
)

1
3 (44)

ℓ2D =
h̄µ

q

√

2π
n

gv
(45)

ℓ1D =
h̄µ

q
π

n

gv
(46)

where gv is the valley degeneracy of the semiconductor. The above equations have assumed
that the electrons have a spin degeneracy of 2 which is only untrue under large magnetic
fields sufficiently high to split the spin degeneracy.

Moving to thermal transport there are a number of models which can be considered to
determine the appropriate length scales. The first is the thermal length, LT defined as the
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length over which thermal smearing and the associated phase randomization of an electron
of the Fermi distribution which produces and energy uncertainty of kBT. This is given by

LT =

√

Dh̄

kBT
(47)

The phonon group velocity is defined as ∂ω
∂q where ω is the phonon angular frequency and q

is the phonon wavenumber. The phonon mean free path in the 3D bulk as determined by the
Debye theory, which assumes that the phase and group velocity of the phonons are equal, is
give by

Λph =
3κph

Cv〈υ〉ρ
(48)

where Cv is the specific heat capacity at constant volume, 〈υ〉 is the average phonon velocity
and ρ is the density of phonons. Table ?? gives examples of the phonon mean free path
in Si and germanium. The Debye theory is by no means unique and the group velocity of
phonons is defined in terms of the phonon dispersion relation as demonstrated by Chen [17].
Table ?? provides a comparison between the mean free paths determined by the Debye and
dispersion models. There is a significant difference between the two approaches and this is
one of the main issues and problems in determining exactly which dimensionality a system
is in terms of the thermal transport. In all the 3D cases below, the numbers are larger than
the equivalent electron mean free path.

Material Model Specific heat Group velocity Phonon mean free Debye temperature

(×106 Jm−3K−1) (m s−1) Λph (nm) (K)

Si Debye 1.66 6400 40.9 645

Si Dispersion 0.93 1804 260.4 645

Ge Debye 1.67 3900 27.5 360

Ge Dispersion 0.87 1042 198.6 360

Table 1

5.2. Quantum wells

Before describing how low dimensional systems can improve ZT, we first require to find the
energy solutions for a low dimensional systems. The simplest solution to investigate is the
2D quantum well for electrons, (Fig. 11) where the approximation is made that the potential
energy for electrons inside the quantum, V = 0 and the potential energy outside the well is
infinite (V = ∞). We require to solve the time independent Schrödinger equation which is

−
h̄2

2m∗

d2ψ(z)

dz2
+ V(z)ψ(x) = Eψ(z) (49)
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Figure 11. The quantized energy states in a quantum well of width, w.

Outside the quantum well with V = ∞, there are no solutions and the electrons are forbidden
to occupy regions outside the quantum well. Inside the quantum well V(z) = 0 and so the
Schrödinger equation reduces to the Helmholtz or wave equation

−
h̄

2

2m∗

d2ψ(z)

dz2
= Eψ(z) (50)

Any travelling wave solution is a valid solution inside the quantum well to this equation
so ψ(z) = A sin(kz), ψ(x) = A cos(kz), ψ(z) = Aeikz and ψ(x) = Ae−ikz (where A is an
amplitude of the wavefunction) and any mixture of these equations are all potential valid
trial solutions. The boundary conditions that a solution must adhere to is that at z → ∞ then
ψ(±∞) = 0. For the infinite quantum well in Fig. 11 this requires ψ(0) = ψ(w) = 0 and

so the wavefunctions cannot penetrate outside the quantum well. Also ψ(z) and
dψ

dz
must

be continuous between regions. These boundary conditions therefore require that the only
possible solution is

ψ(z) = An sin(knz) with kn =
nπ

w
and n = 1, 2, 3, . . . (51)

If this wavefunction is substituted back into the Schrödinger equation then the solution for
the energy is

E =
h̄

2
k2

n

2m∗
=

h̄
2π2n2

2m∗w2
for n = 1, 2, 3, . . . (52)
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The integers n = 1, 2, 3, . . . are called quantum numbers and the solutions provide quantized
energy levels that restrict the energy of the electrons into subband states indicated by E1,
E2, . . . En. Whilst in any classical system that has a continuous range of energies the ground
state can always have zero energy, in this quantized system however, the ground state with
n = 1 always has energy. This is known as the zero point energy. In semiconductor materials,
if two different materials are placed together then a heterostructure results. By placing one
material with a lower conduction band between the same material with a higher conduction
band, a quantum well is produced as shown in Fig. 11. The electrons move along the x-
and y-directions of the quantum well and are quantized in the z-direction then the electrons
have parabolic energy dispersions along the x- and y-directions and the quantized energy
dispersion only along the z-direction as shown in Fig. 12. This results in the complete
energy of each electron subband to be

E =
h̄2k2

x

2m∗
+

h̄2k2
y

2m∗
+

h̄2
π

2n2

2m∗w2
for n = 1, 2, 3, . . . (53)

5.3. Density of states

Equations 6 and 8 both use the density of states, g(E) which describes the number of available
states that electrons can occupy in any material system. The density of states is defined as
the number of states per energy per unit volume of real space where if N is the number of
states then

g(E) =
dN

dE
(54)

The density of states is therefore counting the number of states between E and E + dE in
energy. In k-space, the total number of states, N is equal to the volume of the sphere or
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radius k first divided by volume occupied by one state and then divided by the volume of
real space. Therefore if we have a 3D volume defined by a cube with side length, L then the

volume of one state in k-space is
(

2π

L

)3
. The number of states is given by

N = gvgs
4πk3

3

1
(

2π

L

)3

1

L3
(55)

= gvgs
4πk3

3 (2π)3
(56)

where the degeneracy of valleys, gv and the spin degeneracy gs have been added. For direct
bandgap semiconductors, gv = 1 whilst for indirect bandgap semiconductors the valley
degeneracy will be greater than 1. As an example, gv = 2 for silicon. The spin degeneracy,
gs is virtually always 2 for the majority of systems and this only changes for systems with
strong magnetic fields. The trick to working out the density of states is to split the derivative
in equation 54 into

g(E) =
dN

dE
=

dN

dk

dk

dE
(57)

so that equation 56 becomes

dN

dk
= gvgs

4πk2

(2π)3
(58)

The parabolic bands of the effective mass theory provide E = h̄2k2

2m∗ which rearranging gives

k =

√

2m∗E

h̄2
(59)

Taking the derivative with respect to energy produces

dk

dE
=

√

2m∗

h̄2

E−
1
2

2
(60)

Equations 58 and 60 can now be combined to produce the 3D density of states
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g3D(E) =
gvgs

4π
2

(

2m∗

h̄2

)
3
2

E
1
2 (61)

The same technique can be repeated for 2D systems where instead of a sphere, the 2D

equivalent is a circle in k-space. Repeating the technique for the 3D system, the number of
states is

N2D = gvgs
πk2

3

1
(

2π

L

)2

1

L2
(62)

= gvgs
πk2

(2π)2
(63)

and repeating the techniques above results in the 2D density of states as

g2D(E) = gvgs
m∗

2πh̄2
(64)

This results is for a single subband in a quantum well (see Figs. 11 and 12) and for a heavily
doped system as most thermoelectric materials are requires a summation of the density of
states over all the subbands. This results in the 2D density of states at an energy, E being the
sum over all subband below that energy which is

g2D(E) =
n

∑
i=1

gvgs
m∗

2πh̄2
Θ (E − Ei) (65)

where Θ is the Heaviside step function.

The technique can be repeated for 1D and 0D systems and to summarise the density of states
as a function of dimension are
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[18]. The square highlights a dislocation that limits the performance of this material. Middle: A SEM image of etched 50 nm

wide nanowires of Ge/Si0.2Ge0.8 material forming 1D thermoelectric systems. Right: A TEM image of a Ge quantum dot grown

on a silicon substrate forming a 0D thermoelectric system for scattering phonons.

g3D(E) =
gvgs

4π2

(

2m∗

h̄2

)
3
2

E
1
2 (66)

g2D(E) =
n

∑
i=1

gvgs
m∗

2πh̄2
Θ (E − Ei) (67)

g1D(E) =
1

2πh̄

n

∑
i=1

gvgs

√

m∗

2
πh̄2Θ (E − Ei) (68)

g0D(E) =
n

∑
i=1

gvgsδ (E − Ei) (69)

with δ(E − Ei) the Dirac delta function.

5.4. Low dimensional enhancements to ZT

The density of states as a function of energy for 3D, 2D, 1D and 0D are plotted in Fig. 13.
Also plotted is the ideal position for the Fermi energy if the Seebeck coefficient is to be
maximised using the Cutler and Mott equation

α = −

π2

3q
k2

BT

[

d ln(µ(E)g(E))

dE

]∣

∣

∣

∣

E=EF

(70)

By moving to lower dimensional structures, there is a larger asymmetry in the density of
states around the Fermi energy and the above equation and the discussions in section 2
indicates that this increases the Seebeck coefficient. Therefore by choosing systems with
lower dimensions, the Seebeck coefficient can be enhanced. A number of experimental
examples have demonstrated significant improvements to the Seebeck coefficient from
reducing the dimensionality from 3D to 2D, 1D or 0D. Examples of the physical structures
are shown in Fig. 14. Quantum wells with the transport either parallel or perpendicular to
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the quantum wells are used for 2D thermoelectric systems (see Fig. 14 left). Nanowires either
grown or etched can be used to form 1D thermoelectric systems (Fig. 14 middle) whilst most
0D thermoelectric systems use quantum dots that are aimed at scattering phonons (Fig. 14
right).

2D quantum well systems can also enhance the electrical conductivity by a number of
techniques. If the electrical and thermal transport is along quantum wells then modulation
doping can be used to enhance the electrical conductivity. Here the dopants are only placed
in the barriers which are at higher energy than the quantum well. The carriers fall into the
quantum well and are therefore remote from the ionised dopants that created the carriers. By
separating the carriers from the dopants, the Coulomb scattering is reduced and the mobility
and electrical conductivity increases. This occurs along with the Seebeck enhancement
described above and so higher power factors can be created. The potential disadvantage
of this technique is that the electrical conductivity can be so large that it also can increase the
thermal conductivity in a detrimental way to the ZT. By optimising the parameters, higher
ZTs can be produced.

The third approach to optimising ZT is to reduce the thermal conductivity. There are many
ways to reduce the thermal conductivity by adding scattering centres or rough interfaces that
scatter phonons. The main issue is to aim for a scattering technique that scatters phonons
more than electrons. This is not as easy as it sounds. Adding 0D nanoparticles or quantum
dots into a material has been successful at reducing κ faster than σ as shown in Fig. 10 in
a number of material systems for both n- and p-type semiconductors [13, 15]. The quantum
dots when of the correct size can scatter phonons much more easily than electrons especially
for highly doped samples where the electron mean free paths are typically longer than
phonon mean free paths. There are a number of examples of materials such as skutterudites
where heavy atoms are inserted to fill voids in the lattice to have a similar effect at the
microscale of the lattice [5].

2D superlattices with the electron transport perpendicular to the quantum well and barriers
are also good at scattering phonons. The disadvantage of this type of superlattice is that
the electrons or holes must quantum mechanically tunnel through the barriers which also
significantly reduces the electrical conductivity to typically 3 to 4 times lower than bulk
material. The lower thermal conductivity combined with the higher Seebeck from the 2D
quantum wells does produce significant enhancements to ZT as show in Fig. 10 [7].

Finally 1D nanowires have also demonstrated substantial improvements to ZT. Boukai
et al., [8] demonstrated 10 nm wide Si nanowires which demonstrate enhanced Seebeck
coefficients and significantly reduced thermal conductivities compared to bulk Si. The
thermal conductivity demonstrated the largest changes with reductions of up to 150 times
that of bulk silicon whilst the Seebeck improves by a factor of 2. ZTs at room temperature of
0.3 have been achieved with higher values at lower temperatures. The nanowires demonstrate
how confining phonons in low dimensional structures can make significant changes to the
ZT of a material.

6. The power output from thermoelectric modules

To this point the majority of this review has concentrated on ways to optimise ZT but for
applications it is the current and voltage i.e. the output power produced that is the most
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Figure 15. A schematic diagram of a complete module with leg length, L and contact length, lc.

important parameter for applications. Therefore it is important to understand the issues of
the output power and how it may be optimised. We will start by considering a complete
module as shown in Fig. 15. As the Seebeck coefficient of most materials is ≪ 1 mV/K and
most applications will require at least 1 V and in many cases multiple Volts, a large number
of legs must be connected in series to achieve suitable output voltage for the applications. If
we have N legs each of length, L, with thermal conductivity, κ and contacts of length, lc with
thermal conductivity, κc then the voltage produced is given by [19]

V =
αN∆T

1 + 2 κlc

κc L

(71)

The current can also be calculated and for legs of area A and electrical conductivity, σ with
specific contact resistivity, ρc, the current is

I =
ασA∆T

2(ρcσ + L)(1 + 2 κlc

κc L
)

(72)

By multiplying the voltage and current together, the resulting power is

P =
α2σAN∆T2

2(ρcσ + L)(1 + 2 κlc

κc L
)2

(73)

There are a number of issues that the power equation highlights. The first is that the power
is dominated by α2σ which is called the power factor. The second is that the power is
proportional to the area of the legs and the number of the legs in the module. The power
is also proportional to the square of ∆T. Finally, whilst shortening the length of the legs in
the module to first order will increase the power, equation 73 demonstrates that as the leg
length reduces, the contact resistance of each leg plays a larger part in reducing the output
power. For the microfabricated modules, having a low specific contact resistivity can be as
important as a material with high ZT and power factor in being able to achieve a high output
power.
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Figure 16. The power as calculated from equation 73 for a module with 525 legs of area 500 µm × 50 µm, leg length of L =
20 µm and lc = 10 nm.

Another issue is that for many applications the amount of heat may vary and is not constant.
Therefore power conditioning along with electrical impedance matching is required so that
the thermoelectric module can always operate at the maximum power point. Maximum
power point tracking systems are required which automatically adjust the load impedance
so that it is always matched to the thermoelectric for all levels of heat and ∆T being applied
across the thermoelectric.

Material αp − αn σ κ ZT ρc

Units (µV/K) (S/m) (W/mK) @ 300 K Ω-cm2

BiTe 500 71468 2 0.67 10−7

BiTe 500 71468 2 0.67 10−7

SiGe 600 70000 7.3 0.26 10−8

SiGe 500 27900 4.8 0.22 10−8

Table 2

7. Applications

The first thermoelectric application was to power satellites for space applications in 1961
[20]. Space systems use radioisotope thermoelectric generators (RTGs) where a radioactive
material heated by the decay and emission of radiation is used as the hot source with a
thermoelectric generator to turn the heat into electricity. Plutonium 238 was the main power
source used by NASA in most of their 28 RTG systems which operates with temperatures
up to 1000 oC whilst the outside of the spacecraft is used with heat exchangers to provide
the cold sink. With such high temperatures, SiGe has been the main thermoelectric material

Thermoelectric Energy Harvesting
http://dx.doi.org/10.5772/57092

73



Figure 17. Left: a telecoms laser on a microfabricated Peltier cooler produced by Micropelt. Right: a thermoelectric generator

produced by Micropelt showing the cold sink aimed at dissipating heat through air cooling. Copyright Micropelt [21].

used for these generators and the efficiencies can be as high as 6.6 % mainly due to the high
∆T. Both Voyager space missions which are now outside the solar system are powered by
SiGe RTGs weighing 37.7 kg and provided 470 W on launch at 40 V. Over a period of time
the temperature of the plutonium reduces as a function of the half-life of the radioactive
decay so the systems are now generating less than 350 W, 34 years after launch. This is
one of the best demonstrations of the robustness of the thermoelectric generator as for such
space systems now over a light year away from earth, the power sources must be fit and
forget. One problem is that there are no present sources of plutonium 238 as all the weapons
nuclear reactors have been shut down and so there are a number of research programmes
aiming to develop new RTG technology using available radio isotopes.

The major application for thermoelectric devices at present is as Peltier coolers (Fig. 17
left) to maintain a low temperature for electronic and optoelectronic components such as
telecoms lasers and rf sources. It is therefore in the use as a cooler rather than generating
electricity that thermoelectrics are predominantly used at present. A number of companies
are offering thermoelectric generator demonstrator kits as products (Fig. 17 right) to allow
companies to test thermoelectrics for specific applications. The major present applications are
for generating electricity to run sensors in a range of predominantly industrial environments
where ∆Ts between 20 and 100 oC can provide sufficient energy for the sensors. The
majority of the energy use in the sensors is for the wireless communication that for mobile
phone system communication will require powers around 5 mW while many of the sensing
elements only require sub-µW powers for making a measurement. These wireless industrial
sensing applications are widespread and the cost of the thermoelectric device becomes
economical for systems where no installation of wires for communication and/or long
term power. It is the large cost of replacing batteries (mainly labour costs) that allows
thermoelectrics and other forms of energy harvesting to be cost effect. Most wireless sensors
systems now require between 1 and 5 mW of power to run mainly dependent on the distance
for the communication and so a square cm area thermoelectric device requires around 50 oC
to provide sufficient power. As the communications consumes the most power, most systems
have rechargable battery or super-capacitor storage systems and then use burst modes of
communication so that information is only sent when required to save power.

Research results have been published on clothing with integrated thermoelectrics [22].
Only small ∆Ts can be provided across clothing using the air temperature outside the

ICT - Energy - Concepts Towards Zero - Power Information and Communication Technology74



100 % fuel

energy

Engine output + alternator

Engine losses

5% friction losses

30% coolant losses

40% exhaust gas losses

25% effective power:

motion & accessories

BMW

Figure 18. A schematic diagram of how the energy from a combustion engine in a car is distributed. 25% of the

energy produces motion and through the alternator generates electricity to power accessories including the electrics, the

air conditioning and the hifi system. 75% of the energy from the fuel is lost mostly through friction and heat. 40% of the fuel

energy disappears through the exhaust system hence there is interest in using thermoelectrics to harvest some of this waste

energy.

body to provide the cold side temperature. There is enormous interest in such power
sources for autonomous wireless health monitoring systems that can be fit and forget.
Electrocardiography systems integrated into the clothing and powered by thermoelectrics
have already been demonstrated and even tested through cycles of washing in washing
machines to check the robustness of the technology. For this technology to be practical,
batteries or super capacitors and power management must also be integrated along with the
sensors, some processing and communication technology. Whilst the low powers available
with the small ∆Ts may struggle to power the present communication systems, new short
range communication protocols being developed at present for autonomous sensors by the
IEEE are required before this type of application can be aggressively pursued.

The major driver for improved thermoelectrics at present is probably the car industry where
European legislation to improve fuel efficiency is driving thermoelectrics research to replace
the alternator. The car is an excellent system where thermoelectrics could play a big role
as 75% of the fuel ends up as waste heat and the 40 % of waste heat that goes down the
exhaust pipe into an environment that could be used to capture this heat and convert it
into electricity (Fig. 18) [23, 24]. The temperature of the exhaust system can range from
room temperature up to 750 oC so this is driving work on new thermoelectric materials to
replace the best at present which is PbTe with toxic Pb that cannot be used for applications.
Initial modelling has suggested that up to a 5% in fuel consumption could be achieved with
suitable thermoelectrics with ZT of 1 but the key issue is getting the whole thermoelectric
system cheap enough for the market. Also no thermoelectric provides ZT of 1 from room
temperature to 750 oC so segmented modules and/or new materials are required. Most of
the major car companies are now working heavily of thermoelectrics and it is only a mater
of time before automotive systems become available.

A developing application is thermal photovoltaics. Concentrator photovoltaics are now
producing efficiencies of around 45 % when the light is concentrated up to a thousand
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times. These systems are aimed at solar farms which in sunny regions of the earth have the
potential to produce power stations at the 100s of MW scale. Such concentration, however,
results in the photovoltaic cells being heating to very high temperatures that results in large
thermal cycling which ultimately produces failures reducing the lifetime of the systems. By
integrating a thermoelectric with the photovoltaic, not only can electricity be generated from
the heat thereby providing a joint and therefore improved system efficiency closer to the
Carnot limit but more importantly, the thermoelectric cools the photovoltaic reducing the
thermal cycling extremes and increases the lifetime of the system. This increase in lifetime
results in substantially cheaper cost per Watt which is the major driver for photovoltaics. It
is clear this will be a developing application for thermoelectrics in the future.

At present thermoelectrics requires a "killer application" before volume manufacture will
result in widespread use. The automotive applications at present appear to be the major
application driver, more by legislation rather than market but it is clear that the potential
requirements for thermoelectric generators will improve as fossil fuel prices increase in the
future. The autonomous sensor market may well also drive thermoelectrics but the real
problem that must be solved is to find sustainable thermoelectric materials. Tellurium is
the 9th rarest element on earth predicted to run out before 2020 with the present use and
so a key requirement for future thermoelectrics is that Te-free materials can be found that
can be cheaply produced and with a high ZT and power factor. There is presently an
enormous amount of research in thermoelectrics especially aiming to find Te-free materials
and to produce modules for higher temperature applications such as the automotive energy
harvesting. For students starting in a research career, this is one research area that is likely
to expand over the next decades.
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