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1. Introduction 

In the 1980s, polysaccharide-based chiral stationary phases (CSPs) were identified as 
versatile and useful chiral sorbents for separation of enantiomers/stereoisomers in high 
performance liquid chromatography (HPLC). Chiral discrimination abilities of these CSPs 
can be derived from the highly organized structure of the left-handed 3/2 helical chain 
conformations [1]. Some chiral cavities with specific configuration can be formed on the 
CSPs, which provide the suitable site for a particular enantiomer and make it easier to 
interact with CSPs by hydrogen bonding and - interactions. This leads to 
enantioseparation of chiral compounds by different retention and elution on CSPs between 
their enantiomers [2]. Okamoto et al. reported that the introduction of various kinds of 
substituents on the hydroxyl group of polysaccharides can improve their stereoslectivity [3]. 

Cellulose is an important polysaccharide, it is also a highly crystalline polymer which occurs 
with various crystal structures. In the 1970s, Hesse and Hagel first synthesized 
microcrystalline cellulose triacetate (MCTA), and thought its chiral recognition ability might 
originate from secondary structures creating chiral cavities upon swelling, which can clamp 
stereoselectively compounds with aromatic residues [4]. In recent years, different cellulose 
derivatives have been synthesized, coated or covalently bonded on decorative silica gel, and 
broadly used as CSPs in enantiomeric separation of chiral compounds especially on 
pesticides and pharmaceuticals. These derivatives exhibit powerful chiral recognition ability 
towards a wide number of different racemic compounds. More and more commercial 
cellulose-based CSPs including cellulose acetate, benzoate and phenylcarbamates are being 
developed and applied in enantioseparation [2,3].  
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Chiral compounds account for 25% of all agrochemical compounds used commercially and 
for 26% of the total value of the world agrochemical market [5]. The enantiomers of chiral 
pesticides possess similar physicochemical properties in a non-chiral environment while 
they show different activities in biological systems due to enantioselective interactions with 
enzymes, receptors, and other enantiomeric biological entities. For example, triadimenol is a 
systemic fungicide and has four stereisomers due to the presence of two chiral centers in its 
molecule. Of the four, the (1S, 2R)-isomer shows the highest fungicidal activity (up to 1000-
fold more active than the other three) [6]. However, most chiral pesticides are produced and 
formulated as racemic mixture even though the desired biological activity may be derived 
from only one enantiomer. It is therefore very important to be able to separate enantiomers 
of chiral pesticides in order to prepare single enantiomers, develop enantiomeric analysis 
methods and evaluate their bioactivity and environmental fates.  

This work focuses mainly on a review of the development of cellulose derivatives for CSPs 
which are prepared as cellulose-based chiral columns by coating and bonding on supports, 
and their applications in stereoselective separations of chiral pesticides.  

2. The development of cellulose-based CSPs 

The cellulose-based CSPs generally are of two types: the coated and the bonded. The coated 
cellulose-based CSPs consisting of the low-molecular-weight cellulose benzoate or phenyl 
carbamate showed higher chiral recognition than the covalently bonded CSPs for most 
racemates. The major reason was considered to be an optimal secondary and 
supermolecular structure for the chiral recognition mechanism of polysaccharide derivatives 
under coated conditions [1,3]. However, the coated CSPs can only be used with a limited 
range of solvents as mobile phases such as alkanes, alcohols, acetonitrile, or aqueous 
solvents including alcohols or acetonitrile because CSPs may dissolve in ‘strong’ solvents 
such as tetrahydrofuran (THF) and chloroform (CHCl3). Such a dissolution would damage 
or destroy the CSPs. This limited the application range of the coated CSPs on separation and 
preparation of chiral compounds, because the solubility of the sample in the mobile phase is 
very important to increase the amount of racemates loaded on CSPs, especially on a 
preparative large-scale separation [7]. 

The bonded CSPs were prepared by covalently bonding cellulose derivates to silica gel. 
They can be applied to a wider range of resolving conditions than the coated type. The 
fixation can affect the conformation of cellulose derivates and make it difficult to obtain 
optimal supermolecular structure. This results in lower chiral recognition ability of the 
bonded-type CSPs. However, the fixation improves versatility in the solvent selection, and 
allows the use of some solvents that cannot usually be applied on the coated CSPs as mobile 
phases or sample dissolving reagents [8]. 

The commercial cellulose-based CSPs including the coated and the bonded CSPs currently 
in use are summarized in Table 1. As can be seen, there are only two columns (Chiralpak IB 
and Chiralpak IC) prepared from cellulose derivatives by bonding out of 13 commercial 
chiral columns. This means that the coated CSPs include more cellulose derivatives and are 
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more frequently used for the resolution of chiral compounds than the bonded CSPs. Some of 
these chiral columns can be selectively used in normal-phase HPLC (NP-HPLC), like Chiralcel 
OD, Chiralcel OA, Chiralcel OB, Chiralcel OC, Chiralcel OF, Chiralcel OG and Chiralcel OJ 
etc.; some can be used in reversed-phase HPLC (RP-HPLC), like Chiralcel OD-R, Chiralcel OZ-
R and Chiralcel OJ-R; and some can be used in both NP-HPLC and RP-HPLC, like Lux 
Cellulose-1, Lux Cellulose-2 , Lux Cellulose-3, Lux Cellulose-4, Chiralpak IB and Chiralpak IC 
[9,10]. Some studies have been done to evaluate comparatively the enantioselective and 
chromatographic properties of Chiralcel OD and Chiralpak IB using a set of 48 compounds 
that differ in their physical and chemical properties [11]. The uses of these CSPs in different 
mobile phases mainly depend on their different preparation methods. 

 

No. Chemical name Shorten-
ed name

Commercial product 
[9,10] 

Type Chemical structure of cellulose 
derivative 

1 cellulose-tris-(3,5-
dimethylphenylcarba
mate) 

CDMPC Chiralcel OD-H; 
Chiralcel

 

OD; 
Chiralcel

 

OD-RH; 
Chiralcel OD-R; Lux 
Cellulose-1; 
Kromasil 
CelluCoatTM 

Coating 

O

HNOCO
OCONH

O

OCONH

CH3

CH3 CH3

CH3

H3C

H3C
 

2 cellulose-tris-
phenylcarbamate 

CTPC Chiralcel OC  Coating 

O

HNOCO
OCONH

O

OCONH

 
3 cellulose-tris-(4-

fluoro-
phenylcarbamate) 

CFPC Chiralcel OF  Coating 

O

HNOCO
OCONH

O

OCONH Cl

Cl
Cl

 
4 cellulose-tris(4-

chloro-3-
methylphenylcarbam
ate) 

 Chiralcel OX-H; Lux 
Cellulose-4 

Coating 

O

HNOCO
OCONH

O

OCONH Cl

Cl
Cl

CH3

CH3

H3C

 
5 Cellulose-tris(3-

chloro-4-
methylphenylcarbam
ate 

 Chiralcel OZ-H; 
Chiralcel OZ-RH; 
Lux Cellulose-2 

Coating 

O

HNOCO
OCONH

O

OCONH CH3

CH3

H3C

Cl

Cl
Cl

 
6 cellulose-tris-(4-

methylphenylcarbam
ate) 

CMPC Chiralcel OG Coating 

O

HNOCO
OCONH

O

OCONH CH3

CH3

H3C

 
7 cellulose-tris-(4-

methylbenzoate) 
CTMB Chiralcel OJ-H; 

Chiralcel
 

OJ; 
Chiralcel OJ-RH; Lux 
Cellulose-3 

Coating 

O

COO
OOC

O

OOC CH3

CH3

H3C
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No. Chemical name Shorten-
ed name

Commercial product 
[9,10] 

Type Chemical structure of cellulose 
derivative 

8 cellulose-tris-
benzoate 

CTB Chiralcel OB-H 
Chiralcel

 

OB 
Coating 

O

COO
OOC

O

OOC

 
9 cellulose-tris-acetate CTA Chiralcel OA  Coating 

O

H3CCOO
OOCCH3

O

OOCCH3

10 Mricocrystalline 
cellulose-tris-acetate 

MCTA Chiralcel CA-1  Coating 
O

H3CCOO
OOCCH3

O

OOCCH3

11 cellulose-tris-
cinnamate 

CTC Chiralcel OK  Coating 

O

HCHCOCO
OCOCHCH

O

OCOCHCH

 
12 cellulose-tris-(3,5-

dimethylphenylcarba
mate) 

Bonded 
CDMPC

Chiralpak IB  Bonding 

O

HNOCO
OCONH

O

OCONH

CH3

CH3 CH3

CH3

H3C

H3C
 

13 cellulose-tris-(3,5-
dichloro-
phenylcarbamate) 

Bonded 
CDCPC 

Chiralpak IC Bonding 

O

HNOCO
OCONH

O

OCONH

Cl

Cl Cl

Cl

Cl

Cl  

Table 1. The list of commercial cellulose-based CSPs in the present. 

2.1. The development of coated cellulose-based CSPs 

Various cellulose derivatives were reported as CSPs in recent years, especially on cellulose 
benzoates and phenylcarbamates because of their higher enantiomeric discrimination ability 
and wide applications. Okamoto et al, synthesized some cellulose triphenylcarbamate 
derivatives and absorbed them on silica gel as CSPs, and then compared optical resolution 
abilities with the characteristics of the substituents on the phenyl rings. The results showed 
that dimethylphenyl- and dichlorophenylcarbamates substituted at 3,4- or 3,5-positions 
exhibited better chiral recognition for most reacemates than monosubstituted derivaties. Of 
the these, cellulose tris-(3,5-dimethylpheyl-carbamate) (CDMPC) offered the highest 
enantiomeric separability [12]. In another investigation on chiral recognition ability of 
cellulose phenylcarbamate derivatives, cellulose-tris-(3-fluoro-5-methylphenylcarbamate) 
was reported to be better than 3,5-difluoro- and 3,5-dimethylphenylcarbamates of cellulose 
for enantioseparation of ten racemates [13]. 
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The investigations of four regioselectively substituted cellulose derivatives having two 
different substituents at 2-, 3-, and 6-positions showed better enantioseparations were 
sometimes obtained on these CSPs, compared to the corresponding homogeneously tris-
substituted cellulose derivatives-based CSPs. Cellulose 2,3-(3-chloro-4-
methylphenylcarbamate)-6-(3,5- dimethylphenylcarbamate), and 2,3- (3,5-dimethylphenyl- 
carbamate)-6-(3-chloro-4-methylphenylcarbamate) exhibited the most efficient 
enantioseparations for tested racemates in four CSPs [14]. The cellulose derivative of 
benzoylcarbamate also showed a higher chiral discrimination ability compared to those of 
phenylcarbonate, p-toluenesulfonylcarbamate, and benzoylformate when they used as CSPs 
on HPLC. This discrimination could be achieved by hydrogen bonding of the racemates’ 
hydrogen atoms with the carbonyl group of the benzoylcarbamates [15]. 

Chiral recognition abilities of cellulose-methoxyphenylcarbamates were significantly 
influenced by the position, bulkiness, and number of alkoxy groups introduced on the phenyl 
group. The 3-position was found to be the best for introducing an alkoxy group, and cellulose-
tris-(3-methoxyphenylcarbamates) exhibited much higher recognitions. Additionally, the 
recognition abilities also increased with the increases of the bulkiness of the 3-alkoxy group 
[16]. Cellulose-tris- (3-trifluoromethylphenylcarbamate) also exhibited characteristic 
enantioseparation and were better to resolve some chiral compounds than Chiralcel OD [17 ]. 

During the preparation of polymer cellulose-based CSPs by coating on silica gel, chiral 
additives such as (+)-L-Mandelic acid, (+)-1-phenyl-1,2-ethanediol and (-)-2-phenyl-1-
propanol for CSPs of cellulose tribenzoate, and (-)-2-phenyl-1- propanol and (+)-
phenylsuccinic for CSPs of cellulose trisphenylcarbamate have a substantial effect on the 
resolution and efficiency of the CSPs, and can improve chiral recognition ability compared 
to the original CSPs [18].  

Some new supports other than decorative silica gel were also used to prepare the coated 
CSPs. For example, a new CSP of CDMPC was prepared by coating CDMPC on TiO2/SiO2 
particles. Its good chiral separation ability and a comparably low column pressure proved 
that TiO2/SiO2 could be used as an alternative to silica gel, and could enlarge the range of 
base materials when preparing CSP [19]. 

2.2. The development of bonded cellulose-based CSPs 

CDMPC and CDCPC were covalently bonded to decorative silica gel to obtain the bonded 
chiral columns of Chiralpak IB and Chiralpak IC respectively [9]. CTPC regioselectively 
bonded at the 6-position to silica gel exhibited a higher chiral recognition than either CTPC 
regioselectively bonded at the 2- or 3-position or non-regioselectively bonded at the 2-, 3-, 
and 6-positions [20]. When cellulose derivatives bearing pyridyl and bipyridyl residues 
were compared in chiral recognition abilities, the results showed that the regioselectively 
substituted derivatives exhibited higher recognition compared with cellulose derivatives 
bearing these residues at the 2-, 3- and 6-positions of a glucose ring. This ability was 
significantly influenced by the coordination of Cu(II) ion to the bipyridyl groups that 
resulted in the difference of the higher-order structures of cellulose derivatives [21]. 
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CSP with poly[styrene-b-cellulose 2,3-bis-(3,5-diphenylcarbamate)] was prepared by the 
surface-initiated atom transfer radical polymerization (SI-ATRP) of cellulose 2,3-bis-(3,5-
dimethylphenylcarbamate)-6-acrylate after the SI-ATRP of styrene on the surface of silicon 
dioxide supports in pyridine. This CSP showed considerably high column efficiency for the 
resolution of tested racemates [22]. 

Laureano Oliveros et al, prepared five mixed 10-undecenoate/benzoates of cellulose and 
linked them to allyl silica gel by means of a radical reaction. The investigation of chiral 
recognition ability showed that CSP5 (10-undecenoate/3,5-dichlorobenzoate) has the highest 
enantioselectivity for most of tested racemates, followed by CSP3 (10-undecenoate/4-
methylbenzoate) and CSP4 (10-undecenoate/benzoate). These CSPs showed lower 
resolution than the coated CSPs although they have higher column efficiency. The reason 
may be the lack of polar amino groups on the surface of the CSPs. However, when being 
compared with the coated CSPs, these CSPs can tolerate the use of more polar solvents such 
as chloroform in the mobile phase [23]. 

Three cellulose-based CSPs were prepared by reticulation of the same cellulose derivative 
on three end-capped silica gels with different pore sizes (50Å, 100Å and 4000Å). The 
comparison of chiral recognition ability among them showed that CSPs with higher pore 
size exhibited higher selectivity factors, because it can accommodate a larger amount of 
accessible cellulose derivative on its surface [7]. 

Four mixed 10-undecenoyl-3,5-dimethylphenylaminocarbonyl derivatives of cellulose with 
increased proportion of alkenoyl groups were bonded on allylsilica gel. Their comparison 
showed that CSPB presents the best chiral recognition and can separate the widest range of 
the tested racemates. The reason may be the higher number of substitution of glucose units. 
The important decrease in the recognition ability of these CSPs could be attributed to their 
higher degree of reticulation. More heterogeneous reaction sites of allysilica gel with 
cellulose derivatives can result in lower degree of reticulation in CSPs and therefore 
improve their recognition ability [24]. 

Azido cellulose phenylcarbamate (AzCPC) was synthesized regioselectively and chemically 
immobilized onto amino-functionalized silica gel to obtain urea-bonded CSPs. 
Enantioseparation using CHCl3 on these CSPs showed better separation than traditional 
hexane/2-propanol in mobile phases for some tested racemates. The pre-coating of AzCPC 
onto silica gel prior to chemical immobilization could significantly improve immobilization 
efficiency, and obtained better enantioselectivity [25]. 

3. The preparation method of cellulose-based CSPs 

3.1. The preparation method of coated CSPs 

Generally, benzoate and phenylcarbamate derivatives of cellulose were prepared by 
reaction between cellulose and excess benzoyl chloride or phenyl isocyanate derivatives in 
dry pyridine (Figure 1). These derivatives are then coated onto macro-porous 3-
aminopropylsilica (APS) from a solution by evaporation of the solvent to obtain coated 
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CSPs. The APS was prepared beforehand by silanizing silica gel with a solution of 3-
aminopropyltriethoxysilane. Finally, the CSPs were packed into HPLC columns by the 
slurry method, to obtain coated chiral columns [18, 26]. For example, CDMPC was 
synthesized by reaction of microcrystalline cellulose with 3,5-dimethylphenylcarbimide in 
pyridine; the product was filtered off, washed with methanol and dried at 60° C for 24h. 
CDMPC was then dissolved in THF and coated on the APS under vacuum to dryness. 
Finally, the coated CDMPC were packed into a stainless-steel column at 3.7×107Pa by the 
high-pressure slurry method to obtain the corresponding CSP [26]. 

O

HO
HO

O

OH

O

COO
OOC

O

OOC

R

R
R

C

R

Cl

O

N

R

C O
O

HNOCO
OCONH

O

OCONH

R

R
R

pyridine

pyridine

 
Figure 1. The synthesized routes of cellulose benzoates or phenylcarbamates. 

Investigations on the influence of the pore size of silica gel, the coating amount , the coating 
solvent, and the column temperature on chiral discrimination of CDMPC showed that CSPs 
prepared with a large-pore silica gel having a small surface area exhibited higher 
recognition abilities. An increase in the amount of coating of CDMPC on the silica gel can 
improve the loading capacity of racemates, and a CSP coated with 45% CDMPC by weight 
can be used for both analytical scale and semi-preparative scale separations. CSPs coated 
with acetone showed higher enantioselectivity than those coated with THF or a mixture of 
CH2Cl2 and phenol [27]. 

3.2. The preparation method of covalently bonded CSPs 

Generally, cellulose-derived CSPs covalently bonded on silica gel are prepared by using a 
benzoyl chloride or a phenyl isocyanate to react with cellulose in homogeneous conditions, 
to obtain the corresponding benzoates or carbamates. However, other methods to prepare 
this type of CSP have been reported. Ikai et al. summarized various immobilization methods 
of the polysaccharide derivatives mainly onto silica gel: immobilization using diisocyanate, 
vinyl groups by polymerization and copolymerization with a vinyl monomer etc. [28,29]. 
Several methods of synthesis are shown in Figures 2 to 4.  

CDMPC can be efficiently immobilized on silica gel as CSPs by copolymerizing with vinyl 
monomers. The introduction of vinyl groups or the employment of vinyl monomers can 
readily tune the immobilization efficiency and the chiral recognition of cellulose derivatives 
[30]. The new method was applied to immobilize CDMPC onto bare silica gel via the 
intermolecular polycondensation of triethoxysilyl groups, which were introduced onto the 
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glucose unit by the epoxide ring-opening reaction under acidic conditions. The CSPs thus 
obtained also exhibited high chiral recognition ability for 10 tested racemates and could be 
used with various eluents that are not compatible with the conventionally coated CSPs [31]. 
One-pot method was applied to synthesize CDCPC bearing a small amount of 3-
(triethoxysilyl) propyl residues, and then immobilized onto silica gel through intermolecular 
polycondensation. The immobilized CSPs exhibited chiral recognition abilities similar to the 
corresponding coated CSP and slightly different from the commercial Chiralpak IC [32]. 

SiO
O

NH2

O

O

HO
HO

O

OTr

n
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coated with cellulose

1)

2) HCl/CH3OH

N N C OCO
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SiO

O
N
H

O
O

N
H
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N
H

O

O
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RO

O
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n  
Figure 2. The covalent bonding of 3,5-dichloro- and 3,5-dimethylphenylcarbamate of cellulose onto 
APS [33]. 
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Figure 3. Regioselective covalent bonding of CDMPC to positions 2 and 3 of the glucosidic rings. 
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Figure 4. Regioselective covalent bonding of CDMPC to position 6 of the glucosidic rings [34]. 

Cellulose-(diphenymethyldicarbamate/phenylcarbamate) covalently bonded to APS showed 
some chiral recognition ability [35]. Cellulose-tris-phenylcarbamate was covalently bonded 
to silica gel with different spacers. The results showed CSPs prepared with spacer 1(4-(1-(3-
(triethoxysilyl)-propyl)urea)-benzyl-4-isocyanatobenzene) exhibited higher resolution 
ability than spacer TEPI (3-(triethoxysilyl) propyl isocyanate) with the same preparation 
procedure. The amount of spacer in the synthesis influences the optical resolution ability of 
CSPs, and a lower amount can produce higher resolution ability [36]. 

Polar monodisperse amine terminated polymer (2-aminoethyl methacrylate-co- 
ethylenedimethacrylate) beads can be used as the replacement of silica gel, and are suitable 
as supports for the preparation of cellulose-based CSPs coated by simple adsorption and 
immobilized with a diisocyanate linker. However, the chiral recognition abilities of these 
CSPs shows no enhancement because the uses of cellulose-based selectors and preparation 
methods may completely cover the surface of polymer supports. Thus, the analytes have no 
access to the native surface of the support and non-specific interactions with the surface 
functionalities are not observed. [37]. 

4. The application of cellulose-based CSPs in enantioseparation of chiral 

pesticides 

Chiral HPLC is a good method to separate enantiomers/stereoisomers of chiral pesticides 
because it facilitates the preparation of single enantiomers for study of enantiomeric 
bioactivity, toxicology and environmental fate. In recent years, cellulose-based CSPs 
prepared with different cellulose derivatives and methods resulted in their very broad 
application for chiral separation of pesticides such as organophosphates [38], 
organochlorine, triazole, synthetic pyrethroids, acylanilides, imidazolinones, 
phenoxypropanoic-acid herbicides and related compounds [39].Table 2 summarizes the 
resolution results of 79 chiral pesticides in current references. 
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As shown in Table 2, the stereoselective separations of most of chiral pesticides can be 
achieved on NP-HPLC and some on RP-HPLC using cellulose-based CSPs. The most 
efficient CSP with the highest chiral recognition ability is CDMPC, available under the 
commercial names of Chiralcel OD, Chiralcel OD-H, Chiralcel OD-R, Chiralcel OD-RH, Lux 
Cellulose-1 and Kromasil CelluCoatTM. The coated CDMPC on APS exhibited higher chiral 
discrimination for most of pesticides than the bonded type available under the commercial 
names of Chiralpak IB and Chiralpak IC. For example, the resolution factor (Rs) of systemic 
fungicide-metalaxyl on the coated CDMPC is 4.54 with hexane/IPA (80:20) as the mobile 
phase, which is significantly higher than that on the bonded CDMPC with an Rs of 0.632 
using hexane/IPA (97/3) as the mobile phase.  

The second most efficient CSP in terms of resolution is CTMB available under the 
commercial names of Chiralcel OJ, Chiralcel OJ-H, Chiralcel OJ-RH, Lux Cellulose-3. It 
exhibited higher chiral discrimination for some chiral pesticides than CDMPC. For example, 
the Rs of triazole fungicide-imazalil on Chiralcel OJ-H is 5.21, which is significantly higher 
than 1.51 obtained on Chiralcel OD-H using the same mobile phase of hexane/IPA (100/3) 
and the same flow rate of 0.8 mL/min on NP-HPLC. The combination of CDMPC and CTMB 
on NP-HPLC and RP-HPLC can separate most chiral pesticides listed in Table 2.  

The separations on NP-HPLC were better than those on RP-HPLC for most chiral pesticides. 
The cellulose-based CSPs on NP-HPLC can generally give better resolution and yield a 
larger amount of a single enantiomer in one injection. However, its application is limited 
because some racemates are polar and difficult to dissolve in the weak polar solvents used 
as mobile phase on NP-HPLC. For this reason, the amount of racemates loaded on CSPs 
cannot be increased. The separation on RP-HPLC is sometimes less effective than on NP-
HPLC, but it can use more methanol, acetonitrile or water in the mobile phase and can thus 
significantly improve the solubility of some racemates that will not readily dissolve in the 
hexane, heptane and isopropanol used in NP-HPLC. This is very helpful to prepare optically 
pure enantiomer of polar chiral compounds and obtain more enantiomer in a shorter time. 
Additionally, the use of HPLC in the reversed phase can easily be connected in tandem with 
mass spectrometry, which makes it possible to establish more sensitive and more efficient 
analytical methods for enantioselective studies of chiral pesticides [40-42]. 

 

No. Pesticide CSP or Chiral 
colum 

Chromatographic 
condition*1 

Separation 
effect*2 

Elution 
order*3 

Reference 

1 amiprophos Chiralcel OJ-H hexane/IPA(100/5); 
0.8mL/min; UV 254nm 

Rs: 1.65  [43] 

Chiralcel OD-H hexane/IPA(100/5); 
0.8mL/min; UV 254nm 

-  [43] 

2 benalaxyl CDMPC hexane/IPA(97/3); 1.0 
mL/min; UV 22nm  

Rs>1.5 R-(-) /S-(+) [44] 

ChiralpakIB; 
Chiralcel OJ-H 

hexane( IPA or ethanol); 
0.5 mL/min; UV 220 nm;

  [45] 

3 benzex Chiralce1 OJ hexane/IPA(91/9); 0.5 
mL/min 

  [46] 



The Development and Application of Cellulose-Based Stationary Phases  
in Stereoselective Separation of Chiral Pesticides 225 

No. Pesticide CSP or Chiral 
colum 

Chromatographic 
condition*1 

Separation 
effect*2 

Elution 
order*3 

Reference 

4 bifenthrin Chiralcel OJ-H hexane/ethanol(98/2); 1.0 
mL/min; CD 230nm 

  [47] 

5 bioallethrin CDMPC hexane/ethanol(99/1); 1.0 
mL/min; 

: 1.27  [48] 

CMPC hexane/ethanol(99/1); 1.0 
mL/min; 

: 1.39  [49] 

6 bitertanol Chiralcel OD-H hexane/IPA(100/3); 
0.8mL/min; UV 254nm 

Rs: 1.52  [50] 

Chiralcel OJ-H hexane/IPA(100/10); 
0.8mL/min; UV 254nm 

Rs: 3.70  [50] 

7 carfentrazone-
ethyl 

CDMPC hexane/IPA(99.9/0.1); 1.0 
mL/min; UV 230nm 

Rs: 0.52  [51] 

8 chlordane Chiralcel OD hexane; 1.0 mL/min  OR: 
TC(trans)+/- 
CC(cis)+/- 

[52,53] 

9 crotoxyphos Chiralcel OJ hexane/ethanol(90/ 10); 
0.8mL/min; UV 230nm 

Rs: 1.81 OR: -/+ [54,55] 

10 crufomate Chiralcel OD heptane/ethanol(90/10); 
1.0 mL/min; 

Rs: 1.1 OR: +/- [55] 

Chiralcel OJ heptane/ethanol(99.4/ 
0.6); 0.3mL/min; UV 
203nm 

Rs: 0.90 OR: -/+ [55] 

11 cycloprothrin Chiralcel OJ-H hexane /IPA(70/30), 
35C, 1.0 mL/min, UV 
254 nm 

  [56] 

Chiralcel OD-H Hexane/IPA(90/10), 
35C, 1.0 mL/min, UV 
254 nm 

  [56] 

12 cypermethrin CDMPC hexane/IPA (90/10); 
0.5mL/min; UV 230nm 

seven peaks  [57] 

13 alpha-
cypermethrin 

CDMPC hexane/IPA (90/10); 
0.5mL/min; UV 230nm 

Rs: 1.53  [57] 

14 theta- 
cypermethrin 

CDMPC hexane/IPA(99/1); 
0.8mL/min; UV 230nm 

Rs: >1.5 OR: -/+ [58,57] 

15 beta-
cypermethrin 

CDMPC hexane/IPA (99/1); 
0.5mL/min; UV 230nm 

four peaks  [57] 

16 dialifos Chiralcel OJ heptane/ethanol(90/ 10); 
0.9mL/min; UV 220nm 

Rs: 3.12 OR: +/- [55] 

17 dichlorprop Chiralcel OJ-H hexane/IPA (90/10); 
0.5mL/min; UV 228nm 

Rs: 1.34 S/R [59] 

18 diclofop-
methyl 

CDMPC hexane/IPA (95/5); 
0.5mL/min; UV 270 nm 

Rs: 11.8 S/R [60-62] 

CDMPC hexane/n-butyl alcohol 
(84/16); 0.5mL/min; UV 
280 nm 

  [63] 
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No. Pesticide CSP or Chiral 
colum 

Chromatographic 
condition*1 

Separation 
effect*2 

Elution 
order*3 

Reference 

CDMPC hexane/isobutanol 
(98/2); 1.0 mL/min; UV 
230nm 

Rs: 6.15 OR: -/+ [64,39,65] 

CDMPC coated 
on TiO2/SiO2

hexane/IPA(65/35), 1.0 
mL/min

Rs: 1.50 [19] 

CDMPC ACN/water (50/50); 0.8 
mL/min; UV 230 nm

Rs: 1.53 OR: -/+ [66] 

CTMB hexane/IPA (50/50); 
0.5mL/min; UV 254 nm 

Rs: 1.68 R/S [67,68,63] 

CTB hexane/n-butyl alcohol
(84/16); 0.5mL/min; UV 
280 nm

[63] 

CTPC hexane/n-butyl alcohol 
(84/16); 0.5mL/min; UV 
280 nm

[63] 

Chiralcel OJ-H hexane/IPA/acetic acid
(90/10/0.2); 0.5mL/min; 
CD 282nm

Rs: 5.49 R/S [69,70] 

19 diclofop acid Chiralcel OJ-H hexane/IPA/acetic acid 
(90/10/0.2); 0.5 mL/min; 
UV 230 nm 

[70] 

20 difenoconazole Chiralcel OJ hexance/ethanol(90/10); 
0.6 mL/min; UV 230nm.

Rs: 3.79 OR: +/-/+/- [71] 

21 diniconazole CDMPC; 
Chiralcel OD 

hexane/n-butyl 
alcohol(98/2); 1.0 
mL/min; UV 220nm

Rs: 1.53 OR: +/- [72,61] 

Chiralcel OD hexane/IPA(90/10); 
0.6mL/min; UV 253nm

Rs: 1.17 OR: +/- 71 

Chiralcel OD-H hexane/IPA(100/5); 1.0 
mL/min; UV 225nm

: 1.20 R(-)/S(+) [73,50] 

Chiralcel OJ; 
Chiralcel OJ-H

hexane/IPA(100/3); 1.0 
mL/min; UV 225nm

: 1.14 R(-)/S(+) [73,74] 

Lux Cellulose-1 ACN/water(70/30), 
MET/water(80/20); 1.0 
mL/min; UV 220nm

Rs: 2.31, 
2.62 

OR: -/+ [75,66] 

22 dioxabenzofos Chiralcel OJ hexane/IPA(95/5); 1.0 
mL/min; UV 220nm

Rs: 1.56 OR: -/+ [76] 

Chiralcel OD hexane/IPA(99.5/0.5); 1.0 
mL/min; UV 220nm 

Rs: 1.42 OR: -/+ [76] 

23 epoxiconazole Lux Cellulose-1; 
CDMPC 

ACN/water(50/50), 
MET/water(80/20); 1.0 
mL/min; UV 220nm

Rs: 2.04, 
1.62 

OR: −/+ [75,66] 

24 ethofumesate CDMPC hexane/IPA (98/2); 1.0 
mL/min; UV 230nm

Rs: 6.34 [77] 

hexane/IPA (93/7); 1.0 
mL/min; UV 230nm 

: 1.58 OR; +/- [78,79] 
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No. Pesticide CSP or Chiral 
colum 

Chromatographic 
condition*1 

Separation 
effect*2 

Elution 
order*3 

Reference 

hexane/isobutanol
(95/5); 1.0 mL/min; UV 
230nm 

Rs: 7.05 OR: +/- [64,80] 

25 fenamiphos Chiralcel OJ heptane/ethanol(99.1/ 
0.9); 0.5mL/min; UV 
203nm

Rs: 1.08 OR: +/- [55] 

CDMPC ACN/water(70/30); 
0.8mL/min; UV 230nm

: 1.00  [81] 

26 fenbuconazole Lux Cellulose-1 ACN/water(90/10), 
MET/water(70/30); 1.0 
mL/min; UV 220nm 

Rs: 4.79, 
3.96 

OR: +/- [75] 

27 fenoxaprop-
ethyl 

CDMPC hexane/ethanol (93/7); 
0.5mL/min; UV 290nm

Rs: 1.83  [61] 

MET/water (80/20); 
0.8mL/min; UV 265nm

Rs: 1.01 OR: +/- [66] 

ACN/water (50/50); 
0.8mL/min; UV 230nm

Rs: 1.53 OR: -/+ [66] 

28 fensulfothion Chiralcel OJ heptane/ethanol(96/4);
0.8mL/min; UV 201nm

Rs: 1.21 OR: -/+ [55] 

29 fenthiaprop CDMP ACN/water (50/50); 
0.8mL/min; UV 230nm 

Rs: 1.53 OR: -/+ [66] 

30 fipronil Chiralcel OD isooctane/IPA(96/6); 6.0 
mL/min;

  [82] 

CDMPC 
 

hexane/IPA(95/5); 1.0 
mL/min; UV 230nm 

  [83] 

31 flamprop-
methyl 

CDMPC hexane/ IPA(97/3); 
1.2mL/min; UV 230nm 

Rs: 1.59 R/S [84] 

32 fluazifop-butyl CDMPC hexane/n-butyl alcohol
(89/11); 0.5mL/min; UV 
270nm

Rs: 2.55 S/R [61] 

33 fluazifop-p-
butyl 

CDMPC hexane/ IPA (95/5); 
0.5mL/min; UV 251nm

Rs: 3.80 S/R [60] 

CHIRALPAK IC hexane/IPA(90/10); 1.0 
mL/min; UV 254nm

  [85] 

34 fluroxypyr-
meptyl 

CDMPC hexane/ IPA(99/1); 0.5 
mL/min; UV 230nm

Rs: 1.31  [86] 

CDMPC MET/water(80/20); 
0.5mL/min; UV 230nm 

Rs: 1.07 OR: +/- [66] 

35 flutriafol 
 

Chiralcel OD; 
Chiralcel OD-H; 
CDMPC 

hexance/IPA(95/5); 
0.6mL/min; UV 230nm 

Rs: 1.37 OR: -/+ [71,50, 64] 

Lux Cellulose-1 ACN/water(70/30), 
MET/water(70/30); 1.0 
mL/min; UV 220nm

Rs: 1.99, 
1.39 

OR: -/+ [75] 

36 tau-fluvalinate Chiralcel OJ hexane/ethanol(90/10);
0.3mL/min; UV 210 nm

Rs: 1.59  [87] 
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No. Pesticide CSP or Chiral 
colum 

Chromatographic 
condition*1 

Separation 
effect*2 

Elution 
order*3 

Reference 

Chiralcel OG hexane/IPA Rs: <0.91  
Chiralcel OD-R MET/water; UV 210 nm Rs: <0.91  

37 fonofos Chiralcel OJ heptane/ethanol(99.5/0.5
);1.0 mL/min; UV 202nm

Rs: 2.1 OR: +/- [55,54] 

Chiralcel OJ-H hexane/IPA(100/10);
0.8mL/min; UV 254nm

Rs: 9.58  [43] 

Chiralcel OD-H hexane/IPA(100/0.5);
0.8mL/min; UV 254nm

-  [43] 

38 heptachlor 
epoxide 

Chiralcel OD hexane; 1.0 mL/min; UV 
215nm 

  [53] 

39 hexaconazole CDMPC; 
Chiralcel OD 

hexance/IPA(91/9); 
0.5mL/min; UV 270.9nm

Rs: 4.79 OR: +/- [61,66, 
71,72] 

CDMPC hexance/ tertiary butanol 
(95/5); 0.5mL/min; UV 
270nm

Rs: 2.30  [88] 

Chiralcel OD-H ACN/MET(98/2); 
0.5mL/min; UV 254nm 

Rs: 1.51  [89] 

Lux Cellulose-1 ACN/water(90/10), 
MET/water(80/20); 1.0 
mL/min; UV 220nm

Rs: 2.25, 
2.12 

OR: +/- [75] 

40 imazalil Chiralcel OD-H hexane/IPA(100/3); 
0.8mL/min; UV 220nm

Rs: 1.51  [50] 

Chiralcel OJ-H hexane/IPA(100/3); 
0.8mL/min; UV 220nm

Rs: 5.21  [50] 

Chiralcel OD ACN/water(50/50); 
0.8mL/min; UV 240nm

Rs: 0.91 OR: −/+ [66] 

41 imazamox Chiralcel OD-R ACN/ PBS 
buffer(50mM)(20/80); 1.0 
mL/min

  [39] 

Chiralcel OJ hexane(0.1%TFA)/IPA(6
0/40

Rs: 0.89  [90] 

42 imazapic Chiralcel OJ hexane/ alcohol/TFA 
(75/25/0.1); 1.0 mL/min; 
UV 254nm

 OR: +/- [90] 

43 imazapyr Chiralcel OJ hexane/ IPA/acetic acid 
(84.6/15.4/0.1); 
0.8mL/min; UV 275nm

 OR: +/- [91] 

44 imazaquin Chiralcel OJ-H 
 

Hexane/IPA/Acetic 
acid(84.6/15.4/0.1); 0.8 
mL/min; UV 275 nm

 CD: +/- [91,39] 

Chiralcel OD-R ACN/ PBS 
buffer(50mM)(20/80); 1.0 
mL/min

Rs: 2.44  [90] 

45 imazethapyr Chiralcel OJ hexane/ethanol/ acetic 
acid (75/25/0.5); 1.0 
mL/min; UV 250nm

 OR: +/- [92] 
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No. Pesticide CSP or Chiral 
colum 

Chromatographic 
condition*1 

Separation 
effect*2 

Elution 
order*3 

Reference 

Chiralcel OJ hexane/ IPA/acetic acid 
(84.6/15.4/0.1); 
0.8mL/min; UV 275nm 

  [90] 

46 indoxacarb Lux cellulose-1;
Chiralcel OD

hexane/IPA(85/15)
0.8mL/min; UV 310 nm

 OR: -/+ [93,94] 

47 isocarbophos CDMPC hexane/IPA(98/2); UV 
225nm

Rs: 2.42 OR: -/+ [64,51,95] 

48 isofenphos Chiralcel OG heptane/IPA(98/2); 1.0 
mL/min;

Rs: 1.1 OR: +/- [55] 

Chiralcel OJ heptane/ethanol(99.4/ 
0.6); 0.3mL/min; UV 
201nm

Rs: 1.11 OR: +/- [55] 

49 isofenphos-
methyl 
 

Chiralcel OJ-H hexane/IPA(100/1);
0.8mL/min; UV 280nm 

Rs: 1.59 
 

 [81] 

Chiralcel OD-H hexane/IPA(100/1);
0.8mL/min; UV 280nm 

Rs: 1.73 
 

 [43] 

CDMPC ACN/water(70/30);
0.8mL/min; UV 230nm

: 1  [81] 

50 iso-malathion Chiralcel OJ hexane/IPA(97/3); 1.0 
mL/min; UV 220nm

  [66] 

51 lactofen 
 

CDMPC hexane/IPA(99/1); 1.0 
mL/min; UV 230nm

Rs: 1.87 OR: +/- [64, 39] 

CDMPC MET/water(75/25); 
0.8mL/min; UV 265nm

Rs: 1.07 OR: -/+ [66] 

Chiralpak IC hexane/ CH2Cl2/TFA 
(65/35/0.1)

Rs: 8.11  [96] 

52 lambda-
cyhalothrin 

Chiralecl OD Hexane/IPA(95/5), 0.5 
mL/min; UV 236 nm

 CD: -/+ [97] 

Chiralecl OJ hexane; ethanol ( 95/5); 
0.6 mL/min, UV 236 nm

 CD: -/+ [97] 

Chiralecl OJ Hexane/IPA( 90/10); 0.4 
mL/min, UV 236 nm

 CD: -/+/+/- [97] 

53 malaoxon Chiralcel OJ hexane/IPA(96/4); 1.0 
mL/min; UV 220nm 

Rs: 4.06 R/S 
OR: +/- 

[98] 

54 malathion Chiralcel OJ heptane/ethanol(90/ 10);
0.9mL/min; UV 220nm

Rs: 4.11 OR: +/- [55] 

Chiralcel OJ hexane/IPA(97/3); 1.0 
mL/min; UV 220nm

Rs: 3.35 OR: +/- [98] 

CDMPC hexane/IPA(99/1); 1.0 
mL/min; UV 210nm

Rs: 1.44 OR: +/- [65] 

CDMPC ACN/water(70/30);
0.8mL/min; UV 230nm 

: 1.0  [81] 

55 metalaxyl CDMPC hexane/IPA(80:20); 1.0 
mL/min; UV 230nm

Rs: 4.54  [26,99] 

CDMPC coated 
on TiO2/SiO2

hexane/IPA(65/35); 1.0 
mL/min

Rs: 2.97  [19] 
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No. Pesticide CSP or Chiral 
colum 

Chromatographic 
condition*1 

Separation 
effect*2 

Elution 
order*3 

Reference 

ChiracelOJ-H hexane/IPA(90:10); 0.5 
mL/min; CD 236 nm

 S/R [100] 

Bonded CDMPC MET/water(50/50) Rs: 0.506  [101] 
Bonded CDMPC ACN/water(80/20) Rs: 0.766  [101] 
Bonded CDMPC hexane/IPA(97/3) Rs: 0.632  [101] 
Bonded CDMPC hexane/tertbutyl alcohol 

(95/5) 
Rs: 0.918  [101] 

56 metalaxyl acid CDMPC hexane/IPA/TFA(70/30/0
.1%); 1.0 mL/min

Rs: 1.96 CD(-)/(+) [102] 

57 metalaxyl 
intermediate 

CDMPC hexane/IPA(99/1); 1.0 
mL/min; 

Rs: 1.85 CD (-)/(+) 
at 228 nm; 
CD(+)/(-) at 
280nm 

[102,26] 

58 methami-
dophos 

CDMPC hexane/IPA(90/10); 1.0 
mL/min; UV 230nm

Rs: 1.54 OR: +/- [65,103] 

Chiralcel OD heptane/ethanol(90/ 10); 
1.0 mL/min; 

Rs: 1.7 OR: +/- [55] 

Chiralcel OJ heptane/ethanol(93.5/6.5
); 0.8mL/min; UV 200nm

Rs: 1.56 OR: +/- [55] 

CDMPC ACN/water(70/30);
0.8mL/min; UV 230nm 

: 1.0  [81] 

59 metolachlor Chiralcel OD-H 
 

hexane/diethyl ether 
(91/9); 0.8 mL/min; UV 
230 nm

  [104] 

60 myclobutanil 
 

CDMPC hexane/IPA(73/26); 
0.5mL/min; UV 221.5nm

Rs: 13.3  [61] 

CTPC hexane/IPA(73/26); 
0.5mL/min; UV 221.5nm

Rs: 1.54  [50] 

Lux Cellulose-1; 
CDMPC; 
Chiralcel OD 

ACN/water(90/10), 
MET/water(90/10); 1.0 
mL/min; UV 220nm 

Rs: 5.10, 
4.91 

OR: +/- [75, 66] 

61 naproanilide 
 

CDMPC hexane/IPA(80/20); 1.0 
or 0.5mL/min

Rs: 1.91  [105] 

Chiralcel OD-H; 
Chiralcel OJ-H 

hexane; 1.0 mL/min; UV 
254 nm 

 OR: ＋/－ [106] 

Bonded-CTB hexane; 1.0 mL/min; UV 
254 nm

 OR: －/＋ [106] 

62 napropamide Chiralpak OJ-H hexane/IPA(80/20); 
0.5mL/min; 40C; UV 
220nm

  [107] 

63 paclobutrazol CDMPC ACN/water(40/60); 0.8 
mL/min; UV 230nm.

Rs: 1.93 OR: +/− [108] 

Chiralcel OD; 
CDMPC 

hexance/IPA(100/2); 0.8 
mL/min; UV 225nm. 

Rs: 1.83  [50, 61] 

OJ hexance/IPA(100/10); 0.8 
mL/min; UV 225nm.

Rs: 4.05  [50] 
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No. Pesticide CSP or Chiral 
colum 

Chromatographic 
condition*1 

Separation 
effect*2 

Elution 
order*3 

Reference 

64 penconazole Lux Cellulose-1 
Chiralcel OD-H 

ACN/water(50/50), 
MET/water(90/10); 1.0 
mL/min; UV 220nm 

Rs: 7.58, 
2.29 

OR: -/+ [75,89] 

65 permethrin Chiralcel OJ hexane/ethanol(95/15); 
0.3mL/min; UV 210 nm 

Rs: 1.47  [87] 

Chiralcel OD-R MET/water; UV 210 nm Rs: <0.91  
66 phenthoate Chiralcel OJ hexane/IPA(90/10); 

.6mL/min; UV 230nm 
 OR: -/+ [109] 

CDMPC ACN/water(70/30); 
0.8mL/min; UV 230nm 

: 1.0  [81] 

67 profenofos CDMPC hexane/IPA(99.5/0.5); 
UV 210nm 

Rs: 1.35 OR: +/- [64] 

Chiralcel OJ heptane/ethanol(99.5/0.5
); 1.0 mL/min; UV 
202nm 

Rs: 3.52 OR: +/- [55] 

Chiralcel OJ hexane; 0.8mL/min; UV 
230nm 

Rs: 1.12 OR: +/- [54] 

CDMPC ACN/water(70/30); 
0.8mL/min; UV 230nm 

: 1.0  [81] 

68 propiconazole Chiralcel OD hexance/IPA(90/10); 0.6 
mL/min; UV 230nm. 

Rs: 2.95/ 
2.72/ 1.04 

OR: +/-/+/- [71] 

69 prothiophos Chiralcel OJ heptane/ethanol(98/2); 
15C; 1.0 mL/min; UV 
202nm 

Rs: 1.6 OR: +/- [55] 

70 quizalofop-P-
ethyl 

CDMPC hexane/NPA (91/9); 
0.5mL/min; UV 332nm 

Rs: 1.7 R/S [61] 

Chiralcel OJ-H hexane/MET/methylene 
dichloride(450/2/8); 1.0 
mL/min; UV 290 nm 

 S/R [110] 

71 pyraclofos Chiralcel OD hexane/IPA(90/10); 1.0 
mL/min; UV 254nm 

 OR: -/+ 109 

72 tebuconazole CDMPC; 
Chiralcel OD 

hexane/IPA(98/2); 1.0 
mL/min; UV 220nm 

Rs: 1.63 OR: -/+ [50,61, 64, 
71] 

Chiralcel OJ-H; 
CTMB 

hexane/IPA(100/10); 
0.8mL/min; UV 225nm 

Rs: 5.64  [50, 61] 

CTPC hexane/IPA(91/9); 
0.6mL/min; UV 269.8nm

Rs: 1.16  [61] 

Chiralcel OD-H ACN/IPA(70/30); 
0.5mL/min; UV 254nm 

Rs: 0.67  [89] 

73 tetraconazole Lux Cellulose-1 ACN/water(90/10); 1.0 
mL/min; UV 220nm 

Rs: 1.39 OR: +/- [75] 

74 triadimefon CDMPC; 
Chiralcel OD 

hexane/IPA(99/1); 1.0 
mL/min; UV 230nm 

Rs: 1.47 OR: -/+ [64, 71] 

Chiralcel OD hexane/IPA(100/5); 1.0 
mL/min; UV 225nm 

: 1.20 R(-)/S(+) [73] 
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No. Pesticide CSP or Chiral 
colum 

Chromatographic 
condition*1 

Separation 
effect*2 

Elution 
order*3 

Reference 

Chiralcel OJ hexane/IPA(100/5); 1.0 
mL/min; UV 225nm 

: 1.17 R(-)/S(+) [73] 

Lux Cellulose-1 
Chiralcel OD-H 

ACN/water(70/30), 
MET/water(90/10);  
1.0 mL/min;  
UV 220nm 

Rs: 2.43, 
2.73 

OR: -/+ [75, 66, 89] 

75 triadimenol Chiralcel OD-H 
 

hexane/IPA(100/3); 1.0 
mL/min; UV 225nm 

: 1.81 1R,2S(+)/1S,
2R(-) 

[73] 

Chiralcel OD-H hexane/IPA(100/2); 1.0 
mL/min; UV 225nm 

: 1.03 1S,2S(-
)/1R,2R(+) 

[73] 

CDMPC hexane/ethanol(99.2/0.8); 
0.8mL/min; UV 278nm 

Rs: 
0.64/2.87/0.3
7 

 [61] 

Chiralcel OJ-H hexane/IPA(100/3); 1.0 
mL/min; UV 225nm 

: 1.16 1R,2R(+)/1S
,2S(-) 

[73] 

CTMB hexane/n-butyl alcohol 
(89/11); 0.5mL/min; UV 
278nm 

Rs: 0.18/ 
0.69/ 
0.52 

 [61] 

CTPC hexane/IPA(91/9); 
0.5mL/min; UV 278nm 

Rs: 1.53/ 
0.88 

 [61] 

Lux Cellulose-1 MET/water(60/40); 0.5 
mL/min; UV 220nm 

Rs: 
1.45/2.73/2.1
6 

OR: (-)-
A,/(+)-A/(-)-
B/ (+)-B 

[40] 

76 trichlorfon CDMPC 
 

ACN/water(70/30); 
0.8mL/min; UV 210nm 

: 1.0  [81] 

77 trichloronate Chiralcel OD heptane; 1.0 mL/min Rs: 1.1  [55] 
Chiralcel OJ heptane; 1.0 mL/min; 

UV 205nm 
Rs: 1.40  [55] 

Chiralcel OJ hexane/heptane/ethanol 
(90/5/5); 1.0 mL/min 

Rs: 4.03 OR: +/- [111] 

78 uniconazole CDMPC hexane/ n-butyl 
alcohol(89/11); 
0.5mL/min;  
UV 268.6nm 

Rs: 1.45  [61] 

CTPC hexane/ ethanol (93/7); 
0.5mL/min;  
UV 269.8nm 

Rs: 2.16  [61] 

79 vinclozolin CDMPC hexane/IPA(99/1);  
1.0 mL/min;  
2.0 UV 210nm 

Rs: 1.46 OR: +/- [65] 

*1 ACN, MET and IPA means acetronitrile, methanol and isopropanol respectively. 
*2  and Rs means the separation factor and the resolution facotr respectively. 
*3 CD and OR means signals obtained from circular dichrism detector and optical rotation detector 
respectively. 

Table 2. Summary of resolution results of chiral pesticides on cellulose-based CSPs 
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5. Conclusion 

Cellulose derivatives have high chiral recognition abilities for racemates and have already 
become a very popular and useful source material for CSPs. Cellulose-based CSPs can be 
prepared by coating or bonding cellulose derivatives on decorative silica gel or other 
supports with various preparation methods. The coated CSPs exhibite higher discrimination 
abilities for chiral pesticides and are more popular than the bonded CSPs. However, the 
bonded CSPs can tolerate broader solvent ranges, including THF and CHCl3, which cannot 
be used on coated CSPs as mobile phases because they have strong dissolution abilities that 
can dammage or destroy them. Coated CDMPC and CTMB had the broadest application in 
the stereoselective separations of chiral pesticides. For most pesticides, better separations 
were obtained on NP-HPLC than on RP-HPLC. However, RP-HPLC can improve the 
amount of racemates loaded on CSPs as it allows the use of more polar solvents to enhance 
the solubility of racemates in mobile phases. Additionally, it can be easily connected in 
tandem with MS, allowing for the development of more sensitive methods for analysis of 
enantiomers/stereoisomers. The cellulose-based CSPs on NP-HPLC and RP-HPLC provide 
very powerful tools to prepare individual enantiomers and study the activity, toxicity and 
environmental fates of chiral pesticides. 
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