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1. Introduction 

Cellulose, being the major cell wall component and the most abundant organic matter, 

produced by living organisms, is not uniformly distributed within plant tissues. There are 

numerous cells, like the parenchyma ones, which even at maturity have thin cell wall. 

Thick cell walls are characteristic for the tissues with mechanical function. Among those, 

there are cell walls, which contain several major components, and those, the predominant 

component of which is cellulose. The most pure natural cellulose is considered to be 

present in cotton seed hairs (sometimes erroneously called “cotton fibers”) – over 90% of 

cell wall [1]. Very close to this value is a special group of plant fibers – cellulosic or 

gelatinous fibers, the proportion of cellulose in which amounts for 85-90% [2,3]. The cell 

wall thickness in such fibers may reach 15 m, as compared to 0.2 m in cells with thin 

cell wall. So, the very significant portion of total plant cellulose may be concentrated 

within the gelatinous fibers, making them the important source for production of biofuels 

and bio-based products. An additional attractiveness of cellulosic fibers for such 

applications comes from the fact that gelatinous cell wall layers are devoid of lignin – the 

major hurdle in using plant biomass [1]. 

Cell wall of cellulosic fiber is of very special design, which provides unusual properties. 

Such fibers serve as a kind of plant “muscles” [4,5]. The revealing of mechanisms of the 

formation and function of cellulosic fibers is important for understanding the 

determinants of general plant architecture and can be useful in construction of new bio-

based materials. 
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2. Definition of plant cellulosic fibers 

In terms of plant biology, a fiber is an individual cell of mechanical tissue (sclerenchyma), 

characterized by the extreme cell length and well developed secondary cell wall, 

architecture of which is the major determinant of fiber properties. Plant fibers are one of the 

most economically important raw material, used both for traditional and innovative 

technologies [6,7]. Due to the massive cell wall, fibers comprise a significant proportion of 

plant biomass, thus being the valuable source of bio-based products and biofuels. For plant 

itself fibers are very important for the general architecture and mechanical properties of 

certain organs. 

The functional roles of fibers within the plant and their numerous commercial applications 

are largely based on the characteristics of their well-developed cell wall of considerable 

thickness. Fibers of different origin are not uniform in their structure and cell wall 

composition. The thick cell walls of fully differentiated fibers can be categorized into two 

broad types – the xylan and the gelatinous ones [2] (Figure 1). 

 

Figure 1. A scheme of structure (a, b) and content of the main components (c, d) in two types of the 

secondary cell walls: a, c – xylan type of cell wall, b, d – gelatinous type of cell wall. 
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A secondary cell wall of the xylan type is the most common one in various types of cells 

with secondary cell walls in land plants. The xylan type secondary cell walls are 

characterized by helical orientation of cellulose microfibrils, predominance of xylan in 

non-cellulose matrix, and high degree of lignification. The orientation of cellulose 

microfibrils may be significantly changed several times through the development of the 

xylan type secondary cell wall, leading to the formation of distinct layers, designated as 

S1, S2, and S3 layers (S from “secondary”) in the order of deposition. Total thickness of 

the xylan type secondary cell walls is between 1 and 4 μm. They comprise the bulk of 

secondary cell walls in various types of wood cells, including vessels and wood 

parenchyma, and are also present in the bast fibers of some species, for example, jute and 

kenaf. 

The second (gelatinous) type of thick cell wall is present only in fibers. It was firstly 

described by Th. Hartig at the end of the XIX century as a peculiar layer (G-layer) 

produced in the reaction wood of dicotyledonous plants (cited after [8]). The reason for 

such name came from the artefactual swelling of this layer in the cross-section due to the 

presence of certain components (e.g. alkali) of the solutions used to prepare the sample for 

microscopy. Fibers, which have developed G-layer of cell wall, get the name “gelatinous 

fibers”. With modern techniques of sample preparation for microscopy, this layer doesn’t 

look like a jelly. Moreover, G-layer was described as having exclusively high content of 

cellulose (up to 90%) with high degree of crystallinity [9], giving the reason for the 

alternative name – “cellulosic fibers”. However, the justification for a term “gelatinous” 

was recently provided by description of the gel-like performance of G-layer upon drying 

(large shrinkage [8,10-12] and high rigidification [13]), and hydrogel type of structure, 

which has special characteristics of mesoporosity. G-layer has high content of mesopores 

(pore size between 2 nm and 50 nm); in tension wood fibers the pore surface areas may be 

more than 30 times higher than that in normal wood as was revealed by nitrogen 

adsorption technique [8, 14]. Mesoporosity was suggested as a new parameter for G-layer 

characterization [14]. 

Gelatinous cell-wall layer is deposited inward to the xylan type secondary wall layers; the 

degree of S-layer development in fibers with G-layer differs from well pronounced, like in 

tension wood [15], to barely detectable, as in flax [2]. Though not appropriately recognized, 

this type of fibers is widespread and is present in various organs of plants from many taxa 

[2,3]. Among others, phloem fibers of flax, hemp, and ramie, gelatinous fibers of tension 

wood, some fibers of bamboo and Equisetum belong to this group. Arabidopsis was shown 

to have the potential for gelatinous fiber formation [16], same as some other plant species 

where this type of fibers was not well known, like alfalfa [17]. Fibers able to form the 

gelatinous cell wall layer can originate from both primary and secondary meristems and be 

located within phloem or xylem [18]. 

Specific characteristics of the gelatinous layer of cell wall include: a) the overwhelming 

content of cellulose (80-90%); b) high crystallinity of cellulose; c) very low angle of cellulose 
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microfibrils, which are laid almost parallel to the fiber’s longitudinal axis throughout the 

whole layer; d) considerable thickness, which in some species can reach more than 15 μm; e) 

the absence of xylan, f) the absence of lignin, g) special composition of matrix 

polysaccharides, presented mostly by galactose-containing pectins with 

rhamnogalacturonan backbone; h) high water content, as compared to S-layers, i) 

mesoporosity, j) exclusive presence in fibers, and, as discussed below, k) contractile 

properties. 

The very peculiar characteristic of fibers with the gelatinous cell wall is their contractile 

properties. Such fibers may serve to move the plant parts in space. For instance, the tension 

wood fibres contract longitudinally during differentiation and generate longitudinal tensile 

stresses of up to about 70 MPa [19], providing rightning force in the tilted tree. A high-

tensile growth stress generated on the surface of the xylem in the tension wood region often 

becomes ten times as large as that in the normal wood region [20]. The ability of a plant 

organ to contract is proportional to the degree of the development of fibers with G-layers 

[21,22]. 

Plants do not possess animal-type muscles, which contract due to protein-protein 

interactions. However, they have a different mechanism, which has the ability to move even 

very heavy plant parts in space. This mechanism is specifically developed in cellulosic 

fibers. Their contractile properties are based on tension developing within the specially 

designed thick cell walls. The efficacy of such fibers is remarkable. Thus, the gelatinous 

fibers may to a certain extent be named as “cell-wall-based plant muscles”, though they do 

not have the ability to relax and the time-scale of their contraction is very different from that 

of animal muscles. 

The examples of contractile action of cellulosic fibers (Figure 2) include the restoration of 

young tree vertical position, if disturbed [15,23], deepening of geophyte shoot in the soil 

by contraction of roots in the course of adaptive reaction [24], shortening of aerial roots 

when they reach the soil to form the effective support to heavy branches [21]; correction 

of lateral branch angle and, in case of apical meristem death, upward bending of lateral 

branch in order to transform into dominant [25-27]. The cellulosic gelatinous fibers are 

especially developed in the plants exposed to high mechanical stresses due to high ratio 

between stem height and stem diameter (most of fiber crops, like flax, hemp, ramie, 

nettle) [2] – this gives the properties of spring to the plant stem, helping to restore 

vertical position when disturbed, for example by wind. Such plants, similar to plants 

with developed tension wood [28,29], also exhibit the pronounced negative 

gravitropism, being able to turn back to vertical position a long stem, if bent, far away 

from the growing apical stem region. Cellulosic fibers seem to be present in the spines of 

cacti [30], and are developed in peduncles helping to support heavy fruits, like in the 

sausage tree, fruits of which may weight up to 10 kg [31]. The gelatinous fibers were 

demonstrated to be widely involved in the twining of vines and the coiling of tendrils 

[32,33]. 
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Figure 2. The examples of contractile action of cellulosic fibers: a – formation of tension wood during 

restoration of young tree vertical position, if disturbed, b – development of gelatinous fibers in the 

plants with high ratio between stem height and stem diameter, c – shortening of aerial roots after they 

reach the soil to form the effective support to the heavy branches (when rooted in pot, aerial roots may 

rise it up), d – development of cellulosic fibers in parts of stem due to which plant attaches to substrate, 

e – involvement of gelatinous fibers in the twining of vines, the coiling of tendrils and the expansion of 

climbing plants, f – deepening of geophyte shoot into the soil by contraction of roots in the course of 

adaptive reaction, g – presence of cellulosic fibers in the spines of cacti, h – development of gelatinous 

fibers in peduncles to help support heavy fruits. 

3. Cellulose microfibrils in gelatinous cell wall 

The very specific characteristic of cellulose microfibrils in the gelatinous cell wall is their 

axial orientation, which is not observed in any other cell wall type of any other but fiber cell 

type. This is especially remarkable, if one remembers the total thickness of G-layers. The 

axial orientation of cellulose microfibrils throughout the gelatinous cell wall layer was 

known long ago [9,34] and was confirmed by several techniques, including microbeam X-

ray diffraction [35], wide-angle X-ray scattering [36], and scanning Raman microscopy 

[24,37]. In accordance to that, cortical microtubules, which are considered to rule the 

microfibril orientation, are axially oriented during deposition of the gelatinous cell wall 

layers [38]. 

In the gelatinous fibers cellulose microfibrils are characterized by a higher degree of 

crystallinity and a larger size of crystalline regions (crystallites) as compared with most 
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other plant tissues [39, 40]. The diameter of cellulose crystallites was measured in various 

species by several authors and though the absolute values might differ, the general 

conclusion was that in G-layers it was larger than in the S-layers [12,35,41-44]. The roentgen 

structural analysis showed that the diameter of cellulose crystal transverse sections in 

tension wood G-layer (6.5 nm) is markedly larger than in the neighboring S-layer of the 

xylan cell wall (about 3 nm), i.e., its section area is approximately fourfold higher [35]. Thus, 

cellulose microfibrils within the gelatinous layer exist in the form of aggregates. This 

allowed a supposition that individual cellulose microfibrils, each of which is formed by 

individual cellulose-synthesizing complex, so-called “rosette”, in the gelatinous layer 

interact laterally [4]. Such lateral interaction is stimulated due to similar (axial) orientation of 

all microfibrils, the absence of lignin and of considerable amount of matrix polysaccharides, 

which separate microfibrils, like in S-layer. Despite the high degree of crystallinity of the 

cellulose, G-layer has a remarkable hygroscopicity and high water content [37,45]. 

Cellulose microfibrils in the gelatinous layer are under tension. This was proved by the 

increase in cellulose lattice spacing revealed by synchrotron radiation microdiffraction [46]. 

The visual demonstration of tension comes from shrinkage of G-layer along the cell 

longitudinal axis upon the release of tension, as observed by scanning microscopy of tension 

wood cross-sections [10]. 

For a long time, the gelatinous cell wall was believed to be composed of cellulose only [9]. 

Correspondingly, the ideas on tension origin were based on cellulose microfibril properties. 

Cellulose microfibrils themselves are virtually incontractible. So, the problem was how to 

get contraction, having incontractible basis of cellulose microfibrils. One of the possible 

solutions suggests that the contraction of the fibre is not caused by the G-layer directly, but 

by interaction of the G-layer with the surrounding S-layer. It was proposed that the origin of 

tension in cell wall of cellulosic fibers lays in the differential parameters of swelling of the S- 

and G-layers due to different orientation of cellulose microfibrils [36]. 

The cell walls with helicoidal orientation of microfibrils increase in length upon swelling, 

while the ones with axial orientation shrink [47]. The stress–strain-curves of cell walls show 

the influence of the cellulose microfibril orientation on the deformation behavior of plant 

tissues [48]. Within plant organism, such differences are indeed exploited in some 

mechanisms, for instance in opening of pine cones [49]. Fibers and sclereids located at the 

opposite sides of a cone scale have different angle between the long axis of the cell and the 

direction of cellulose microfibrils (MFA): it is high in sclerids and low in fibers. 

Correspondingly, the coefficient of hygroscopic expansion of fibers is significantly lower 

than that of sclerids. Due to that, the increase in relative humidity leads to the increase of the 

angle between the scale and the frame, leading to cone opening. Similar is the mechanism of 

wheat awn opening aimed to seed dispersal [48,50]. 

Similarly, the differences in swelling of S- and G-layers were suggested to explain the 

formation of tension in fibers of reaction wood [36]. The idea is based on the established fact 

that the enzymatic removal of the G-layer lead to the longitudinal extension and tangential 

shrinkage of tissues within the tension wood slice. It was proposed that in the living plant, a 
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lateral swelling of the G-layer forced the surrounding S-layers to shrink in the axial 

direction. 

Such forces may indeed be the part of the tension creation mechanisms in gelatinous fibers. 

But: 1) such system would be highly dependent on humidity, same as the openings of pine 

cones and wheat awns; 2) in some species, like flax or ramie, S-layer in the gelatinous fibers 

is poorly developed [2] and hardly may serve as a mechanical counterpart of very thick G-

layer; 3) mesoporosity of the G-layer is not explained; 4) tension is argumented to be 

developed within the G-layer itself [10,51]. Finally, specific matrix polysaccharides, which 

were not considered in the above hypothesis, appear at the onset of G-layer formation. 

4. Matrix polysaccharides in cellulosic fibers 

The presence of a polymer within a certain cell wall layer is not easy to prove. The 

biochemical analysis in the majority of studies is usually performed without separation into 

different cell wall layers, which is rather hard to achieve. In most of the experiments on the 

analysis of the gelatinous fiber composition, primary cell wall was not detached from the 

secondary one, and the xylan layers were not separated from the gelatinous ones. Moreover, 

such analysis is often done on the samples, like wood, which contain complex mixture of 

various cell types (e.g. parenchyma, vessels, fibers) at different stages of the development. A 

significant amount of data concerning the composition and structure of the gelatinous type 

cell walls was obtained by the analysis of phloem fiber bundles, which extreme strength 

permited their mechanical or enzymatic separation from surrounding tissues. Although 

gelatinous layers predominate in such fiber cell walls, the primary cell wall and S-layer of 

the secondary wall are also present. That’s why, for instance, polygalacturonic acid (PGA) or 

rhamnogalacturonan I (RG I), described in numerous papers on plant fibers (e.g. [52-55] can 

not be attributed to a certain cell wall layer. The presence of polymers just in the G-layers 

must be additionally proved. 

To do so, several approaches can be used or, better, combined: a) isolation of the G-layers 

and the biochemical analysis of constituents; b) cytochemistry, including 

immunocytochemistry; c) the analysis of deposition dynamics: search for the marker 

monomer, sugar linkage type or other specific characteristic of a certain polysaccharide, the 

formation of which goes in parallel to the G-layer deposition; pulse-chase experiments with 

labeled precursors can be especially effective since they permit to exclude the background of 

previously synthesized polymers; d) tracing the transcription of the identified genes, 

involved in the metabolism of certain cell wall polysaccharide, in the course of the G-layer 

formation; e) detection within G-layer of the enzyme or enzymatic activity, involved in 

modification of matrix polysaccharide, by various types of staining. The best way to analyze 

the components of the gelatinous cell walls is isolation of the G-layers, like it was done for 

poplar tension wood [28,56]. To this end, thin tissue sections (20 μm) are prepared and 

treated with ultrasound; however, this procedure permits obtaining only small amount of 

the material. 
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Among neutral monosaccharides present in polymers of the isolated G-layers, rhamnose, 

arabinose, galactose, and xylose were found along with glucose [56]. The cell wall matrix 

polysaccharides, which were identified or suggested to be present in the G-layer include 

xyloglucan [56], arabinogalactan proteins [57], pectic galactan [58], and, probably some 

arabinans [30]. Usually these polymers are considered to be the components of the primary 

cell walls. The obtained data on their presence in the G-layer were recently summarized in 

the review [5], so here we consider them only briefly. 

Arabinogalactan proteins (AGPs) are highly water soluble polymers, which consist of 

protein backbone and carbohydrate side chains of variable structure, which can comprise 

over 90% of the molecule. Glycan component of AGPs has various length chains of β-(14)-

galactan and β-(16)-galactan units, often decorated by terminal arabinose residues and 

connected to each other by (13,16)-linked branch points, which are indicative of AGPs. 

Protein backbone may also vary in structure and is encoded by a large gene family, the 

several representatives of which are always detected among the most up-regulated upon the 

G-layer induction genes, both in tension wood [59-62] and in fiber crops [63-65]. 

Carbohydrate constituents of AGPs were detected within the G-layer by 

immunocytochemical [57,60], cytochemical (by staining with Yariv reagent) [58,66] and 

biochemical [56] approaches. AGPs, different both in carbohydrate and protein part of the 

molecules, are present in many, if not all, plant tissues, but their exact function is still 

unknown. 

There is not much information about another possible constituents of the gelatinous fibers – 

the arabinans. They were reported to be the major cell wall matrix component of cellulosic 

fibers in cactus spines [30]. It is not clear if the arabinans are attached to the RG I backbones. 

The most substantial evidence for the matrix cell wall polysaccharides of the G-layers was 

collected on xyloglucan. This cross-linking glycan is composed of a backbone, which is built 

similar to cellulose molecule as β-(14)-glucan. The side chain of xylose, which is 

sometimes additionally substituted by galactose and further – by fucose, are attached to the 

backbone. Xyloglucan is the major noncellulosic polysaccharide in the isolated G-layers of 

poplar tension wood; its content was assessed to be 10–15% of the cell wall mass [28,56,67]. 

The presence of xyloglucan was detected by several methods, including the biochemical 

analysis of the types of bonds between monosaccharides and immunocytochemistry. 

Moreover, the presence of xyloglucan endotransglycosylase, an enzyme providing for 

connection between the regions of two different xyloglucan molecules, was demonstrated in 

the G-layers of the secondary cell wall. Two main functions were suggested for xyloglucan 

in the secondary cell walls of tension wood fibers [67]. The first one is binding of the G-layer 

to the neighboring xylan layer because xyloglucan and xyloglucan endotransglycosylase are 

localized just at the boundary between these two layers, as was shown 

immunocytochemically. The second supposed function is the creation of tension – it will be 

considered in the next chapter. 

One more component of the G-layers is pectic galactan, built as a very complex 

rhamnogalacturonan I with a high degree of branching and a varying structure of side 
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chains, which are mainly composed of β-(14)-galactose [52,58,68]. The predominant 

monosaccharide in the polymer is galactose, which determines the polymer name as a 

galactan [69]. The side chains may include only one or two galactose residues; long chains of 

several tens galactose residues, likely branched side chains, which are not cleaved by 

galactanase; side chains, decorated with a single pentose, most likely arabinose or a 

galactose residue connected by other than β-(14) linkage [68,70]. This type of pectic 

galactan is fiber- and stage-specific, being present only in fibers, while forming G-layer 

[2,71]. 

Pectic galactan may be of the specific three-dimensional organization, the signs of which are 

revealed upon the treatment with specific glycanases. The hydrolysis of considerable part of 

galactose side chains of galactan as well as the partial degradation of its backbone do not 

change the total hydrodynamic volume, which determines the efficiency of elution from gel-

filtration column, and the polymer elutes in the same part of profile, as before enzymatic 

treatments [68,72]. The unusual property of pectic galactan from the gelatinous fibers is the 

ability to form water-soluble associates, so that the charged backbone is located at the 

periphery of it, while the neutral side chains form the core zone (Mikshina, Gorshkova, in 

preparation). 

The presence of the galactan within the gelatinous layer was confirmed by the analysis of 

the dynamics of its formation, which coincides with the G-layer deposition [71], by 

immunolocalization of the galactan side chains [71,73-75], by presence of tissue- and stage 

specific β-(14)-galactosidase, the substrate of which is the described galactan [75-77]. The 

gene of this galactosidase is highly upregulated at the onset of the G-layer formation [63, 78] 

and the activity is detected within fibers, forming gelatinous cell wall [64,75]. 

The complex galactans built mainly from β-(14)-galactose were found in tension wood 

fibers in 60-ties of the XXth century [79,80], though the linkage with the RG I backbone was 

not proved at that time. The content of galactose was even suggested as an indicator of the 

extent of the G-layer development [81]. However, these old data were actually put away for 

several decades due to the overwhelming notion that the G-layers were pure cellulosic, so 

that the published in 2008 paper describing the detection of rhamnogalacturonan I by 

cytochemical approaches in tension wood of several species was entitled “…gelatinous 

fibers contain more than just cellulose” [57]. 

5. Matrix polymers as the causative agent for cellulose tension in 

gelatinous cell wall 

Presence of specific matrix polysaccharides within G-layer suggests their importance for 

function of cellulosic fibers, including tension creation to form contractile properties. 

Mellerowicz et al. [4] put forward an idea that matrix polysaccharides are entrapped by 

laterally interacting cellulose microfibrils. The presence of such entrapped polysaccharides 

between cellulose microfibrils limits their interaction and results in creation of tension, 

which underlies specific mechanical properties of cellulosic fibers (Figure 3). 
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Figure 3. Possible ways of interaction between matrix polysaccharides and cellulose microfibrils in 

various types of cell walls: a – high content of matrix polysaccharides in xylan secondary cell wall 

prevents lateral interaction of cellulose microfibrils, b – microfibrils of the G-layer (gelatinous cell wall) 

with low content of matrix polysaccharides, cellulose microfibrils tend to lateral interactions, giving 

reason for higher degree of crystallinity and larger size of crystallites, c – theoretically, if matrix 

polysaccharides has high affinity to cellulose, being entrapped they won’t cause much of tension, d – 

the most effective to provide longitudinal tensile stress in the cellulose microfibrils is compact 

polysaccharide of considerable size with low affinity to cellulose, e – a model of pectic galactan 

associates, in which negatively charged RG I backbone is at the periphery, and long galactose side 

chains form the core zone. 

Originally, xyloglucan was proposed as the polymer entrapped by the laterally interacting 

cellulose microfibrils. Xyloglucan is, indeed, very important for the function of gelatinous 

fibers in tension wood of some species, like poplar. This is proved by the fact that in 

transgenic poplars with the expressed gene of fungal xyloglucanase, which decreased the 

content of xyloglucan, righting of stem basal regions in placed horizontally young plants 

was completely abolished, while the G-layer formation was not affected [29,82]. The 

expression of other endoglycanases, which decreased the levels of xylan or arabinogalactan, 

had no effect on the ability of transgenic plant to exhibit gravitropic reaction, restoring the 

stem vertical position. 

However, the exact function of xyloglucan in tension wood fibers is still a matter of debate. 

Firstly, xyloglucan was detected in the G-layers only in limited plant species, it was never 

conclusively reported (though searched) to be present in thick secondary walls of cellulosic 

fibers in fiber crops, like flax, hemp, etc. Further evidence comes from the analysis of 

polysaccharides, strongly retained by cellulose microfibrils upon extraction: if entrapped 

between the interacting laterally cellulose microfibrils, a polymer should not be extracted by 

the conventional methods and should come out only after degradation of microfibrils by 

chemical or enzymatic means. However, due to high crystallinity of cellulose in the 

gelatinous layers, in natural form it is poorly degraded by specific enzymes [66] and thus, 

has to be first dissolved by corresponding chemicals. 

To analyze the polysaccharides, which are especially strongly retained within cell wall, a 

special protocol was developed [83]. After removal of the extractable polysaccharides by 
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chelators and concentrated alkali, the residual cell wall material was dissolved in solution of 

lithium chloride in N,N-dimethylacetamide and afterwards cellulose was precipitated by 

water. Such treatment turned natural cellulose I (with parallel orientation of individual 

cellulose chains) into cellulose II (with antiparallel orientation of individual cellulose chains) 

and made it completely degradable by purified cellulase. The matrix polysaccharides, which 

were present in the fraction, remained in polymeric form, making possible to separate them 

by gel-filtration for further analysis. 

We have compared the composition of matrix polysaccharides, strongly retained by 

cellulose microfibrils, in fibers with different proportions of the secondary cell walls of xylan 

and gelatinous types (Figure 4). The polymers from fibers with only xylan type secondary 

cell wall eluted in the region below 30 kDa. The monosaccharide analysis and antibody 

binding indicated that the major component of this fraction was xylan. It is known that 

small proportion of matrix polymers, both in the primary and the secondary cell walls get 

entrapped by cellulose microfibrils in the process of their crystallization [84,85]. Some 

polygalacturonic acid was also present, which could be originated from the primary cell 

wall. 

 

Figure 4. Elution profiles of polysaccharides strongly retained by cellulose microfibrils in the xylan and 

gelatinous cell walls and the relative monosaccharide content (mol%) of the main fractions of these 

polysaccharides. 

In fibers with the G-layers, the major peak of matrix polysaccharide eluted between 100 and 

400 kDa; its predominating component was pectic galactan. This galactan from flax fibers 
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was characterized by various techniques, including 1H and 13C NMR and antibody binging 

[83]. The ratio between high and low molecular mass peaks on the elution profile depended 

on the proportion of the S- and G-layers within the fiber cell wall. Antibody to xyloglucan 

epitopes didn’t bind any fraction on the elution profile. 

The proportion of pectic polymers, which were strongly retained by cellulose microfibrils, 

from their total content in cell wall of the gelatinous type, could be much higher than that of 

xylan in the S-layers. Such selectivity in entrapping of certain polymers can not be explained 

by their affinity to cellulose as the charged pectic molecules are far less competitive, 

compared to xylan. The obtained data suggest the alternative mechanism of interaction 

between cellulose and pectic galactan, which is specifically developed in cell walls of the 

gelatinous type. 

The above data suggest that in cellulosic fibers it is pectic galactan that is entrapped by 

laterally interacting cellulose microfibrils. This polymer, due to ability to form associates, 

can perfectly fit the proposed function in tension creation, as illustrated in Figure 3. In the 

xylan type of secondary cell wall (a), high content of matrix polysaccharides prevents the 

lateral interaction of cellulose microfibrils. At low content of matrix polysaccharides in G-

layer (b), cellulose microfibrils tend to lateral interactions, giving reason for higher degree of 

crystallinity and larger size of crystallites. Matrix polysaccharides with high affinity to 

cellulose, if entrapped (c) won’t cause much of tension. Most effective would be compact 

polysaccharide of considerable size with low affinity to cellulose (d). Associates of pectic 

galactan with RG I backbone may be a good choice of Nature for such purpose. They have 

compact structure of considerable volume, which has poor ability (due to charged surface) 

to interact with cellulose (e). 

Additional arguments for the important role of pectic galactans in creation of tension come 

from the analysis of the course of the G-layer formation and of in muro modifications of 

matrix polymers, which was in detail performed on flax cellulosic fibers. 

6. Dynamics of the G-layer formation and in muro modifications of cell 

wall polymer 

Formation of a cell wall layer is a complicated event. Partly it is based on the processes of 

polysaccharides’ self-assembly in specific surroundings. Besides, the cell wall formation may 

involve modification of the interacting polysaccharides. The very illustrative example of the 

latter is the remodeling of the deposited G-layer in flax cellulosic fibers. In the dynamics of the 

G-layer formation two stages are clearly visualized at microscopic investigation of the flax 

fiber cell wall formation [71,86]. Under electron and/or light microscope, one can see that the 

inner part of the cell wall has a characteristic appearance of the loose structure where the 

electron dense parallel bands alternate with light regions; the outer part has much more 

homogenous structure (Figure 5). These two parts of the cell wall are designated as the Gn- 

and G-layers. During formation of the secondary cell wall, the thickness of outer layer 

gradually increases, while additional portions of the Gn-layer are added by the protoplast. 

This indicates that with time the Gn-layer is transformed into the G-layer. 
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Figure 5. A model of the Gn-layer to the G-layer transformation in gelatinous fibers: a – electron 

microscopy of developing flax fiber cross-section; two layers (Gn and G) are obvious; b – scheme of 

developing flax fiber cross-section, showing a tissue-specific galactan delivered by specific Golgi 

vesicles to the developing Gn-layer; c – the nascent galactan is interspersed between cellulose 

microfibrils, preventing their association and maintaining the loosely packed morphology characteristic 

of the Gn-layer of secondary cell wall. During cell wall maturation, high molecular galactan partially 

digested by β-galactosidase, releasing free galactose; d – reducing of side chain length of galactan by 

galactosidase allows cellulose microfibrils to interact laterally, entrapping the galactan. Thus densely 

packed G-layer that is rich in crystalline cellulose is formed. The presence of entrapped galactan during 

lateral interactions of axially oriented microfibril causes longitudinal tensile stress in cellulose; e – 

dynamics of gelatinous layers deposition and remodeling in cellulosic fibers (left to right). ML – middle 

lamellae, PM – plasmalemma, PCW – primary cell wall, Gn – newly deposited gelatinous layer of 

secondary cell wall, G – mature gelatinous layer of secondary cell wall. 

Transition from the Gn- to G-layer is coupled with changes in cellulose crystallinity. It is 

confirmed by the cytochemical analysis using the enzyme–gold complex, which showed that 

as distinct from G-layer, Gn-layer poorly bound cellobiohydrolase, the substrate of which is 

crystalline cellulose [58,87]. Besides, in pulse-chase experiments with 14СО2 with intact flax 

plant, the dynamics of cellulose crystallization in fiber-enriched peels from all other 

analyzed samples. In roots, stem xylem, and stem apical part, which do not contain fibers 

with the gelatinous cell wall, the proportion of crystalline cellulose did not change during 
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the entire experiment, while in fibers starting at the same level as in other tissues, it 

increased twice through the first day of chase and only later attained the plateau, which was 

at much higher level than in other tissues [88] (Figure 6). This indicated that crystallization 

of cellulose microfibrils in the G-layer was a biphasic process: the first stage occured right 

after the individual cellulose chain synthesis, similar to other plant tissues, while the second 

stage, which gave additional increase in crystallinity, occured in muro – within cell wall. 

 

Figure 6. Radioactivity of crystalline cellulose of total cell wall radioactivity in the different part of flax 

plant after 40 min of photosynthesis with 14CO2 (pulse) and during different periods of plant growth in 

the absence of a radioactive substrate (chase). Modified from data in [88]. 

The Gn- and G-layers differently bind not only cellobiohydrolase probe, but also the LM5 

antibody, which is specific for β-(14)-galactan [89]. With LM5 the number of gold particles 

per area unit in the Gn-layer was fivefold higher than in the G-layer [71]. So, the reverse 

pattern was observed with binding the probes for cellulose crystallinity and for pectic 

galactan. Keeping in mind that antibody binding depends not only on the presence of the 

epitope but also on its availability, we consider it possible to suppose that changes in the 

degree of cellulose crystallization were related to in muro modification of tissue-specific 

galactan. An additional argument for such suggestion is a disappearance in the G-layer of 

dark bands, which are produced in the Gn-layer at galactan secretion by the Golgi apparatus 

and are well distinguished under electron microscope [71,74]. 

The pectic galactans are subjected to intensive in muro modifications. The investigation of 

galactan metabolism using the pulse-chase approach [2] confirmed that this polymer is 

synthesized in the Golgi apparatus, secreted outside the plasma membrane, and interacts 
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with cellulose microfibrils. Flax fibers, while forming the secondary cell walls, have a 

peculiar mechanism of polysaccharide secretion. Golgi-derived vesicles first accumulate in 

the cytoplasm and only later fuse with the plasma membrane to give their contents to the 

apoplast [74]. These Golgi derivatives as well as the layers of the secondary cell wall, 

especially the inner “striated” layer, bind the LM5 antibody, indicating that all these 

structures contain galactan. It suggests that this peculiar type of galactan secretion 

permitting for filling large spaces of the periplasm facilitates the contact between galactan 

and cellulose microfibrils when they are in the process of assembly and may be necessary 

for preventing lateral interaction of cellulose microfibrils right at their deposition. Such a 

mechanism of secretion allows to accumulate a sufficient amount of the nascent pectic 

galactan before it is incorporated into the cell wall. This nascent form of the pectic galactan 

can be collected from the tissue homogenization buffer and compared to the polymer 

strongly retained by cellulose microfibrils. The composition and structure of these 

polysaccharides together with tracing in pulse-chase experiments [68-70,83] permit to 

consider the entrapped by cellulose microfibrils galactan as a derivative of the nascent 

galactan. The comparison of these polymers revealed the following differences: the nascent 

polysaccharide elutes at gel-filtration as having higher molecular mass (in the 700-2000 kDa 

region) and has higher degree of branching and longer side chains, as compared to cell wall 

galactan [83]. 

The detected differences between the nascent and entrapped galactans suggested that they 

might be the result of in muro galactan modification by the enzyme cleaving off a part of the 

galactan side chains. Indeed, the histochemical staining of stems and hypocotyls with 

corresponding chromogenic or fluorogenic substrates shows β-galactosidase activity to be 

localized to developing fibers [64,76]. The gene of β-galactosidase is among the most up-

regulated ones upon induction of the G-layer formation [63,78]. The substantial amounts of 

free galactose, which is the product of β-galactosidase action is present specifically in fibers 

forming gelatinous cell wall [76]. 

Shortening of the galactan side chains permits microfibril lateral interaction, due to which 

an additional portion of galactan is captured by them. The necessity of pectic galactan 

modification with the participation of β-galactosidase for the remodeling of cell wall 

supramolecular structure and transformation of the Gn-layer into mature the G-layer was 

demonstrated [75]. The role of fiber-specific β-galactosidase in providing the particular 

mechanical properties of gelatinous fibers was confirmed with transgenic flax plants 

(reduced galactan modifications – less mechanical strength) [75]. Antibodies raised to fiber-

specific β-galactosidase of flax, revealed similar protein in the G-layers of cellulosic fibers in 

other plants (poplar tension wood fibers and both primary and the secondary phloem fibers 

of hemp), indicating that the process of the G-layer remodeling may be similar in fibers of 

different origin [77]. 

Thus, in the last several years the views on matrix polysaccharides of the gelatinous cell 

walls have changed dramatically: from rejecting their presence – to ascribing the major role 

to them in the development and function of cellulosic fibers. 
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7. Conclusions and perspectives for future research 

Summary of our ideas on the cell wall design of cellulosic fibers and the origin of their 

contractile properties include the following statements, based on the considered in the 

current review literature data and our own results: 

- Tension is caused due to lateral interaction of cellulose microfibrils and entrapment of 

matrix polysaccharides. 

- Lateral interaction is possible because of very high cellulose content, absence of xylan 

and lignin. 

- Similar axial orientation of all cellulose microfibrils in thick G-layer helps to cumulate 

tension of individual microfibrils and to develop it in the necessary direction. The effect 

is increased due to extreme length of fiber cells. 

- The entrapped polysaccharide – complex rhamnogalacturonan I with galactan side 

chains of specific structure and distribution, which is able to form water-soluble 

associates. 

- Entrapment of such associates leads to increased mesoporosity and to the development 

of cellulose microfibril tension. 

- High hydroscopic capacity of RG I helps to keep water in the G-layer. 

- Conditions for lateral interaction of cellulose microfibrils may be provided by in murо 
modification of deposited polysaccharide by fiber-specific galactosidase. 

- Additional important factors may be the interaction of the G-layer with the S-layer 

through the action of xyloglucan-modifying enzyme, the activity of which is mainly 

detected at the boundary between layers, and/or different deformation behavior of the 

S- and the G-layers upon swelling due to different orientation of cellulose microfibrils. 

Cellulosic fibers are the example of very peculiar cell wall type. Its formation includes 

significant reprogramming of synthesis and secretion of matrix polysaccharides, 

reorientation of cellulose microfibrils, active remodeling of the deposited cell wall layers, 

specific inter- and intra-molecular interactions between cell wall polymers. The study of 

these processes may give additional clues for general understanding of the plant cell wall 

formation, which still belongs to the most enigmatic biological processes. Of special interest 

is the investigation of specific three-dimensional organization of pectic galactans from 

cellulosic fibers in order to elucidate the largely unknown principles of supramolecular 

structure of complex polysaccharides. Comparison of the gelatinous cell wall formation in 

fibers of various organs may help to figure out the biological determinants of plant fiber 

yield and quality in order to improve the characteristics of plant biomass for effective 

conversion into biofuels and bio-based products. 
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