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1. Introduction 

The acoustic wave of displacements in piezoelectric media is usually accompanied by a 

quasistatic wave of the electric potential. This implies that, using acoustic waves, electric 

signals can be transmitted over a crystal at the velocity of sound. Such possibility opened 

the way to numerous applications of acoustic waves in electronic devices and even led to the 

formation of a special field of science called acoustoelectronics. The applied aspect provides 

an important stimulus for extensive investigations devoted to various features of acoustic 

fields in piezoelectric crystals (Royer & Dieulesaint, 2000). These investigations are also 

stimulated by basic interest in the study of new effects in media with electromechanical 

couplings (Lyubimov, 1968; Balakirev & Gilinskii, 1982; Lyamov, 1983). The acoustics of 

piezoelectric crystals is still an extensively developing field of solid state physics [see, e.g., 

the review article by Gulyaev (1998)], the more so that even purely basic investigations in 

this field frequently contain ideas for fruitful, however not immediately evident, 

applications. 

It should also be noted that the anisotropy often influences the properties of piezoelectric 

crystals in a nontrivial way, and may sometimes lead to qualitatively new phenomena. In 

particular, it is very important from the practical standpoint to know the wave propagation 

directions m for which the electric field components possess maximum amplitudes (Alshits 

& Lyubimov, 1990) and, on the contrary, to reveal the nonpiezoactive directions (Royer & 

Dieulesaint, 2000; Lyamov, 1983) in which the electric signals are not transmitted. Taking 

into account that, irrespective of the anisotropy, the electric field in an acoustic wave is 

always longitudinal (E || m) and the electric induction is always transverse (D  m), we 

have to distinguish (Lyamov, 1983) between the directions of longitudinal and transverse 

nonpiezoactivity in which E = 0 and D = 0, respectively. This paper presents the results of 

investigations aimed at a detailed analysis of the nonpiezoactivity of both types.  
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Another important aspect of this problem is related to directions m, in the vicinity of which 

the vector fields of displacements (u) and the acompanying electric components (E, D) 

exhibit singularities. According to the results obtained by Alshits, Sarychev & Shuvalov 

(1985), Alshits et al (1987), and Shuvalov (1998) this very situation takes place near the 

acoustic axes, where the orientational singularities in the degenerate branches of 

eigenwaves are observed for the u and D fields, and the amplitude singularities, for the E 

field. This paper deals with orientational singularities of another type, which occur in the 

vicinity of the transverse nonpiezoactivity directions in the vector fields D(m), i.e. around 

the points 0m  on the unit sphere such that 0 ) D m( 0  (Alshits, Lyubimov & Radowicz, 

2005 a, b). 

Below we will formulate the equations determining special directions m for which either  

Eα (m) = 0 or Dα (m) = 0 for all three branches of the acoustic spectrum ( α = 1, 2, 3). These 

directions have different dimensionalities: the typical solutions appear as lines of zero 

electric field ( Eα = 0) and points of zero induction (Dα = 0) on the unit sphere m2 1 . The 

equations obtained will be analyzed both in the general case and in application to various 

particular crystal symmetry classes. The two types on nonpiezoactivity are closely related to 

the crystal symmetry, but they can also exist in triclinic crystals possessing no elements of 

symmetry. The corresponding theorems of existence are proved. 

The possible types of singularities in the vector field Dα (m) in the vicinity of the transverse 

nonpiezoactivity directions will be considered. In particular, it will be shown that, 

depending on the material moduli, the singularity in an isolated point m0  may be 

characterized by the Poincaré indices (topological charges) 
D

n = 0, ±1, ±2. The general 

analytical expressions will be obtained for the 
D

n  values in triclinic crystals with arbitrary 

anisotropy and specified for a large series of crystals belonging to particular crystal 

symmetry classes. Only the solutions corresponding to singularities with 
D

n = ±1 are 

topologically stable, while singularities of the other types either split or disappear upon an 

arbitrary triclinic perturbation of the material tensors. However, the sum of indices for any 

splitting must be equal to the initial index 
D

n . 

The chapter is mainly based on our papers (Alshits, Lyubimov & Radowicz, 2005 a, b). 

2. Statement of the problem and general equations  

In piezoelectric crystals, purely mechanical characteristics, the elastic displacement vector 

u(r, t), the distortion tensor β̂ (r, t), and the stress tensor σ̂ (r, t), are related to such electrical 

quantities as the potential (r, t) and the electric field strength E(r, t), and induction D(r, t). 

The fields of β̂ (r, t) and E(r, t) can be expressed in terms of their own potentials as 

        ˆ ,  , ,           ,   – , .  t t t t    r u r E r r  (1)  
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The interrelation of these characteristics is determined by the constitutive equations (Landau 

& Lifshitz, 1984): 

    ij ijkl kl kij k i ikl kl ik kσ c β e E , D e β ε E ,   (2) 

where ĉijklc   is the tensor of elastic moduli, êkije   is the tensor of piezoelectric moduli, 

and ̂ikε  is the permittivity tensor. In such a piezoelectric medium, the bulk acoustic wave 

with the phase velocity v and the wave vector k = km must be a superposition of mechanical 

and electrical dynamic fields:   

 ik   u u m r0 0{ , } { , }exp{ ( )}.vt   (3) 

These fields obey the usual equations of motion (Landau & Lifshitz, 1984):   

 ˆDiv , Div  0, Duσ ρ   (4) 

where ρ  is the density of medium. Here, we use the well-known quasi-static approximation 

valid to within the terms proportional to the ratio 2 10( ) 10v / c ~  (c is the velocity of light). 

Combining the above relations, we readily obtain a homogeneous equation for the 

polarization vector u0  (Landau & Lifshitz, 1984): 

 ˆ ˆ 0,   m u e e u(0)
0 0( , ) [ / ]F v F  (5) 

where 

 ˆ ˆ ˆ ˆ    m m m m m me(0) 2F c ρv I, e , ε ε ,      (6) 

symbol  denotes the dyadic product, and Î  is the unit matrix. A necessary condition for 

the existence of nontrivial solutions of the homogeneous equation (5)  is 

 ˆ mdet ( , ) 0.F v   (7) 

This is a cubic equation for the square of phase velocity v, which determines the three 

branches of the velocity of the bulk acoustic waves vα(m) (α = 1, 2, 3). 

Orientations of the corresponding mutually orthogonal polarization vectors u0α (m) of the 

isonormal eigenwaves can be expressed in terms of the ˆ
αF  matrix, which is adjoint to the 

matrix ˆ ˆ ( ) ( ( ) )m m mα α αF F v ,  and is determined from the condition ˆ ˆ ˆ ˆdetα α αF F I F . As can be 

readily checked, Eq. (5) for any vector c such that ˆ 0cαF  is satisfied for  

 ˆ( )||u m m c.0 ( )α αF    (8) 

It should be emphasized that the direct relation (8) between the polarization vector ( )u m0α   

and the wave normal m will be widely used in the subsequent analysis. 
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Once the field of elastic displacements for a given wave branch ( )u rα ,t  is known, we can 

also determine the corresponding electric components (Landau & Lifshitz, 1984). For the 

subsequent analysis, these components are conveniently represented [by analogy with Eqs. 

(3)–(8)] in a coordinate-free form as 

 ,ˆ/ , ,    e u E m D uα α α α α α-ik ikN  (9) 

 ˆ ˆ ˆ ˆ ˆ   - ( ) /N e ε e εm m m m m m.    (10) 

Relations (9) together with condition (8) determine the functions E m( )α  and D m( )α  

necessary for the subsequent analysis. 

As can be readily seen, ˆ m 0N . This identity and the third relation in (9) clearly illustrate 

the well-known property (see Introduction) according to which the electric field E m( )α  is 

purely longitudinal, whereas the inductionD m( )α  is purely transverse: 

          || E m D m.α α,  (11) 

On the other hand, the same identity ˆ m 0N  implies one useful property of the N̂  matrix: 

 ˆ det 0,N    (12) 

which indicates that this matrix is planar and, hence, can be represented as a sum of two 

dyads. 

3. Examples of transversely isotropic piezoelectrics 

There are three groups of piezoelectrics which exhibit a transverse isotropy of their acoustic 

properties. They belong to the following classes of symmetry (Sirotin & Shaskolskaya, 1982): 

 2, 622,   (13) 

 , 6 ,m mm  (14) 

 , 6.  (15) 

Owing to the transverse isotropy, the formulas presented below contain only the polar angle 

θ between the m vector and the z axis coinciding with the principal axis of symmetry. 

Without loss of generality, we may proceed with the analysis upon selecting any cross 

section containing the main axis. Here, it is convenient to choose 

 (  (sin  cos  m 1 3,  0, ) ,  0, ).m m   (16) 

In these coordinates, the (0)F̂  matrix in Eq. (6) for all the six classes of symmetry (13)–(15) 

has the same quasi-diagonal form (Fedorov, 1968): 
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2 2 2
11 1 44 3 1 3

(0) 2 2 2
66 1 44 3

2 2 2
1 3 44 1 33 3

0

ˆ 0 0

0

 
 
 
 
 
 

 

  

 

,

c m c m ρv dm m

F c m c m ρv
dm m c m c m ρv

       (17) 

where d = c13 + c44. The ˆmε  vector and, hence, the ε scalar in Eq. (6) are also the same for all 

symmetry classes (13)–(15) (Sirotin & Shaskolskaya, 1982): 

 2 2
1 3 .ˆ (        m 1 1 3 3 1 3,  0, ),ε ε m ε m ε ε εm m    (18) 

However, the form of the electric vector e according to Eq. (6) for the transversely isotropic 

crystals of three types is different. For the piezoelectric media belonging to classes (13) and 

(14), the electric vectors are expressed as 

 (  e 14 1 30,  , 0),e m m     (19) 

 2 2
1 3  e 15 31 1 3 15 33{( ) ,  0, },e e m m e em m     (20) 

respectively. For a medium of the symmetry class (15), the electric vector is given by a sum 

of expressions (19) and (20). Thus, the structure of the F̂  matrix in (5) for classes (13) and 

(14) is the same as in (17), but this conclusion is not valid for the F̂  matrix of the 

symmetry classes (15), which contains no vanishing elements. In the same coordinates, the 

matrix for the piezoelectric media belonging to classes (13) and (14) has the following 

forms:  

 

( )
ˆ ,

( )





 
 

   
   

2
3 3

14 3 1

2
3 1 3

0 0

0

0 0

ε / m

N e m m

ε / m m

    (21) 

 ˆ

    
  

    
        

2 2 2
15 3 15 1 15 31 1 1 3 15 1 33 3 1 1

-1
15 3

2 2 2
31 1 33 3 15 31 3 1 3 15 1 33 3 3 3

0 ( ) 0 ( )

0 0 0 0 0 ,

0 ( ) 0 ( )

e m e m e e ε m m e m e m ε m

N e m ε
e m e m e e ε m m e m e m ε m

   (22) 

respectively. For a medium of the symmetry classes (15), the matrix N̂  is (by analogy with 

vector e) given by a sum of expressions (21) and (22). In classes (13) and (14) of higher 

symmetry, one of the eigenwave branches for any direction m is purely transverse: 

 
2 2 2 2 2 2

1 3 14 1 3

                       

.

||

   

u

66 44

(0, 1, 0),

( / ) t

t

 c c εv m m e m m
   (23) 

Such purely transverse waves of the t mode polarized orthogonally to the propagation 

plane are frequently called SH waves. The other two branches are polarized in the {m1, m3} 

plane: 
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2 2
1 34 3

2 2 2
14 1 34 3

      

        

||



 

 





 

  

u 1 3 14(2 , 0,   - Δ Δ ),

(Δ Δ ) / 2, 

l,t

l,t

dm m R

 R

m m

v m m
     (24) 

where 

 
                       

 



  

 

2 2 2 2
14 1 34 3 1 3(Δ Δ ) (2 ) ,

Δ .ij ii jj

R m m dm m

c c
   (25) 

The electric components of the above wave fields can be also determined for an arbitrary 

direction m. For a medium of the symmetry class (13):  

 
 

 

                   ( )

           ( ) (  -

                          (

  ( (

||

||



 

  





 

D

m

D u u

14 1 3

2
14 3 3 3 1

14 1 3 3 1

/ ,

/ ,  0, ) ,

) 0,

(0, 1, 0)[ )   ) ].

t t

t t

l,t

l,t l,t l,t

e ε m m u

e ε ε m m m u

e m m

 (26) 

For the less simple symmetry class (14), we present only the result for the SH-branch (23): 

   (          (  || m D 15 3) 0, 0,  , 0) .t t te m u    (27) 

The structure of acoustic waves in media of the symmetry classes (15) is more complicated. 

In this case, even a purely transverse solution ( ut || y) exists only in the xy basis plane. 

4. Lines of zero electric field on the unit sphere 

According to the second relation in (9), the electric field amplitude distribution on the unit 

sphere of the wave propagation directions is described by the equation 

  E m m m,( ) const ( )α α    (28) 

which shows that zero values of E m( )α  coincide with those of the potential /   e uα α . 

According to condition (8), these directions are determined by the equation,      

 ˆ . e m m c( ) ( ) 0αF    (29) 

The acoustic waves (3) propagating in these directions contain no electrostatic components 

Eα , as in a nonpiezoelectric medium. Even a nonzero induction field i ijk k, jD e u  in these 

directions does not influence the parameters of the displacement wave. 

The scalar equation (29) poses only one limitation on the direction of the wave normal m ≡ 
m(θ,) as a function of two spherical angular coordinates. In other words, Eq. (29) 

determines a line (or several lines) of nonpiezoelectric directions (in which Eα = 0) on the 

sphere m2 1 . It should be noted that the condition of longitudinal nonpiezoactivity, 
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 e m u m( ) ( ),α  (30) 

in some special cases can be satisfied even on the whole m2 1  sphere. This takes place, in 

particular, in the transversely isotropic crystals belonging to the symmetry classes (13) (for 

the l and t' modes (26)) and (14) (for the t mode (27)). For all other crystals, including 

transversely isotropic crystals belonging to the symmetry classes (15), the geometric locus of 

the longitudinal nonpiezoactivity has the form of lines on the unit sphere m2 1 . Such lines 

also exist in the piezoactive branches of the aforementioned high-symmetry media 

belonging to symmetry classes (13) and (14). For example, the zero-field lines Eα = 0 in the l 

and t' branches of the media of classes (14) and (15) appear at the intersection of the m2 1  

sphere with the cones of directions defined by the polar angles lθ  and tθ  as 

             2 2
33 15 31 15 31 33 15tan /(2 ), tan ( ) / .l tθ e e e θ e e e e    (31) 

For simplicity, these expressions are written in an approximate form corresponding to the 

case of a weak electromechanical interaction and a small elastic anisotropy. Nevertheless, 

one can readily check that the exact condition for the existence of the aforementioned 

nonpiezoactivity cones is the positive determinacy of the right-hand parts of the 

approximate formulas (31). 

It is possible to prove that the longitudinal nonpiezoactivity lines in fact exist practically in 

all (even triclinic) crystals. Let us consider a crystal with arbitrary anisotropy, which 

contains at least one acoustic axis of the general (conical) type. Here, it should be noted that 

no one real crystal without acoustic axes and no one triclinic crystal without conical axes are 

known so far. As was demonstrated by Alshits & Lothe (1979) and Holm (1992), the 

polarization fields of elastic displacements u m0 ( )α  for the bulk eigenwaves in such a crystal 

can be arranged on the m2 1  sphere so that one is even,  

  u m u m02 02( ) ( ),    (32) 

and two are odd, 

              u m u m u m u m01 01 03 03( ) ( ), ( ) ( ).   (33) 

The nondegenerate branch u m03( )  is always odd and continuous on the entire sphere of 

wave directions. As for the degenerate branches, u m01( )  and u m02( ) , their evenness 

depends on the representation and can be changed simultaneously. These branches are 

continuous at all points of the sphere except for some open-ended lines on which the 

u m01( )  and u m02( )  functions change sign. Such “anti-sign” lines can be arbitrarily 

deformed on the unit sphere without changing the positions of end points (coinciding with 

the points of degeneracy). In fact, the representation is chosen by setting certain fixed 

positions of the anti-sign lines (coinciding for both degenerate branches).  
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One can readily check that the aforementioned properties of the fields of elastic 

displacements, which were established in (Alshits & Lothe, 1979; Holm, 1992) for purely 

elastic media, are also valid for piezoelectrics. Taking into account that, according to 

relations (33), the u m03( )  function is odd and the e(m) function is [by definition (6)] even, 

we may conclude that the potential 

  m e m u m03 03( ) ( ) ( ) /     

is an odd function 

    m m03 03( ) ( ).   (34) 

This result implies that, for any path connecting the opposite points m and –m on the unit 

sphere, there exists at least one point m0  such that  m03 0( ) 0 . In scanning the paths on the 

unit sphere, points m0  will apparently form a closed line representing a geometric locus of 

the directions of longitudinal nonpiezoactivity for the nondegenerate branch. 

For the degenerate branches  m01( )  and  m02( ) , the considerations should be somewhat 

modified, while being still generally analogous to those used in solving a similar problem 

(Alshits & Lothe, 1979) concerning the existence of the lines of solutions for exceptional bulk 

waves related to the same degenerate branches in semi-infinite elastic media. Not 

reproducing these considerations here, we only formulate the result: the longitudinal 

nonpiezoactivity lines exist in both degenerate branches and pass from one branch to 

another at the degeneratcy points. Thus, the following theorem of existence is valid: 

All three wave branches in an arbitrary crystal, which contains conical acoustic axes, must possess 

lines of longitudinal nonpiezoactivity directions on the unit sphere. 

It should be also noted that, when a wave propagates along an acoustic axis md  of any type, 

the continuum of possible orientations of the wave polarization u in the plane of degeneracy 

always contains a vector orthogonal to the )e m( d  direction. In view of the criterion (30), this 

ensures nonpiezoactivity of the corresponding wave. Therefore,  

acoustic axes must belong to the lines of longitudinal nonpiezoactivity. 

The elements of crystal symmetry can become an additional factor accounting for the 

phenomenon of nonpiezoactivity. According to (Royer & Dieulesaint, 2000), also  

symmetry axes determine the directions of longitudinal nonpiezoactivity for purely transverse modes,  

while  

a symmetry plane is the geometric locus of directions of longitudinal nonpiezoactivity for the related 

SH waves.  

One can add that  

the planes orthogonal to symmetry axes of even order are the geometric locus of directions of 

longitudinal nonpiezoactivity for in-plane polarized waves. 
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Let us consider, for example, a monoclinic piezoelectric crystal belonging to one of the two 

possible symmetry classes: m or 2. In the first case, the electric vector e of any wave 

propagating in a plane of symmetry m must, obviously, lie in the same plane being, hence, 

orthogonal to the polarization vector u0t  of all SH waves of the t branch. In the second case, 

the e vector for a wave normal occurring in the plane perpendicular to the dyad (2-fold) axis 

of symmetry must be parallel to this axis and, hence, orthogonal to polarization vectors 

(belonging to said plane) of the l and t' waves. Naturally, the latter property is valid for any 

other symmetry axis of even order. In monograph (Royer & Dieulesaint, 2000), this rule was 

formulated for planes orthogonal to the tetrad (4-fold) and hexad (6-fold) axes. 

The above theorems are summarized in Table 1. 

 

Directions of 

nonpiezoactivity 

Directions of acoustic 

and symmetry axes 

Any direction in 

symmetry planes 

Any direction in planes 

orthogonal to symmetry 

axes of even order 

Wave branches Transverse waves SH waves In-plane polarized waves 

Table 1. Directions of obligatory longitudinal nonpiezoactivity ( Eα
= 0) in crystals 

In particular, the coordinate planes of the crystal system orthogonal to the tetrad and dyad 

axes in cubic piezoelectrics (symmetry classes 43m  and 23) must be nonpiezoactive for the 

corresponding l and t' branches. At the same time, the diagonal symmetry planes {110} are 

nonpiezoactive for the corresponding t (SH) waves. One can check that, in the vicinity of the 

coordinate axes, the potential amplitudes for these branches can be represented in spherical 

coordinates (, ) as (Fig. 1) 

   
2sin2 ,l,t θ     (35) 

   2cos2 .t θ   (36) 

 

Figure 1. Polar diagrams of the electric potentials (a)  ( )l,t  and (b)  ( )t  at θ = const in the vicinity 

of the (0, 0, 1) direction in a cubic piezoelectric crystal. Numbers 1, 2, and 3 refer to the angles 

 1 2 3θ θ θ ; solid and dashed lines relate to the potentials of different signs. 
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5. Zero-induction points on the unit sphere  

5.1. General case of arbitrary anisotropy 

Now let us consider the conditions determining the propagation directions m0  in which the 

electric induction vector ˆD uα αikN  defined in (9) vanishes. Taking into account identity 

(12) and the definition of the adjoint tensor 

 ˆ ˆ ˆ ˆ detNN I N,   (37) 

one can readily check that Dα = 0 for the directions m0  such that uα || ˆdN , where d is any 

vector obeying the condition ˆdN  ≠ 0. For these directions m0 , according to condition (8), 

we also have 

 ˆ ˆ ||m c d( )αF N    (38) 

In the general case, this condition gives two equations with two unknowns θ and , which 

determine the positions of isolated points  m0( ),  such that Dα = 0 on the unit  

sphere m2 1 . There is the well-known Brouwer theorem in the topology, according to 

which  

any continuous transform on a sphere, not mapping any point by its antipode, has at least two 

stationary points.  

Now let us consider a distribution of vectors D m( )α  continuous everywhere on the unit 

sphere. The continuity of D m( )α  is ensured when the corresponding branch α is 

nondegenerate. According to Brouwer’s theorem, this distribution of Dα  vectors tangent to 

the sphere must have two stationary points for which Dα = 0. On the other hand, relations 

(9) and (10) imply that this distribution also possesses an additional property: D m(- )α || 

D m( )α . For this reason, the pair of points stipulated by Brouwer’s theorem includes the 

inversion-equivalent stationary points m0  and –m0 . Thus, the following theorem of 

existence of the transverse nonpiezoactivity directions is valid: 

In any crystal of unrestricted anisotropy each nondegenerate branch must contain at least one pair of 

inversion-equivalent zero-induction points  0m  such that  α 0( ) 0D m  on the unit sphere. 

Therefore, the zero-induction points in a wave field Dα(m) must exist even in triclinic 

crystals. Of course, the positions of such points in the general case (i.e., the solutions of 

Eq. (38) in the general form) cannot be found analytically. However, in some more 

symmetric crystals, nonpiezoactive directions m0  can be found without cumbersome 

computations. 
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5.2. Zero-induction points related to elements of the crystal symmetry 

5.2.1. Longitudinal waves propagating along symmetry axes  

Let us consider a wave propagating along the direction m0 , which coincides with a 

symmetry axis of any order except for dyad axes (e.g., this can be the 3, 4, 4 , 6, or 6 -fold 

axis). As is known (Fedorov, 1968), any symmetry axis (including a dyad axis) is a 

longitudinal normal. Evidently, the electric induction D m0( )l  accompanying the 

longitudinal wave  )||u m0( l  must be zero, otherwise the D m0( )l  vector would possess 

two equivalent orientations, in contradiction with the single-valued third relation in (9): 

 .ˆD m m0 0( )l ikN   (39) 

It should be noted that this argument does not work in the case of transverse branches. For 

the selected symmetry directions they are always degenerate, that is, possessing equal phase 

velocities ( )t tv v  and, hence, arbitrary orientations of ut,t  and Dt,t  in the plane: 

 .,  }    u D m0{ t,t t,t    (40) 

The wave propagating along a dyad axis should be treated separately (albeit with the same 

result). In the general case, this direction is not an acoustic axis. On the other hand, the 

transverse isonormal vectors D m0α  ( α t,t ,l ) are determined to within the sign (like uα ) 

and, hence, their symmetry rotations due to the dyad axis cannot be considered as different 

solutions. So, one can readily check that, for a propagation direction along the dyad axis, the 

transverse branches α t,t  are again characterized by nonzero induction vectors. However, 

the longitudinal branch in the same direction always obeys the relation D m0( ) 0l . Indeed, 

combining Eqs. (10) and (39) for m m0 , we obtain 

 
ˆ ˆˆ ˆ/ .

ˆ
  


m m m m

D m m m m
m m

0 0 0 0
0 0 0 0

0 0

( )[( ) ]
( ) ( )l

ε e
ik N e

ε   (41) 

Let us check that the right-hand part of this expression vanishes even for a monoclinic 

crystal of the class 2. Selecting the z axis in (41) along the dyad axis  || m0(2 ) , we obtain 

 / .
 

    
 

D 13 33 23 33
13 23

33 33

,   ,   0l

ε e ε e
ik e e

ε ε
  (42) 

However, according to (Royer & Dieulesaint, 2000; Sirotin & Shaskolskaya, 1982), the off-

diagonal components of ê  and ε̂  tensors, entering into Eq. (42) for the symmetry class 2 in 

this coordinate system, are vanishing:    13 23 13 23 0e e ε ε  and, hence, 

 || D m0( 2) 0.l  (43) 
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Evidently, Eq. (43) is valid for all crystals of various classes possessing dyad axes. Thus, the 

following statement is valid: 

A longitudinal wave propagating along any axis of symmetry in a piezoelectric crystal is 

accompanied by an electric component with zero induction.  

For example, let us consider a piezoelectric crystal of the orthorhombic symmetry class 222. 

According to the above theorem, all three dyad axes in this crystal are the zero-induction 

directions m0  for the longitudinal modes. However, it can be shown that another four 

inversion-nonequivalent asymmetric directions m0  with zero induction ( D 0l ) may exist 

in a quasi-longitudinal branch of this crystal: 

    0 0 0 0( , ),  ( , )θ θ π , (44) 

where the angles of spherical coordinate system are determined by approximate relations 

 , . 


36 1 2 25 1
0 0

14 2 25 1 3 14 2

arccot arctan
( )

e ε ε e ε
θ

e ε e ε ε e ε
  (45) 

For simplicity, solutions (45) are written in the approximation of small piezoelectric moduli 

and weak elastic anisotropy. In this approximation, a necessary condition for the existence 

of the above series of zero induction points is that all the piezoelectric moduli entering into 

relations (45) must have the same sign (Fig. 2). It should be noted that cubic piezoelectric 

crystals (symmetry classes 43m  and 23) are always described by Fig. 2b, since additional 

zero-induction directions (44), (45) always appear along the triad axes. 

 

Figure 2. Diagrams of the directions of propagation of the transversely nonpiezoactive acoustic waves 

of quasi-longitudinal branch in crystals of the symmetry class 222. The stereographic projections are 

given for the cases when (a) the sign of the piezoelectric modulus 36e  is opposite to that of 14e  and/or 

25e  and (b) all piezoelectric moduli have the same sign. 

5.2.2. Transverse (SH) waves propagating in symmetry planes 

Example 1: symmetry class m. Let the z axis be perpendicular to the plane of symmetry of a 

monoclinic crystal (z ⊥ m) and consider the t branch of a wave propagating in this plane: 
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        || 1 2( ,  ,  0), (0, 0, 1).tm mm u  (46) 

One can readily check that in such waves 

 .       || ||D u35 1 34 2(0, 0, )t t te m e m u    (47) 

Therefore, the symmetry plane always contains a single direction m0  corresponding to zero 

induction Dt , which is determined by the azimuthal angle 0  (counted as in Fig. 1): 

 .  / /   0 01 02 0 02 01 35 34( , , 0), tanm m m m e em  (48) 

The maximum amplitude of Dt  in this plane corresponds to the direction  

  -  mmax 02 01( , , 0),m m        (49) 

which is perpendicular to m0 .  

This is the most general example. Thus, the following theorem is valid: 

In any symmetry plane there is always at least one direction for propagation of an SH wave with 

vanishing electric induction. 

The other examples below just specify orientations of the zero-induction direction in various 

symmetry classes. 

Example 2: symmetry class 3m. In trigonal crystals, the situation with transverse 

nonpiezoactive directions for the t waves in each of the three symmetry planes containing 

the triad axis is completely analogous to the above case of a monoclinic crystal. For example, 

in the yz symmetry plane, relations (46)–(48) have to be replaced by 

        || 2 3(0,  ,  ), (1, 0, 0),tm mm u  (50) 

 ,      || ||22 2 15 3(- , 0, 0)t t te m e m uD u     (51) 

      m 02 15
0 02 03 0

03 22

(0, , ), tan
m e

m m θ
m e

 (52) 

where 0θ  is the polar angle between m0  and the triad axis. 

Example 3: symmetry class mm2. For a t wave propagating in the yz symmetry plane of an 

orthorhombic crystal, we have 

 
            

              .

||

|| ||

m u

D u

2 3

15 3

(0,  ,  ), (1, 0, 0),

( , 0, 0)
t

t t t

m m

e m u
   (53) 

Evidently, in this case 
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       0 max(0, 1, 0), (0, 0, 1).m m  (54) 

Relations (53) and (54) are also valid for tetragonal crystals of the symmetry class 4mm. 

Example 4: symmetry classes 42m , 43m , and 23. For the x axis parallel to the dyad axis 

  ||( 2)x , transverse waves propagating in the diagonal plane (1, 1 , 0) obey the relations 

        || 1 1 3( ,  - ,  ), (1, 1, 0).tm m mm u    (55) 

These waves exhibit electric components with the amplitude of induction 

       || ||D u14 3(1, 1, 0)t t te m u       (56) 

and, hence, have the following special directions: 

  -  ,     0 max(1, 1, 0) / 2 (0, 0, 1).m m  (57) 

The found above orientations of zero-induction direction m0  for a series of crystal classes 

are summarized in Table 2. 

 

Class of symmetry m 3m mm2, 4mm 42m , 43m , 23 

Symmetry plane m  z m || yz m || yz m || ( 110 ) 

Direction m0  
01

 (

/ /e e




m0 01 02

02 35 34

, ,0)m m

m m

 
03

 (

/ /e e




m0 02 03

02 15 22

0, , )m m

m m
m0 = (0, 1, 0) m0 = (1, -1, 0)/ 2  

Table 2. Propagation directions of transversely nonpiezoactive SH waves in the symmetry planes of 

crystals of various symmetry systems. Certainly, in Table 2 for crystals more symmetric than monoclinic 

(m) and containing other equivalent symmetry planes, the directions 0m  of zero induction found are 

accordingly multiplied. For instance, in crystals of the orthorhombic (mm2) and tetragonal (4mm) classes 

there is also the symmetry plane m || xz where the corresponding transversely non-piezoactive 

direction is 0m  = (1, 0, 0). 

In conclusion, let us consider the more exclusive case of hexagonal symmetry classes (14).  

Example 5: symmetry classes 6mm and m (14). Any plane containing the principal  

symmetry axis in such a crystal is the plane of symmetry m. According to relations (27), the 

electric induction vector of t waves propagating in such planes is orthogonal to m and 

proportional to 3m . Therefore, Dt  vanishes along the entire equator 3 0m : 

    D 1 2( , , 0) 0.t m m   (58) 

Note in passing that at the same equator for the same symmetry classes the other transverse 

branch (t') polarized along the principal axis also forms a line of zero electric displacement: 

     D 1 2( , , 0) 0.t m m    (59) 
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6. Orientational singularities of the induction fields  

The vector fields D m( )α , which are orthogonal to the wave normal m, may exhibit 

orientational singularity in the vicinity of directions of the two types: zero-induction points, 

where rotations are topologically allowed (Alshits, Lyubimov & Radowicz, 2005a, 2005b), 

and along acoustic axes, where inductions of degenerate branches, as a rule, do not vanish, 

but rotate together with the corresponding displacement vectors u0α  (Alshits et al, 1987).  

Below we shall consider the both types of singularities concentrating our attention basically 

on the directions of transverse nonpiezoactivity.  

6.1. General case of arbitrary anisotropy 

6.1.1. Orientational singularities in the vicinities of zero-induction points  

As was mentioned above, the vector fields D m( )α  in the zero-induction points m0  may 

exibit rotations (Fig 3). Let us consider the D m( )α  function for m =m0 + Δm, where 

m m0Δ  and |Δm| << 1. Using condition (8) and the third relation in (9), we obtain 

 ˆ ˆ  ||D m m m c.( ) ( ) ( )α αN F    (60) 

Taking into account that D m0( ) 0α , one has from (60) to a first approximation: 

 ˆ ˆ ˆ .||



    
  m m

D m m m m c

0

( ) Δ Δ [ ( ) ( ) ]α α i α
i

Q m N F
m

   (61) 

 

Figure 3. A singular vector distribution D m( )α  in the vicinity of a zero-induction point m0 .  

For the transverse D m( )α  field [see (11)], the asymmetric tensor entering into formula (61), 

 ˆ ˆ ˆ ,  
m m mm m c|

0
( ) ( )α αQ N F   (62) 

must be planar, that is, its spectral expansion can be represented as a sum of two dyads: 
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 ,ˆ     e e e e1 1 1 2 2 2α α α α α α αQ λ λ    (63) 

where αjλ , eαj , and eαj  are the eigenvalues and eigenvectors (left and right) of the ˆ
αQ  tensor 

( e 1α  and e 2α  must be orthogonal to m0 ). Note that the eαj  eigenvectors (in contrast to eαj ) 

in the general case do not belong to a plane orthogonal to m0 , but their components ||eαj  

oriented along m0  are insignificant for our analysis. 

Let us decompose each eigenvector into two components 

 ,ˆ    ||     ( )|| || I           e e e e m e m m e m0 0 0 0, ,αj αj αj αj αj αj       (64) 

and form a more convenient matrix 

 ,ˆ ˆˆ( )I         m m e e e e0 0 1 1 1 2 2 2α α α α α α α αQ Q λ λ     (65) 

which will be used below instead of ˆ
αQ : 

 .ˆ  || D mΔα αQ      (66) 

Let the orientation angle Φ of the D m( )α  vector be measured from the e 1α  direction, and 

the analogous angle   for Δm in the same plane, from the e 1α  direction (Fig. 4). In these 

terms, we can write 

 .




 
  

 




D e m e

D e m e

2 2 2 2

1 1 11

Δ
tanΦ tan

Δ
α α α α α

α α α αα

λ λ
λ λ    (67) 

 

 

Figure 4. The angles of orientation of the αD  and Δm vectors in the plane orthogonal to 0m . 

Thus, the complete turn of Δm around m0  in the plane orthogonal to m0  implies the 

complete turn of D m( )α  in the same or in0 the opposite direction (depending on the sign of 

det ˆ 
αQ = 1 2α αλ λ ), which corresponds to the Poincaré index of the given singular point (Fig. 5) 
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Figure 5. The two main types of singularities in the vicinity of zero points of the induction vector 

distribution in the normalized directed representation. 

 .ˆ 
D

 sgndet αn Q      (68) 

The above considerations fail to be valid in particular cases, when one of the eigenvalues  

( 1αλ  or 2αλ ) of matrices (63) and (65) vanishes. In such cases, det ˆ 
αQ  = 0, but formula (68) is 

not applicable. Indeed, let 2αλ  = 0 at m0 . Then, 

 ˆ  ||    D m m e e1 1 1Δ (Δ )α α α α αQ λ      (69) 

and a zero-induction line can pass via m0  in the direction of Δm ⊥ e 1α , but only provided 

that 2αλ  = 0 is valid. In this situation, the very concept of the Poincaré index is inapplicable. 

However, if the vanishing of 2αλ  has a strictly local character and takes place only along 

m0 , then we are dealing with a very special singularity analogous to a local-wedge 

degeneracy known in the theory of acoustic axes (Alshits, Sarychev & Shuvalov, 1985). It can 

be shown that a topological charge of the corresponding singularity in the D m( )α  field in 

this case can take one of three values: 
D

n = 0, 1. However, both situations (point and line) 

of this type with zero induction amplitude are very exclusive and never encountered in real 

(even symmetric) crystals. Below we will consider zero-induction lines of this kind in model 

crystals. However it will be demonstrated that the examples of the Dα = 0 lines, existing in 

hexagonal crystals and described by Eqs. (58) and (59), belong to a different type. 

On the other hand, the ordinary singular points (68) with indices 
D

n = 1 depicted in Fig. 5 

are rather widely encountered in real crystals. For example, all directions m0  in Fig. 2b 

corresponding to orthorhombic (222) or cubic ( 43m  and 23) crystals are characterized by 

topological charges 
D

n = 1 (in Fig. 2, filled and empty circles correspond to +1 and –1, 

respectively). Figure 6 is a schematic diagram of the D m( )l  distribution in the central region 

of the circle in Fig. 2b. 
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Figure 6. A schematic image of the D m( )l  vector field distribution over a group of five singular points 

in the central region of Fig. 2b in the representation of nondirected segments. 

6.1.2. Orientational singularities in the D m( )α  fields around acoustic axes  

Let us consider the vector polarization fields ( )u m01,2  of degenerate branches in the vicinity 

of the direction md  of the acoustic axis. In this region the considered vector distributions 

should be very close to the plane orthogonal to the unit polarization vector ( )u m03 d  of the 

non-degenerate isonormal eigenwave being singular at md . Their rotations around the 

acoustic axis are equal to each other being described by the Poincaré index 
u

n  which is 

determined by the type of the acoustic axis (Alshits et al, 1987). The appropriate fields of 

electric induction D m1,2( )  due to the coupling (9)  ˆ ||D uα αN  have similar rotations 

characterized by the Poincaré index 
D

n  which ordinarily may differ from 
u

n  only by a sign. 

In order to find this sign we should take into consideration that the N̂  matrix is degenerate 

( ˆ m 0N ). However, one can replace N̂  by a matrix ˆ N  such that we have ˆ ˆ u uN N  for 

any u u03 , but simultaneously ˆdet   0N . These conditions are satisfied by, for example, 

the matrix 

 .ˆ ˆ ( )   m m u03d dN N     (70) 

Indeed, in accordance with (Fedorov, 1968) we have ˆ ˆdet 0  u m03 dN N . Then following 

to (Alshits et al, 1987) one obtains 

 ˆsgndet 
D u

n n N .     (71) 

This equation is valid until ˆ m( ) 0dN  which holds for any known acoustic axes except of 

the direction  6||md  (see below). 

It should be noted that, in contrast to the mutually orthogonal vectors ( )u m0α  ( α = 1, 2, 3), 

the three vectors D m m( )α  are coplanar and generally unorthogonal in pairs. At the same 

time, it is clear that the vectors D m1( )  and D m2( )  are not collinear with any m. 
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Consequently, these two vector fields are homotopic with each other. That is why they 

correspond to the same value of the index 
D

n . 

Now let us consider some examples of crystals belonging to particular symmetry systems. 

6.2. Waves propagating along symmetry axes  

6.2.1. Longitudinal waves along symmetry axes  

Example 1. For a longitudinal wave propagating along the m0 || 2 direction in a monoclinic 

crystal with dyad axis, we have 

   
D 1 1 2 2 1 2sgn{( )( ) - }.n a b a b c c    (72) 

where 

  
   

   
   
14 36 15 1 33 1 15 3614 2

1 1 1
334 35 34 35

,    - ,  ,
e c e d e ε e ce d

a b c
ε

   (73) 

    
   

   
25 36 33 2 25 1 24 3624 2

2 2 2
335 34 35 34

,    - ,  ,
e c e ε e d e ce d

a b c
ε     (74) 

 3 33i id c c . The ε̂  tensor is assumed to be diagonal, which can be ensured by the 

appropriate choice of the x- and y axes of the crystallographic coordinate system with the z 

axis parallel to the dyad axis. 

Example 2. For the m0 || 2 direction in an orthorhombic crystal belonging to the symmetry 

class mm2, we have  

 ).
D 1 2sgn(n b b     (75) 

Example 3. For the m0 || 2 || z direction in an orthorhombic crystal belonging to the 

symmetry class 222, we have 

 / ).
D 1 2 2 1
( ) sgn(zn a d a d      (76) 

Analogous formulas for the 
D
( )xn  and 

D

( )yn  are obtained from (76) by cyclic rearrangement of 

the indices. Note that, in the isotropic limit, we obtain 

 / / 2,   1 35 2 34
- -d d    (77) 

and only a very large elastic anisotropy can change the signs of the ratios in formula (76). 

Therefore these signs for most orthorhombic crystals are determined only by the 

piezoelectric moduli: )
D 14 25
( ) sgn(zn e e . 
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Example 4. As can be readily checked, for the principal symmetry axes in crystals of the 

symmetry classes 422, 622, ∞22, 4mm, 6mm, ∞mm, 4, 6, ∞, 32, 3m, and 3 we have 

 D 1,n     (78) 

and in crystals of the symmetry classes 42m , 4 , 43m , and 23, 

  D 1.n      (79) 

6.2.2. Degenerate transverse waves along symmetry axes 

In accordance with Eq. (71), the transverse waves propagating along directions near acoustic 

axes, which coincide with symmetry axes in piezoelectric crystals, are characterized by 

rotations of both polarization fields ( )u m01,2  and accompanied induction fields D m1,2( ) . 

The direct analysis for various types of symmetry axes gives the related Poincaré indices un  

and Dn  shown in Table 3.  

 

N , 6 6  4 4  and 2  23 3 

branch trans long trans long trans long trans long trans long 

un  1 0 1 0 1 0 1 0 -1/2 0 

Dn  1 1 -2 -2 un  1 - un  -1 -1/2 1 

Table 3. The Poincaré indices of vector fields of polarizations and inductions along acoustic axes 

coinciding with symmetry axes N for transverse and longitudinal wave branches. The sign of un = 1 

when it is not universal may be found from the equations given in (Alshits, Sarychev & Shuvalov, 1985; 

Alshits & Shuvalov, 1987; Shuvalov, 1998). The indices Dn  for the direction of a 6 -fold symmetry axis 

are found in the next sub-section. 

6.2.3. The both types of induction singularities along a 6 -fold symmetry axis 

An interesting configuration of the vector fields D m( )α arises near an acoustic axis   ||m 6d . 

In this case we have an exclusive situation ˆ m( ) 0dN . So, by Eq. 3(9) , along the direction 

md  the induction components vanish, D m( ) 0α d , in all branches, both degenerate  

(  1,2α t,t ) and nondegenerate (  3α l ). Accordingly, in the vicinity of the 6 -fold 

symmetry axis these fields should be small. Let us consider the direction 

  m m mΔd    (80) 

where 

 
             

      

|| 
  
 

  

m m ρ
ρ

(0, 0, 1) 6, Δ ( ),

( ) (cos , sin , 0), 0 1.
d μ

μ
     (81) 
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In these terms, the vector fields D m( )α , in the main order, have the following form 

 

 
 
 

    
    
    

D ρ ρ m

D ρ ρ m

D ρ ρ m

2
34 11 22 0

22 11 0

11 22 0

( /Δ ){ ( 2 ) [ ( 2 ) ]},

{ ( 2 ) [ ( 2 ) ]},

{ ( 2 ) [ ( 2 ) ]}.

l

t

t

μ d e e

μ e e

μ e e

   (82) 

Here the notation is introduced:      13 44 34 33 44, Δd c c c c . We note that in the symmetry 

classes 6 2m  (m  X1) and 62m  (2 || X1) one can put in (82), respectively, e11 = 0 and e22 = 0. 

It is easily seen that the induction vectors Dt  and Dt  of the degenerate branches are 

mutually orthogonal, while their absolute value is proportional to |m| and does not 

depend on the orientation  of the vector m. The induction vector Dl  of the non-

degenerate quasi-longitudinal branch has much smaller length, |D | m 2|Δ |l , which also 

does not depend on . The direction of Dl  in the accepted main order coincides with that of 

Dt . Certainly, in the next approximation this coincidence disappears. It is clear from (82) 

that during the full rotation of the vector m around the axis  ||m 6d  each of three vectors 

D  twice circumvents the same axis in opposite direction. This means that the point 

  ||m 6d  in all three vector fields is characterized by the Poincaré index  D 2n  (Table 3). 

The corresponding singular configuration for one of these vector fields is shown in Fig. 7. 

 

Figure 7. Vector induction field Dα ,  orα t,t   l , near the acoustic axis  ||m 6d  related to the 

Poincaré index  D 2n  (top view of the plane orthogonal to md ; the central point corresponds to the 

direction of md ). 

6.3. Transverse (SH) waves propagating in symmetry planes  

The directions of transverse nonpiezoactivity in symmetry planes (Table 2) are also 

characterized by rotations Dn  in the induction vector fields of appropriate SH wave 

branches. We will not write lengthy expressions determining the choice between Dn  = 1 
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indices for the waves along m0  directions in monoclinic and trigonal crystals (see relations 

(49) and (52), respectively) and instead start our analysis from orthorhombic crystals.  

Example 1. For the transverse acoustic waves (53) and (54) propagating in the vicinity of the 

zero-induction direction m0 = (0, 1, 0) in an orthorhombic crystal belonging to the symmetry 

class mm2, the singular induction field is characterized by the Poincaré index 

   
  

  
  

D
32 12 66 26 31

15

( ) /Δ
sgn

e c c e
n

e
   (83) 

Example 2. For the same direction in a tetragonal crystal belonging to the symmetry class 

4mm, we have 

   
2



  
  

  
D

31 12 11 66

15 16

( )
sgn

Δ
e c c c

n
e

    (84) 

Example 3. For the direction   m0 (1, - 1, 0) / 2  in a crystal belonging to the other 

tetragonal symmetry class 42m , we obtain 

 / ). 
D 14 36sgn(n e e      (85) 

Example 4. For the same direction in a cubic crystals of the symmetry class 43m  or 23 in the 

diagonal symmetry plane, as well as for the symmetry-equivalent direction 

  m0 (-1, 1, 0) / 2 , we have (for any combinations of the moduli) 

  D 1n      (86) 

The results presented in this subsection are summarized in Table 4. 

 

Classes of symmetry mm2 4mm 42m  43m , 23 

Symmetry plane m || yz (110)  

Direction of propagation  m0 (0, 1, 0)     m0 (1, 1, 0) / 2  

Poincare index n 32 31
2

15 15

sgn
e e

e e


 
  

 

 
  

 
31

1
15

sgn ( 1)
e

κ
e

 
 
  
 

14

36

sgn
e

e
 1  

Table 4. Topological charges of D fields for SH acoustic waves propagating in symmetry planes of 

various crystals. In this table the notation is introduced: 

 





12 66

66
p

pp

c c
κ

c c
  (87) 
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6.4. Special types of singularities 

The general analysis in Sec. 6.1 is exhaustive only provided that the ˆ
αQ  tensor (62) is 

nonzero. As was shown above, usual systems have ˆ
αQ ≠ 0. However, in some very exclusive 

cases, this tensor may vanish in some special directions because of high symmetry or as a 

result of vanishing of certain combinations of the material tensor components. In such cases, 

the general expressions are very lengthy and we only present here some final results. For 

ˆ m0( ) 0αQ , the distribution of the induction vector field in the vicinity of m0  has four 

additional variants depicted in Fig. 8. The first three of them correspond to isolated singular 

points with the Poincaré indices Dn = 0, 2 (Figs. 8a–8c), while the fourth variant 

corresponds to the existence of a D = 0 line passing via the m0  point (Fig. 8d). This very 

situation is observed on the equator 3 0m  for the transverse tangentially polarized t waves 

(58) in all transverse-isotropic media (13)–(15) and for the transverse t' waves (59) polarized 

along the principal symmetry axis in the media of symmetry classes 6mm and ∞m. The only 

known alternative example of ˆ
αQ  matrix vanishing is offered by a crystal with hexad axis 6 . 

In this case, all three wave branches have along the direction 6  the identical singularities with 

 
D

2n  (Figs. 7 and 8c). 

 

Figure 8. Four possible types of the D m( )α
 vector field distribution around a zero-induction point 

m0 , where ˆ 0 D m m0 0( ) ( )α αQ . 

6.4.1. A model crystal of the symmetry class mm2 

Let us assume that one piezoelectric modulus in the crystal under consideration is much 

smaller than the other moduli. In particular, we consider a conventional crystallographic 

coordinate system with the x and y axes perpendicular to the symmetry planes and the z 

axis parallel to the dyad axis, in which 

 31 15 24 32 33| | | |,| |,| |,| |.e e e e e   (88) 

One can readily check that, in a zero-order approximation with 31e  = 0, a quasi-longitudinal 

nondegenerate wave branch along the m0 = (1, 0, 0) direction features the above special 
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situation, whereby simultaneously D m0( ) 0l  and ˆ m0( ) 0lQ . In this case, the D m( )l  

vector field distribution in the yz plane in the vicinity of m0  is described by the expression 

       ||    D 2 1 1 32 2 1 1 32 2{0, sin2 , ( )cos2 }l g g ε e γ g ε e γ   (89) 

where ϕ is a polar angle of the m = m – m0 direction measured from the y axis in the yz 

plane and 

 

       

    

    

  

 

  

 

   

   

1 1 1 33 3 15

2 1 2 1 24 2 15

1 5 15 2 6 16

5 13 55 15 11 55

2
55 55 15 1 6 12 66

( ),

( ) ,

/Δ ,  /Δ ,

,  Δ ,

/ ,  .

g γ ε e ε e

g γ γ ε e ε e

γ d γ d

d c c c c

c c e ε d c c

      (90) 

Expression (89) shows that, depending on the material constants, the D m( )l  field always 

corresponds to one of the possible variants depicted in Fig. 8. The Poincaré indices for the 

point singularities corresponding to Figs. 8a–8c are as follows: 

 
  

 

1 32 2

1 1 32 2 2 1 32 2

0,                                     0,

2sgn[( ε ) ],  0.
l

g e γ
n

g e γ g g e γ
    (91) 

A condition for the existence of zero-induction lines in the D m( )l  field for Fig. 8d is 

     or      1 32 2 2 1 32 2 0  0,   0.g e γ g g e γ    (92) 

According to expression (89), a zero-induction line for 1 0g  passes via the vector m0  

along the z axis (Fig. 9a). For 32 2 0e γ , a similar zero-induction line is directed along the y 

axis (Fig. 9b). If 1 0g  simultaneously with 32 2 0e γ , the two lines coexist (Fig. 9c).  

 

 
 

 
 

Figure 9. Four possible types of the D m( ) 0l  lines in a model orthorhombic crystal. 
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Finally, when 2 0g  and  1 32 2 0g e γ , the system features an oblique cross of zero-

induction lines (Fig. 9d) with the mutual orientation determined by the equation 

 





1 1 32 2

1 1 32 2

cos2 .
g ε e γ

φ
g ε e γ

    (93) 

6.4.2. Behavior of point singularities in response to perturbations in the material moduli 

The point singularities of various types in vector fields D m( )α  behave differently in 

response to perturbations in the material moduli: they shift, split, or disappear. An analysis 

of this situation, analogous to that carried out by Alshits, Sarychev & Shuvalov (1985), 

showed that singularities with  D 1n  (Fig. 5) are topologically stable and can only be 

displaced by such perturbations. The singular points of other types (Figs. 8a–8c) are unstable 

and either split (in accordance with the law of topological charge conservation) or disappear 

(provided only that 0Dn ). The zero-induction lines (Fig. 8d and Fig. 9) are also unstable 

and disappear either completely or leaving a certain number of isolated zero points.  

Example 1. The above general properties can be illustrated by a particular example using a 

model crystal of the symmetry class mm2 with a small modulus 31e  described above. It 

should be recalled that relations (89)–(93) were obtained in the zero-order approximation for 

31e = 0. In the next order with respect to the small parameter 31e , the initial singularity along 

the direction m0 = (1, 0, 0) exhibits splitting so as to form two or four singular points:  

 
1   0

1   0

 

 

     
  

m m

2
2 2 31 32 2

0 2
3 3 31 1 1

( , ),      ,

( , ),      .

,  e / e γ
δ

,  e ε / g
  (94) 

As is seen from Eq.(91) with  1 32 2 0g e γ , the zero-order approximation along m0  

corresponds to a singularity with 2 Dn  or –2. The introduction of a small 31e  modulus 

leads to a symmetric splitting of this singularity into a pair of zero-induction points with 

equal indices 1 Dn  or –1 along the y or z axis, depending on the sign of /31 1e g  (Fig. 

10a).  

For  1 32 2 0g e γ , when the initial topological charge in the zero-order approximation is zero, 

the perturbed pattern comprises either four singularities with a zero total index Dn  (for 

/ 31 1 1e g ) or none of them (which corresponds to the absence of zero-induction points in 

the vicinity of the given direction for / 31 1 1e g ) as depicted in Fig. 10b. 

Example 2. It should be noted that the discussed splitting of unstable singularities is by no 

means reduced to abstract mathematical games. Perturbations in the material moduli of real 

crystals are frequently caused by various external factors such as electric fields, mechanical 

stresses, or temperature fluctuations arising in the vicinity of phase transitions. For example, 

the phase transition from a crystal of the symmetry class 62m , 6 2m , or 6  to a trigonal 
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crystal of the symmetry class 32, 3m, or 3, respectively, leads to replacement of the hexad 

axis by a triad axis. Simultaneously, in accordance with Table 3, the polarization 

singularity u 1n  in the vector fields u0t  and u0t  of degenerate branches along this 

direction radically changes into the point with the index u -1 / 2n . And the induction 

vector fields Dt  and Dt  of the same branches transform the singular pattern of the 

index 2 Dn  into that with the index D -1 / 2n . The requirement of the conservation 

of the topological charge (Poincaré index) is realized in the appearance of three 

additional conical acoustic axes with indices u 1 / 2n  (Alshits, Sarychev & Shuvalov, 

1985) and D -1 / 2n  (Fig. 11a, b).  

 

 

 

 

 

 

 
 

 

 
 

 

 

 

 

 

 

Figure 10. Diagrams illustrating the splitting of singular points with Dn =2 (a) and Dn = 0 (b) in a 

model crystal of the symmetry class mm2. 
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Figure 11. The three topological transformations in the vector fields u m0 ( )t,t , D m( )t,t  and D m( )l  

(in the non-directed representation) after the phase transition 6 3 . 

In the nondegenerate quasi-longitudinal branch the index 2 Dn  is replaced after the 

transition by 1Dn . In accordance with the same conservation law of the Poincaré index 

and with the final crystal symmetry, three additional zero-induction points 0Dl  with the 

indices 1 Dn  must be created along with the central zero-point (Fig. 11c). Thus the 

considered phase transition ( 6 3 ) causes the three different topological transformations 

in the vector fields u m0 ( )t,t , D m( )t,t  and D m( )l near the principal symmetry axis (Fig.11). 

7. Conclusions  

Two electric components, the electric field E and the electric induction D, accompanying a 

bulk acoustic wave which propagates in a piezoelectric medium, exhibit significantly 

different properties. The electric field is always purely longitudinal, whereas the electric 

induction vector is, in contrast, always purely transverse. On the unit sphere ( m2 1 )  of 

wave propagation directions, the directions of zero electric field (E = 0) form lines, while the 

zero-induction directions (D = 0) are usually isolated and appear as singular points of the 

tangential vector field D(m) orientations. The nonpiezoactive directions of both types exist 

practically in all (even triclinic) crystals, although the presence of  crystal symmetry 

elements is the additional factor determining the appearance of such directions. 

The topological singularities of the D m( )α  vector fields in the vicinity of zero-induction 

points in most crystals are characterized by the Poincaré indices  D 1n , where the sign 

coincides with that of the determinant of the matrix (62) [see also Eq. (68)]. However, in 
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some specific cases, this tensor may vanish ( ˆ
αQ = 0) in some special directions because of a 

high symmetry or as a result of vanishing of certain combinations of the material tensor 

components. In this case, the system has either an isolated zero-induction point m0  (and 

has the Poincaré indices   D 0, 2n ) or a zero-induction line. Such special orientations are 

topologically unstable and, in response to any change in the anisotropy, either split into 

stable points with  D 1n  or disappear. 

It is interesting to note that singularities of the induction vector field D m( )α  in the vicinity 

of the zero-induction points substantially differ from analogous singularities near the 

acoustic axes (see Eq. (71) and Table 3). According to (Alshits et al, 1987), stable singularities 

in the latter case are characterized by the Poincaré indices  D 1 / 2n , while the unstable 

ones have  D 0, 1n . The only exception to this rule is the acoustic axis along the hexad 

axis 6 , for which the all branches, both degenerate α t,t  and non-degenerate α l , are 

characterized by ˆ
αQ = 0, Dα = 0 and  D 2n . However, as we have seen, in the latter case 

the transformation of the same singularity  D 2n  due to the phase transition 6 3  has 

radically different topology [see Fig. 11 (b) and (c)].  
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