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1. Introduction 

The effect of crystal vibrations on the scattering of neutrons and X-rays in single crystals has 
already been studied for several decades. Crystals subjected to ultrasonic excitations have 
been investigated for some time by X-ray and neutron diffraction methods. The first X-ray 
diffraction experiments on oscillating crystals were performed in 1931 [1,2] stimulating large 
discussion to explain the observed increase in intensity of the Laue spots. Neutron 
experiments go back to the 60's [3-5]. At present time both neutrons and X-rays have become 
important tools in observing and understanding time-dependent matter-wave optics [6-8]. 
And vice versa the studying of the neutron and X-rays scattering in the time- and space-
modulated with acoustic waves condensed matter represents a great interest. Applications 
from focusing effects [9], monochromators with tunable bandwidths [10-12], the 
characterization of static but tiny strain fields [13,14] have been discussed as well as 
fundamental questions about the formation of satellites [8] and its applications, inter-branch 
scattering, gradient crystal effects and the fundamental difference between neutron- and X-
ray diffraction found their audience [15,16]. Theoreticians have tried to explain the variety of 
effects and have predicted even more challenging fields for experimentalists, like, for 
example, the formation of caustics in Laue diffraction [17]. The studies above all involve the 
spatial characteristics, but also attempts to investigate the temporal parameter have been 
made earlier in special cases of X-ray [18,19] and neutron diffraction [20]. Some work has 
been carried out with modulated ultrasonic waves [21-24] impregnating an artificial time 
structure to the carrier wave.  

In the case of neutron scattering the effect of energy exchange between a neutron and an 
acoustic phonon is observed, which stems from the fact that the neutron velocity is 
comparable with that of ultrasound wave. In such exchange the amount of the energy 
transmitted is rather small - for an ultrasound wave with a frequency of 100 MHz it is 
approximately 400 neV. Studying the efficiency of energy exchange at the diffraction of 



 

Modeling and Measurement Methods for Acoustic Waves and for Acoustic Microdevices 50 

thermal neutrons is therefore an involved task calling for special methods. The authors of 
work [25] observed very week extra peaks (angular satellites) in the proximity of the main 
reflection peak, which were caused by the energy exchange at the grazing diffraction of 
neutrons in a quartz single crystal on the grating of the surface acoustical wave. Impressive 
experiments have been performed to elucidate the concept of particle-wave dualism [26]. 
The authors observed the energy exchange of ~10 neV and the transition from quantum-
mechanical to classical behavior. 

In the chapter the neutron interactions with acoustic waves in solids observed by diffraction 
modern methods is discussed. Fundamental questions such as the investigation of the 
diffraction process itself as a response to the ultrasonic field as well as its applications to 
beam optics or materials research are of interest. 

2. Diffraction on a perfect crystals Laue geometry 

2.1. Theoretical background 

The theoretical problem of ultrasonic influence on neutron and X-ray diffraction was under 
intensive investigation [8,9,16, 27,28]. Depending on the ultrasound acoustic waves (AW) 
frequency, a distinction can be made between two different physical mechanisms. At AW 
frequency νs < ν res , where ν res is the AW frequency at neutron-acoustic resonance condition 
(see below) dispersion surface (DS) varies insignificantly and the problem is solved in terms 
of the usual perturbation theory. The correction to the eigen functions are of the order of Hw 

(H is the reciprocal lattice vector, w the AW amplitude), and additions to the scattering 
intensity are of the order of (Hw)2. Hence at sound frequencies νs < νres there takes place 
nearly complete “pumping” of the elastic component of scattering into inelastic one. The 
Mossbauer diffraction spectra obtained on single Si crystal confirm the theoretical results 
[29,30]. The more interesting phenomena arise when the magnitude of the ultrasound wave 
vector k s is of order or greater of the gap ΔK0 between the branches of the DS (in the two-
beam approximation). Interaction between modified Bloch states by means of high-
frequency ultrasonic perturbation leads to new physical effects, such as the resonant 
ultrasonic suppression of the Borrmann transmission [31], the ultrasound induced 
Pendellosung beatings in diffraction intensity [14,32] and some another features. The effect of 
US (ultrasound) on neutron and X-rays diffraction in a perfect crystal is schematically 
shown in Fig. 1. The new energy gaps ks appear on DS which correspond to the additional 
regions of total reflection for the case of Bragg geometry. The US phonon’s absorption 
(emission) by neutron mixes Bloch states [33] and displaces the dispersion surface of the 
neutron by the value of quasi-momentum δq: 

 (  .)/s n B sq v cos k     (1) 

The neutron-acoustic resonance frequency νres is determined by expression (2) 

   /res n Bv cos    (2) 
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where θB and νn are the Bragg angle and the neutron velocity, and τ is the extinction length. 
Expression (1) is valid, if Hks and this corresponds to the conditions of transversal AW. 
Taking into account the Debye–Waller factor, νres does not depend on the observed reflection 
[16]. For the case νs>νres a linear increase in the diffraction intensity should be observed 
depending on the US wave’s amplitude w [14]. 

 
Figure 1. Schematic image of the dispersion surface modified by ultrasound in a perfect crystal (Laue 
geometry): ΔK0 is the gap between the sheets of dispersion surface determining the resonance frequency 
(τ = 2π/ΔK0); and ks are the new US energy gaps determining the additional regions of Bragg reflection.  

The change in the diffracted neutrons intensity distribution for the crystal by the AW can be 
interpreted quantitavely and qualitatively by the dynamical diffraction theory. Calculations 
taking into consideration the strains created by AW which affect the neutron wave field 
inside the crystal can be carried out using the Takagi–Taupin equations [34,35]: 

 
Ψ Ψ Ψ Δk0 0 0 0i i itanΘ exp(iHu)ΨB ht z x 2


  

   
  

 (3) 

 
Ψ Ψ Ψ Δk0h h hi itanΘ exp( iHu)ΨB 0t dz x 2


  

    
 

 (4) 

where 

1 (v cos )Bn     

and 

    s
u wcos t cos k z   (5) 

is the displacement of the nucleus for standing transverse waves excited between the two 
parallel surfaces of the sample with waves amplitude w, wave-length λs, wave vector  
ks=2 π/ λs. Ψ0, Ψh are the amplitudes of the incident and diffracted beams, respectively, vn is 
the velocity of the neutron wave and ΔK0 =2 π /τ where τ is the extinction length. The full 
solution of the Takagi–Taupin equations isn’t possible now but some approximations can be 
done and this allows calculating diffraction intensities at the center of the Bormann fan in 
the quasi-classical approximation depending on w, ks,, λn and τ. 
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2.2. Experimental 

The experimental layout for Laue geometry is shown in Fig. 2. As the sample, a Ge ((111) 
reflection single crystal (V= 52x22 x20 mm3= YxLxT mm3) was taken. A monochromatic and 
well-collimated neutron beam with a cross section of 1x10 mm2 was directed to the sample. 
The sample quality was checked preliminarily and the FWHM of the rocking curve was 3.1’’, 
close to the theoretical expectation. For the observation of the diffracted neutrons 
distribution two techniques were used. One of them using analyzing slit similar to the 
classic experiments [36-38] but with width 0.5 mm in difference of 0.1 mm slits in [36] to 
avoid “non-sound” intensities oscillations (Shull’s fringes). At other method an analyzing 
slit was not used in general. Instead, the spatial distribution of the reflected neutron beam 
was measured with a position sensitive detector (PSD) After finding the optimal relation  - 
2  (adjustment) the sample and PSD were kept motionless and the reflected intensity 
distribution was directly measured in 2 – coordinates then recalculated for current x- 
coordinates . This procedure is similar to the scanning with slit method, however, if PSD has 
good resolution enough, allows a much faster data acquisition. 

 
Figure 2. The layout of the experiment: A and B are forming and analyzing slits, respectively; PSD is 
position sensitive detector; PT is a piezo transducer; H is the vector of the reciprocal lattice; ks is AW 
wave number; y is direction of samples movements (slit B is not moving), x is a current coordinate in 
the base of Borrmann’s fan and a direction of slit B movement. In this case, the sample is not moving. 

2.3. Acoustic field in the sample 

The transverse AW propagated perpendicular to the scattering vector (ks  H, u H). 
Polarized AW with amplitude w was parallel to the vector H. Piezotransducer was glued to 
the sample by salol. As shown below, the diffraction intensity is proportional to |Hw|, 
where w is the AW amplitude, therefore its values could be used for estimation of the 
acoustic field inside the crystal. Owing to the diffractive divergence of acoustic waves this 
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field is concentrated not only in the region around the piezotransducer but is distributed 
uniformly enough through the whole sample, especially at the levels of the weak and 
moderate excitation.  

 
Figure 3. Diffraction intensity distribution in relative units at sample displacement along y-axis: 1 - in 
the absence of ultrasonic excitation; 2 - VG=0.1V; 3- VG=0.8V. The Is value is proportional to the AW 
amplitude. 

The uniformity of acoustic field distribution in the region of Borrmann’s fan is an important 
prerequisite to a sure observation of spatial oscillations of the diffraction intensity (see 
below). Assume that in the diffraction process a finite volume of the sample participates, in 
which the amplitude w of AW oscillations is distributed in the interval w ± Δ w. This leads 
to a smearing of the pulse (ks± Δ ks), therefore the phase difference on the crystal surface will 
be Δφ = Δ ks T= Δ k0 H T(w ± Δ w). Since the intensity oscillations are approximately 
described by the function I ~cos2( Δ  ksT), the n-th intensity maximum corresponds to the 
condition Δφ  =Δ k0 H wT. At a phase shift of / 21 Δφ π  the maximum of Is becomes its 
minimum. Therefore, to observe oscillations it is necessary that the phase shift 1Δφ  be less 
than / 2π . From this follows the estimation Δ w/ w <1/2n. At reasonable w values and Δ w/ 

w ≈ 10% this leads to the situation when in the experiment only few first oscillations could 
be observed (see below). From the data shown in Fig. 3 it is seen that these conditions are 
fulfilled well at low amplitudes of AW (curve 2, Fig. 3). 

2.4. Acoustic waves velocities 

The evidence of the standing AW existence in the single crystals is shown on the Figs. 4 and 
5 (a-c). As a rule, theoretical estimations of the AW effect on the diffraction intensity were 
made for the case of coherent sound. As follows from Fig. 4a, in our experiment a wide 
enough frequency spectrum of excitations and AW cannot be considered as single mode. 
However, as was previously shown [28], the assumption of sound coherence is not always 
necessary for the correct interpretation of experimental results. When the diffraction 
intensity depends on frequency under scanning with a smaller step (Fig. 4b), a fine structure 
appears which is the evidence of the presence of an AW standing wave in a crystal. When 
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the diffraction intensity depends on frequency under scanning with a smaller step (Fig. 4b), 
a fine structure appears which is the evidence of the presence of an AW standing wave in a 
crystal. For AW standing waves the relation  

 L=iλ /2s  (6) 

should be fulfilled, where i is an integer of AW half-waves, s
λ  is the AW wavelength, and L 

is the distance of wave propagation (Fig.2). Knowing L and the distance between the 
maxima (minima) of the fine structure of the frequency dependence   s si s(i±1)

Δν = ν - ν (Fig. 
4b), it is possible to determine the velocity of sound propagation in the[100] direction. 
Determining =(0.08±0.01)Δν

s
MHz from Fig. 4b data we obtain i = 517-524, which is 

testimony to a very high quality of the sample, and vs[100]= (3.52±0.03)105 cm/s. This value is 
in very good agreement with the reference data 3.55.105 cm/s [36] for the velocity of a shear 
AW for Ge in the indicated direction. 

 
Figure 4. Dependence of the Laue diffraction’s intensity Is at the Bormann’s fan center on the 

ultrasound frequency ( n =0.410 nm, S=1 mm, L=22 mm): a) the frequency scanning step is 0.5 MHz; the 

solid curve is a result of data fitting by Gaussian with FWHM=6.34 MHz; the region in which the 
detailed frequency scanning was carried out is shaded (41.2-41.8 MHz); b) the same as in (4a) only for 
the narrow frequency range, shown in the Fig. 4a as a shaded. The frequency scanning step is ~0.01 
MHz; the solid curve was obtained using the averaging on three points data (spline approximation). 

The presence of frequency satellites shown in Fig. 5(a–c), which exist at equal distance from 
the main peak independently of the chosen frequency interval, is the one more evidence for 
excitation of standing waves in the crystal. And the sound velocity νs in the [111] direction 
parallel to the scattering plane can be determined. Defining Δνs from the dependences 
shown in Fig. 5a–c, where Δνs = = (1.475. ± 0.046) MHz one can see that the number of 
transverse half-waves i=10-12 for νs= 14.84 MHz and νs[111] = 5.13 105 cm/s. This value is very 
close to the reference data of 5.09 105 cm/s [39]. This means that the values of US wave 
velocities in crystals can be determined with neutron and X-ray diffraction technique, and 
that this method is applicable for, e.g., determination of the sound velocity at phase 
transitions. 
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Figure 5. Standing AW observation in the single thin Si crystal (T=1.73 mm):a) for main transducer 
harmonic (15 MHz); b) the same for third harmonic; c) the same for fifth harmonic. Solid curves were 
obtained using the averaging on three points data (spline approximation). 

3. Spatial intensity distribution of diffracted neutron beam 

Owing to the interference of Bloch’s waves the distribution of diffracted neutron beam 
intensity in a crystal arising on its outside surface has characteristic beats at the center and 
intensity is increasing toward the edges of the Bormann fan. These effects are described by 
the expression (7) [40]: 

   2 1/2 2 2 1/2
0I Γ c(1 Γ ) cos (A(1 Γ ) )     (7) 

where Γ =x/(2T tg ΘB) is the deviation of a neutron wave from the atomic plane trace; 
A=πT/τ; с is a normalized constant, and x is a current coordinate in the base of Bormann’s 
fan. Expression (7) is valid for the diffraction of a plane monochromatic wave in the 
symmetrical Laue case. A more rigorous expression for the shape of the reflected beam 
distribution can be obtained with the help of spherical neutron waves [40,41]: 

 
A 2 2I (Γ)= J (A( 1-Γ )0 02

 (8) 

where J0 is Bessel function of the zeroth order. According to Exprs. (7,8) the intensity of a 
diffracted beam oscillates on the exit surface of a crystal, with the oscillation period 
depending on parameter πТ/τ and fast decreases outward from the center of profile (Г=0). 
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Figure 6. Normalized intensity distribution for Si single crystal (reflection reflex (111)), slit B width S≤ 
0.2 mm. T=11 mm. Neutron wavelength λn is equal 0.1 nm. The Shull’s fringe is clearly seen at the center 
of profile [42]. 

 
Figure 7. Normalized intensity distribution for reflection (111) Ge (T=20 mm) (Bormann fan) for 
different neutron wavelengths without sound: 1- λn= 0.471 nm; 2- λn =0.410 nm; 3- λn=0.243 nm. Curve 2 
was obtained using a slit with S= 1 mm. Curves 1 and 3 were obtained without analyzing slit (PSD 
only). 

3.1. High-frequency sound effect on the spatial distribution of diffracted 

neutron intensity  

The presence of new energy gaps ks (Fig. 1) on the dispersion surface under ultrasound 
should lead to the appearance of an additional structure in the intensity distribution of 
diffracted neutrons at the exit of a crystal. The new distribution, as is shown below, depends 
on the AW amplitude, w, while “sound” oscillations are superimposing on the initial ones. 
The size of the first soundless oscillation for the Ge (111) reflex according to formula (7) is 
Δх1=(T τ)0.5tgΘB≈1.5 mm (in the vicinity of Г=0). The numerical analysis of experimental data 
based on the known theoretical expressions involves difficulties, since they have been 
obtained in the plane neutron wave approximation. Such approximation cannot be applied 
to description of the intensity distribution of diffracted neutrons on the Bormann fan’s base 
when the whole dispersion surface is excited. 
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We have derived expressions for the diffraction intensity of a spherical neutron wave in an 
ideal crystal under ultrasound excitation. In this case the total diffraction intensity It is 
composed of the elastic and inelastic components: 

 
0

t el in

el el

I I I

I I I

 

  
 (9) 

where ΔIel and Iin are the elastic and inelastic addends, respectively; I0 is determined from 
expression (8), while the elastic addend to the diffraction intensity is given by the expression 
(10): 

 
     

 

2 0.52 2 22Δ Hw sin δqT/2 J AHw 1-Ω0 1
ΔIel 2 2δq ΔK 1 Ω0

K
 
 
 

   
 

 (10) 

where J1 is Bessel function of the first order, δq is the shift of the DS at absorption or 
emission of an ultrasound phonon. The main contribution to the intensity of inelastic (one-
phonon) scattering is made by the term: 

      
22 0.5δq 2I Hw 1 J AHw 1 Ωin 02 2δq ΔK0

  


 
  
     

 

 (11) 

where 

 
 

2 2Γ δq
Ω

2 2δq ΔK0
,  /A T 


  (12) 

Formulas (10-12) describe the central part of a Bormann fan: 

 
0.5 0.52 2 2 21 ΔK /δ Γ 1 ΔK /δ0 0q q          

   
 (13) 

besides, these are valid at ΔK0 Hw<<(δq-ΔK0), which corresponds to the weak interaction of 
satellites with the main Bragg maximum. At νs >> νres, (δq>> ΔK0), i.e. under the conditions of 
our experiment, Iin far exceeds Δ Iel , which was previously confirmed by our experiments 
with measuring the spin-echo in a silicon single crystal under ultrasound pumping [43]. The 
spatial distribution of diffraction intensity is described by the expression:  

   0,   s inI Г Hw I I   (14) 

where Iin is taken in the form of equation (11), and I0 ─ of equation (8). The general character of 
the spatial distribution of diffraction intensity is dictated by three parameters: А, Hw, and the 
δq/ΔK0 ratio. The choice of a thick (T ≈70 τ) Ge crystal is not quite optimal, since the first AW 
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oscillations will appear when the “acoustic” extinction length becomes equal τs=τ │H w│-1. On 
the other hand, a thick crystal provides long enough Bormann fan, which allows for easy and 
detailed measurements of the spatial distribution of diffracted beam intensity (see Fig. 8) 

 
Figure 8. Spatial distribution of a diffracted beam intensity vs AW amplitude w and Γ value. Dashed 
curves and points – averaged experimental data, solid curves is a result of data fitting by Exprs. (11 and 8) 

Already at a small amplitude of the acoustic wave Hw=0.26 (w=0.013 nm) the diffraction 
intensity in the center starts rising noticeably. The width of the first oscillation (Fig. 8) on the 
x-axis (close to Г=0) at Hw=0 could be estimated from expression (8): Δ х1=(2T τ)1/2tg ΘB and 
Δ х1 ≈6 mm for the Ge (111) reflex. Since at the appearance of sound a new extinction length 
is τs=τ │Hw│-1, at Hw <<1 the linear size of the first “sound” fringe will be increasing as Δ х 

s= Δ х1 │Hw│-0.5. As follows from Fig. 8, at Hw=0.26 the length of the first acoustic fringe is 
11.4 mm, which coincides well with the calculated value of 12 mm. Besides, at least two next 
oscillations could be clearly discerned. As Hw is further increasing, at the profile center a 
linear intensity rise is observed, while the diffraction intensity on the Bormann fan edges (Г= 

±1) remains practically unchanged. To compare the theoretical and experimental data a 
high-precision determination of the А and Hw parameters is needed, since the Bessel 
function is fast oscillating at large values of the argument. The calculated А value is 2071, i.e. 
close to А=2060, at which “soundless” distribution of the diffraction intensity (Hw=0) is 
described most satisfactorily by expression (8), taking into account integration over the 
width of analyzing slits and correct averaging. The AW amplitude can be determined by 
changes in relative intensity variations at the center of the spatial profile (Г=0): 

 
     

 

2 2 2 2 2Hw 1 δq δq ΔK J HwAI I I 0 0s 0 inη 2I I J A0 0 0

         (15) 
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At large values of argument 

    J z 2 πzcos z π 4 ,0    (16) 

and the relative contribution of the neutron inelastic scattering by AW of the lattice with a 
frequency above resonant is: 

 
 
 

2cos HwA
η (Hw) 4Hw 4Hw2cos A

   (17) 

The experimental data shown in Fig. 9 were obtained for one and the same sample but on 
different neutron diffractometers using different RF-generators and wide-band amplifiers. 
Besides, every time the piezotransducer was glued again; however, in all cases a linear 
dependence of η on the generator voltage VG was observed , which makes it possible to find 
a calibration constant C and to determine the AW amplitude w from the relationship: η=С 

VG= │Hw│.  

 
Figure 9. Diffraction intensity at the center of a Bormann fan (Г=0) vs. acoustic wave amplitude for 
neutrons of different wavelength: 1) λ n=0.41 nm; 2) λn= 0.471 nm; 3) λn=0.243 nm. Solid curves: fitting 
with eq.(18) taking into account νs>> ν res (ΔK0 << δq) 

The effect of saturation was observed in the η dependence versus VG for large Hw. The 
heating of the organic salol gluing leads to the decrease of its viscosity and brings about 
violation of the proportionality between VG and w. This fact was taken into account, and the 
measurements were considered reliable up to Hw ≤ 5 

Fig. 10 shows the spatial distribution of diffraction intensity It depending on the acoustic 
wave amplitude for the neutrons of different wavelength. Independently on the neutron 
waves length, It at the Bormann fan centers increases with Hw growth.  
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Figure 11 demonstrates a sharp decrease in the spatial half-width of the central peaks in 
dependence on the AW amplitude. This result is seems to be unexpected, since in some 
earlier works where the possibility to create the ultrasound-driven/controlled 
monochromators was discussed [12,27,44] the gain in intensity with rising AW amplitude is 
always compensated by a loss in resolution (due to FWHM rise). In contrast, in our 
experiments the FWHM decreases 3-4 times at the Hw increased twice. To study this effect in 
more detail, additional investigations are needed − for example, measuring the FWHM of 
double-crystal rocking curves in dependence on the Hw at the center of Bormann’s fan. 

 
Figure 10. The neutron diffraction intensity as a function of acoustic wave amplitudes Hw and running 
coordinate x in the base of a Bormann fan for neutrons of different wavelength: a) λn=0.410 nm; b) λn= 
0.243 nm; c) λn= 0.471 nm. 
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Figure 11. Full width at half maximum of the central peaks vs AW amplitude for neutron with different 
waves length: 1) λn=0.410 nm, 2) λn=0.243 nm 

4. Diffraction - Deformed crystal 

4.1. Theoretical background 

In contrast to a perfect crystal where the US effect leads, as a rule, to an increase in the 
diffraction intensity, in a bent smoothly deformed sample a drastic decrease in the intensity 
Ids is observed already for very small AW amplitudes. In deformed crystals, which are of 
great practical interest, the effect of US on diffraction has been investigated much less. In 
[14, 45, 46] the results of theoretical and experimental investigations of neutrons and X-rays 
for the case of Laue diffraction in deformed silicon single crystals under high-frequency (νs 

>> νres) and in conditions of the neutron (X-ray) - acoustic resonance (νs≈νres) are reported. 
The analysis has shown that in a deformed Si crystal ultrasound results in violation of the 
adiabatic conditions for the movement of tie points on the dispersion surfaces. Owing to 
this, a drastic decrease in the diffraction intensities was observed for low acoustic wave 
amplitudes. With the AW amplitudes increasing the diffraction intensity also increases, 
reaching the kinematical limit. In absolute values, the influence of the US is much stronger 
manifested in the diffraction on a deformed crystal than on a perfect one. A substantial role 
is played by multiphonon processes. The presence of static strains leads to the appearance of 
a new type of oscillations, which depend on the deformation gradient. 

As distinguished from the perfect crystal case where for the whole crystal a unitary DS 
exists, in the Penning–Polder–Kato model [47,48] to each point of a bent crystal an own two-
sheet dispersion surface corresponds, and the neutron is travelling adiabatically inside the 
crystal without transitions of the excited tie point between the effective DS sheets (Fig. 12) 

The role of ultrasound in this model consists in the resonant suppression of adiabatic 
movement of the tie points. The one-phonon absorption corresponds to path 1–2–6–7–8 of 
the tie point along the dispersion surface. The neutron incident on the crystal excites points 1  
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Figure 12. Dispersion surfaces of a crystal modified by ultrasound. Dynamics of travelling of tie points 
in a deformed crystal. Laue geometry. Directions of tie points and neutron group velocities are shown 
by arrows. 

and 8 on the DS. In the absence of ultrasound, point 1 travels along path 1–2–3–4 and passes 
into the state corresponding to a diffracted wave. Point 8 makes no contribution to the 
diffraction. When US is switched on, the movement of point 8 is not disturbed. As concerns 
point 1, it can reach state 4 by two ways: a) 1–2–6–7–3–4 or b) 1–2–3–4. If the probability for 
the excitation point to remain on DS sheets at points 2, 3 6, and 7 is P, and the probability to 
pass onto another DS sheet owing to the US disturbance is M (P+M = 1), then the probability 
of the former process is equal to M2, the probability of the latter process is equal to P2.The 
change in the relative diffraction intensity will be 

 ds d0 d0
2 2η=(I -I ) / I =P +M -1=-2MP<0.  (18) 

The probability of transition for the excitation point 1 in the case of Laue’s diffraction is 
approximately described as 

 2M=1-exp[-π(Hw) / 2B]  (19) 

where B is the deformation gradient . 

The maximum transition probability is 0.5, (for νs >ν res) and, correspondingly, η max= 0.5 
according to expression (19). Interference between the trajectories of the two scattering 
process leads to the oscillating dependence on B-1 of the maximum “dip” of the diffraction 
intensity. These oscillations modify the expression (19) as follows: 

  2 1  2MP cos     (20) 

with phase factor φ [14]: 

 2 0.5
0( )( )  / 1 ; /  sa B a a k K      (21) 

For the Laue-symmetrical diffraction of neutrons and X-rays in a two-wave approximation 
when the propagation of neutron waves in a crystal with static and/or dynamic (US) 
deformations is described by the Takagi–Taupin equations (Expr. 3-5), where the 
displacement of nuclei, u, is introduced in forms [46] 

 
4 cos[ ( )cos ]cos( )

0

Hu Hu Hu
s d

Hu Hw k s s t
s s h B s

 

   
 (22) 
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2 22 4 2
0 0

2 2[2 / ( cos )] [2 / ( cos )]
0 0

Hu as bs s cs
d h h

B b k C c k
B B

  

     
 (23) 

where a, b, and c are numerical constants describing inhomogeneous deformation; us is the 
nuclear displacement in the acoustic field, and ud is the nuclei static displacement associated 
with the lattice deformation. 

In the quasi-classical approximation (B <<1 but BT >>1), for Hw< 1 we will have analytical 
expressions (24-26) obtained by method of successive approximations for relative intensity 
variations depending on the relationship between ks and k0. If the frequency of acoustic 
waves νs is higher than the resonance frequency νres, (> 1) the second term in (26) describes 
the so-called “deformations oscillations” whose period depends on В and 

 
2 5/2 3/2( , ) [ cos( )] 2 (1 - )

1 - exp -1/2(0,0) 3[8(1 - )]
1

I Hw B Hw th
I BB

  



 
  
 
 

  (24) 

 
 2cos( ) (1 / 3)

»14/3
Hw t

B








  (25) 

 
2 2π Hwcos(ω t) α (α -1)α 2 1/2η= × 1+sin +arcsinh(α -1)2 1/2 2BB(α

1
-1)


       

   



 (26) 

where =k s /k0  

The experimental verification of the qualitative validity of expressions (23-26) is presented 
on the Figs. 13-15 

 
Figure 13. Variations in the relative intensity of diffraction in a deformed crystal vs. voltage on 
piezotransducer for α =3.13 (νs = 46.04 MHz) and different B: 1 – 0.023(▲); 2 – 0.052 (□); 3 – 0.083 (■); 4 – 
0.124 (*); 5 –0.166 (♦); I0 is the diffraction intensity in a perfect crystal without sound; Ids the same for a 
deformed one. 
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Figure 14. Relative diffraction intensity νs. piezo transducer voltage for different values of parameter B: 
1) – 0.06, 2) – 0.11, 3) –0.23, 4) –0.89; νs=14.84 MHz (α≈1). The best fitting is obtained using series 

expansion of the Bessel functions 
2

( )
0 4/3

HW
J

B

 
 
 

 (solid curves). 

 
Figure 15. The module of “dip” maximum depth η = |Ids-I d0|/I d0 vs. the inverse value of the 
deformation gradient B: 1(■) – for νs = 14.84 MHz (near to neutron acoustic resonance, ν res = 14.71 MHz; 
  1); 2(♦)– for ν s = 46.04 MHz;   3. Arrows show the maxima positions calculated by Eqs. 20 and 21  

The solid (1) and dashed (2) curves in Fig. 15 were obtained from experimental data by the 
least squares method. The best fitting is at |ηmin| = 0.53(1/B) for curve (2) and |ηmin| =–0.04B-

1 +0.74 for curve (1). From these it follows that at В ~ 1 the “dip” of the relative diffraction 
intensity η reaches the maximum of ~0.5 for νs >> νres and of 0.7 for νs ≈ νres. The strong effect 
near the neutron-acoustic resonance (  1) follows from Eq. 25 and by analogy with the 
resonance destruction of Bormann’s effect [31] at the X-ray – acoustic resonance can be 
qualitatively explained by the fact that the transitions between DS branches in the case of 
their contact occur in a much greater volume of the pulse space. 
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4.2. Ultrasound effect on neutron bragg diffraction in a deformed silicon single 

crystal [23] 

The scheme of the bending device, the neutron scattering geometry, and the US wave’s 
propagation direction are shown in Fig. 16. The (220) and (440) reflections intensities were 
simultaneously measured at a standard single-crystal spectrometer by the time-of-flight 
technique [15]. The neutron wave lengths were 0.96 and 1.92 Å. The radius of curvature R of 
the reflecting surface was determined by sag h measured by a micrometer (R= L2/8 h), where 

L is the sample length equal to 12 cm. A sag was measured from 0 to 40 μm and R from 6 km 
to 51 m. 

 
Figure 16. Scheme of experiment: H is the reciprocal lattice vector; K0 is the wave vectors of neutron 
and ultrasound wave.u=w cos (ωst) cos (ksx) is nuclei displacement in a US wave with amplitude w. PT is 
piezotransducer. M is micrometer. R=L2/8h, where L=12 cm is a samples length, h is the sag.  

The transversal US wave (ks K0 ,Hw; w‖H), where H is the reciprocal lattice vector, ks and w 
are the US wave vector and amplitude, was excited in the [111] direction by a LiNbO3 piezo 
transducer glued to the sample by salol. The fundamental piezoelectric transducer harmonic 
(νs= 26.5 MHz) was used. Fig. 17 shows typical plots of the relative diffraction intensities 
η=(Is-I0)/I0 vs the piezo transducer voltage for the two reflections (220) and (440) in the 
“perfect” crystal (without bending). It is seen that linear dependence is a good 
approximation. 

 
Figure 17. Relative changes of the diffraction intensities η = (Is –I0)/I0 for perfect crystal for two 
reflections: 1-(▲) for (440), 2-(♦) for (220) 
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Figure 18. Common result of the simultaneous effect of ultrasound wave and bending of a crystal on 
the diffraction intensity of neutrons. 

The total change in the intensity Ids with a simultaneous increase in Vs and h is shown in Fig. 
18. The appearance of dips (minima) in these dependences is a characteristic phenomenon 
similar same as for Laue case. The changes in Ids (440 reflection) as a function of Vs are shown 
in details in Figs. 19a and b for a bent crystal for different values of the sag h. Instead of the 
linear increase in Ids for h = 0 (line 1), a dip in Ids reaches 30% for h =0.3 μm (R ≈ 51 m) at Vs = 
1.1 V (w ≈ 0.05 Å) (curve 2). With a further decrease in the bending radius the dip depth 
reaches the maximal value of 52% (Fig. 19a, curve 3), flattening out (Fig. 19b, curves 3–10). 
Curve 11 demonstrates the shift of the Ids minimum over Vs with an increase in h. 

 
Figure 19. Diffraction intensity of the (440) reflection as a function of the US wave amplitude for 
different h, (a) (1) h = 0 (perfect crystal); (2) 1 μm; (3) 3 μm; (4) 5 μm; (5) 7 μm. (b) (1) 5 μm; (2) 7 μm; (3) 
9 μm; (4) 12 μm; (5) 16 μm; (6) 20 μm; (7) 25 μm;(8) 30 μm; (9) 35 μm; (10) 40 μm; (11) displacement of 
the diffraction minimum along Vs as a function of h. 
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The simultaneous effect of both deformation types of a crystal lattice, static bending and 
dynamic atomic displacement in an US wave, on the neutron diffraction in the Laue 
geometry was taken into account in [14,46] where numerically (by the method of successive 
approximation) and, for separate cases, analytically by a modified Takagi–Taupin equation 
was solved. In [49], for this purpose Green’s functions were used for Laue case. In the case 
of the Bragg geometry the mathematical task is substantially complicated because of specific 
boundary conditions and, as we know, has no analytical solutions up to now. The semi-
phenomenological model explaining qualitatively the experimental results and allowing us 
to obtain quantitative characteristics in some cases is considered below in the framework of 
the dynamic scattering theory. The problem solution for the case of Laue diffraction in 
smoothly deformed crystals was described by us above and this model is also applied for 
the case of the Bragg geometry.  

The role of US in a modified PPK model is the resonance suppression of adiabatic motion of 
tie points by analogy to Laue diffraction and schematically transition to the Bragg case can 
be done if to turn the Fig. 12 on 90○ [23]. The relative change in the diffraction intensity η can 
be again written in the form: 

 ds d0 d0
2 2η=(I -I ) / I =P +M -1=-2MP<0  (27) 

    2 2
0 0 – / –  1  –  0,ds d dI I I P M F B MP       (28) 

where 0 < F(B) < 2 for the case ν s > ν res.. 

One can see that Expr. 27,28 coincides closely with Expr. 18,19 for the Laue diffraction.  

Then we obtain (Hw)min, the position of the η minimum depending on the deformation 
gradient.  

    0.5
  2

min
Hw ln B  (29) 

The changes of η as a function of Hw are shown in Figs. 20a and 20b for comparison of the 
experimental data to the described model. Expressions (27-29) satisfactory describe the 
experiment only for the case of small Hw and small B (large bending radii) (Hw < 0.3 and h < 
7 μm). With an increase in both parameters these expressions do not correspond to the 
experimental data shown in Fig. 21b which are rather well described by the Bessel functions 
expanded in the alternating series.  

Expressions (27-29) are valid for one-phonon processes of the energy exchange between the 
neutron and US phonon. 

Using relation Hw=cV and assuming B = α h, Eq. (29) can be rewritten in the form 

 1 m
sminV h  (30) 

The graphs of the positions of minima η as a function of h are shown in Fig. 21 for the (220) 
and (440) reflections. The exponent m is 0.49 for the (220) reflection (curve 2) and 0.46 for the 
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(440) reflection (curve 1) and α1(440)/α1 (220) = 1.83, which is rather close to the theoretical 
estimations of the exponent of 0.5 and ratio H440/H220 = 2. The value of the deformation 
gradient B is easily determined from here.  

 

 

 

Figure 20. Relative changes in the diffraction intensity as a function of the US wave amplitude for 
different h: (a) (1) h = 0.4 μm; (2) 1 μm; (3) 3 μm; (4) 7 μm; curve 5 corresponds to Eq. (5) for F(B) = 2.0, 
F(B) = 1.3 for curve 6. Solid curves 1–4 are fitting (Exprs.(27-29)) (b)1- h = 9 μm; 2- h =16 μm  

 

 

 

Figure 21. Shift of the minimum of Vs min for relative changes in the diffraction intensity η with an 
increase in the value of bending deflection h: 1: (1) for (220) reflection; (2) for (440) reflection. 
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Figure 22. Dependence of the value of maximal dip of the relative diffraction intensity of neutrons ηmax 

on the value of bending of a crystal: (1) for (220) reflection; (2) for (440) reflection. Solid curves are 
fitting obtained by an expansion of the Bessel function in a Taylor series. 

As it follows from Eq. (29), the maximal dip of the relative deformation’s intensity ηmax 

shown in Fig. 22 is close to 0.5 for the (220) reflection and is reached for the bending radius 
R =200–600 m. Thus, the PPK model modified for the case of ultrasound excitation 
satisfactorily describes some features of the neutron Bragg scattering from a bent silicon 
single crystal. The intensity dip of the Bragg diffraction is caused by the resonance 
transitions of the tie points between the sheets of dispersion surface related to the presence 
of ultrasound phonons. The position of the maxima depending on the investigated 
reflections and bending radius of a crystal is determined by the most probable single-
phonon scattering of neutrons. With an increase in the US wave’s amplitude and the value 
of crystal bending the role of less probable multi -phonon processes is enhanced, which 
results in the formation of a plateau in the curves of the voltage dependence of intensity on a 
piezoelectric transducer and bending radius.(Fig. 18). 

5. Conclusion 

For describing the diffraction in single perfect crystals the theory of dynamical neutron 
scattering has been employed. This approach considers the neutron wave pattern 
propagating in the periodic potential of an ideal lattice, and a variety of features is explained 
by this time, including an oscillating form for the distribution of the diffracted intensities 
within the Bormann fan in the case of Laue diffraction. One of the most important 
dynamical diffraction effects being the strongly limited intensity diffracted by an ideal 
crystal in Bragg’s position. While, the interference effects disappear very quickly if the 
translation symmetry in a perfect crystal is violated due to any disturbance (static 
deformation strain, low-frequency sound excitations, etc.) and the Bragg-reflected intensity 
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increases. In our work it is shown that even a very sharp rising diffraction intensity at the 
center of Bormann’s fan (Is /I0 ≥ 10) can be described quantitatively using the dynamic 
diffraction model for the neutrons propagating in a thick crystal as spherical wave. 

The PPK model modified for the case of ultrasound excitation satisfactorily describes some 
features of the neutron Bragg scattering from a bent silicon single crystal. The intensity dip 
of the Bragg diffraction is caused by the resonance transitions of the imaging points between 
the sheets of dispersion surface related to the presence of ultrasound phonons. The position 
of the maxima depending on the investigated reflection and bending radius of a crystal is 
determined by the most probable single-phonon scattering of neutrons. With an increase in 
the US wave’s amplitude and the value of crystal bending the role of less probable 
multiphonon processes is enhanced, which results in the formation of a plateau in the 
curves of the voltage dependence of intensity on a piezoelectric transducer. These effects 
described phenomenological in the given work are not taken into consideration by the 
simple PPK model. 
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