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1. Introduction 

Modeling acoustic propagation conditions is an important issue in underwater acoustics 

and there exist several mathematical/numerical models based on different approaches. Some 

of the most used approaches are based on ray theory, modal expansion and wave number 

integration techniques. Ray acoustics and ray tracing techniques are the most intuitive and 

often the simplest means for modeling sound propagation in the sea. Ray acoustics is based 

on the assumption that sound propagates along rays that are normal to wave fronts, the 

surfaces of constant phase of the acoustic waves. When generated from a point source in a 

medium with constant sound speed, the wave fronts form surfaces that are concentric 

circles, and the sound follows straight line paths that radiate out from the sound source. If 

the speed of sound is not constant, the rays follow curved paths rather than straight ones. 

The computational technique known as ray tracing is a method used to calculate the 

trajectories of the ray paths of sound from the source.  

Ray theory is derived from the wave equation when some simplifying assumptions are 

introduced and the method is essentially a high-frequency approximation. The method is 

sufficiently accurate for applications involving echo sounders, sonar, and communications 

systems for short and medium short distances. These devices normally use frequencies that 

satisfy the high frequency conditions. This article demonstrates that ray theory also can be 

successfully applied for much lower frequencies approaching the regime of seismic 

frequencies. 

This article presents classical ray theory and demonstrates that ray theory gives a valuable 

insight and physical picture of how sound propagates in inhomogeneous media. However, 

ray theory has limitations and may not be valid for precise predictions of sound levels, 

especially in situations where refraction effects and focusing of sound are important. There 

exist corrective measures that can be used to improve classical ray theory, but these are not 
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discussed in detail here. Recommended alternative readings include the books. [1-4] and the 

articles [5-6]. 

A number of realistic examples and cases are presented with the objective to describe some 

of the most important aspects of sound propagation in the oceans. This includes the effects 

of geographical and oceanographic seasonal changes and how the geoacoustic properties of 

the sea bottom may limit the propagation ranges, especially at low frequencies. The 

examples are based on experience from modeling sonar systems, underwater acoustic 

communication links and propagation of low frequency noise in the oceans. There exist a 

number of ray trace models, some are tuned to specific applications, and others are more 

general. In this chapter the applications and use of ray theory are illustrated by using Plane 

Ray, a ray tracing program developed by the author, for modeling underwater acoustic 

propagation with moderately range-varying bathymetry over layered bottom with a thin 

fluid sedimentary layer over a solid half with arbitrary geo-acoustic properties. However, 

the discussion is quite general and does not depend on the actual implementation of the 

theory. 

2. Theory of ray acoustics 

The theory of ray acoustics can be found in most books and [1-4] will not be repeated here, 

but instead we follow a heuristic approach based on Snell’s law, which is expressed by. 
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Figure 1 shows a small segment of a ray path and the coordinate system. The segment has 

horizontal and vertical components dz and dr, respectively, and has the angle with the 

horizontal plane. When the speed of sound varies with depth the ray paths will bend and 

the rays propagate along curved paths. The radius of curvature R is defined as the ratio 

between an increment in the arc length and an increment in the angle 
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Figure 1 shows that the radius of curvature is  

 
1

.
sin 


dz

R
d

 (3) 

When the sound speed varies with depth the ray angle  is a function of depth according to 

Snell’s law. Taking the derivative of Eq. (3) with respect to gives the ray’s radius of 

curvature at depth z expressed as 
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The ray parameter  is defined in Eq. (1) and g(z) is the sound speed gradient. 

    
.

dc z
g z

dz
 (4) 

At any point in space, the ray curvature is therefore given by the ray parameter  and the 

local value of the sound speed gradient g(z). The positive or negative sign of the gradient 

determines whether the sign of R is negative or positive, and thereby determines if the ray 

path curves downward or upward.  

A ray with horizontal angle in strikes a plane with inclination , the reflected ray is changed 

to out. 

 

Figure 1. A small segment of a ray path in a isotropic medium with arc length ds. 

 

Figure 2. A ray with horizontal angle in strikes a plane with inclination , the reflected ray is changed 

to  out. 

The ray parameter is not constant when the bathymetry varies with range. The change in ray 

direction is illustrated in Figure 2 showing that after reflection the angle in of an incoming 

ray is increased by twice the bottom inclination angle . 

 2 .   out in  (5) 

Consequently, after the ray is reflected, its ray parameter must change from in to out, which 

is expressed as 
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The coordinates of a ray, starting with the angle 1 at the point (r1,z1), where the sound speed 

is c1, as shown in Figure 3. For the coordinates of the running point at (r2, z2) along the ray 

path, the horizontal distance is  
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The travel time between the two points is obtained by integrating the quantity 1/c, the 

slowness, along the ray path:  
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Figure 3. Left: The sound speed profile. Right: A portion of a ray traveling from point (r1, z1) to  

(r2, z2). 

The acoustic intensity of a ray can, according to ray theory, be calculated using the principle 

that the power within a ray tube remains constant within that ray tube. This is illustrated in 

Figure 4 showing two rays with a vertical angle separation of d0 that define a ray tube 

centered on the initial angle 0. At a reference distance r0 from the source, the intensity is I0. 

Taking into consideration the cylindrical symmetry about the z axis, the power P0 within 

the narrow angle d0 is  

 2

0 0 0 0 02 cos .   P I r d  (9) 

At horizontal distance r, the intensity is I. In terms of the perpendicular cross section dL of 

the ray tube, the power is 

 2 . P I rdL  (10) 

Since the power in the ray tube does not change, we may equate Eq.(9) and eq. (10) , and 

solve for the ratio of the intensities: 
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Figure 4. The principle of intensity calculations: energy radiated in a narrow tube remains inside the 

tube; r0 represents a reference distance and 0 is the initial ray angle at the source; d0 is the initial 

angular separation between two rays; dr is the incremental range increase;  is the angle at the field 

point; dz is the depth differential; and dL is the width of the ray tube. 

Instead of using Eq.(11) , it may be more convenient to use the vertical horizontal ray dr, 

which is 

 ,
sin


dL

dr  (12) 

resulting in 

 
2 2

0 0 0 0 0 0

0

cos cos
.

sin sin

   
 

      
  

I r d r c d

I r dr r c dr
 (13) 

The last expression in Eq.(13) is obtained by assuming that the ray parameter is constant and 

by using Snell’s law. The absolute values are introduced to avoid problems with regard to 

the signs of the derivatives and of sin. 

With respect to the reference distance r0, the transmission loss TL is defined as 

  010log / . TL I I  (14) 

By inserting Eq.(13) into Eq.(14) the transmission loss becomes 

  2
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0 0

10log / 10log 10log .
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dz c
TL r r

d c
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The term c0/c is close to unity in water and can be ignored in most cases. 

In this treatment the transmission loss includes only the geometric spreading loss. Therefore 

bottom and surface reflection losses and sea water absorption loss must be included 

separately.  

The geometric transmission loss in Eq.(15) consists of two parts. The first term represents the 

horizontal spreading of the ray tube and results in a cylindrical spreading loss. The second 
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and third terms represent the vertical spreading of the ray tube and are influenced by the 

depth gradient of the sound speed. 

Eq.(13) predicts infinite intensity under either of two conditions: when  = 0 or when 

dr / d0 = 0. The first condition signifies a turning point where the ray path becomes 

horizontal; the second condition occurs at points where an infinitesimal increase in the 

initial angle of the ray produces no change in the horizontal range traversed by the ray. The 

locus of all such points in space is called a caustic. In both cases there is focusing of energy 

by refraction and where classical ray theory incorrectly predicts infinite intensity. Caustics 

and turning points will be discussed further in section 8.2. 

3. A recipe for tracing of rays  

A simple receipt for a ray tracing algorithm is to divide the whole water column into a large 

number of layers, each with the same thickness z. Within each layer, the sound speed profile 

is approximated as linear so that, in the layer zi < z < zi+1, the sound speed is taken to be  

     .i i ic z c g z z    (16) 

where ci is the speed at depth zi, and gi is the sound speed gradient in the layer. From Eq. (7) 

and Eq. (8) the range and travel time increments in the layer are given by 
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and 
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When 2 2
1( ) 1ic z   , the ray path turns at a depth between zi and zi+1, and Eq.s (17) and (18) 

must be replaced by the following expressions:  

 2 2
1

2
1 ( ) ,i i i

i

r r c z
g


     (19) 

and  
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These equations give the trajectories and the travel times for any ray’s path to the desired 

range. By applying Eqs. (13) and (14), the geometrical transmission loss is also determined. 
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The simplicity of this method lies in the approximation of the sound speed profiles with 

straight-line segments and the ray path’s subsequent decomposition into circular segments. 

The method’s accuracy is determined by how well the linear fit matches the actual profile. In 

practice, the sound speed profile is often given as measured sound speeds at relatively few 

depth points. It is therefore advisable to use an interpolation scheme that is consistent with 

the usual behavior of the sound speed profile to increase the number of depth points to an 

acceptable high density. 

The examples in this article are generated using the ray trace program PlaneRay that has 

been developed by the author [7-8]. However, any other ray programs with similar 

capabilities could have been use and the discussion is therefore valid for ray modeling in 

general. Other models frequently used and are the Bellhop model [9], and the models [10-

11]. 

Figure 5 shows an example of ray modeling. The sound speed profile is shown at the left 

panel and the rays from a source at 50 m depth is shown in the right panel, which also 

shows the bathymetry and the thickness of the sediment layer over the solid half space. 

 

Figure 5. Sound speed profile and ray traces for a typical case. The source depth is 150 m and the red 

dotted line indicates a receiver line at a depth of 50 m. The initial angles of the rays at the source are 

from –30º to 30º. 

4. Eigenray determination 

To calculate the acoustic field it is necessary to have an efficient and accurate algorithm for 

determination of eigenrays. An eigenray is defined as a ray that connects a source position 

with a receiver position. In most case with multipath propagation there are many eigenrays 

for a given source/receiver configuration, which means that finding all eigenrays is not a 

trivial task.  

The PlaneRay model uses a unique sorting and interpolation routine for efficient 

determination of a large number of eigenrays in range dependent environments. This 

approach is described by the two plots in Figure 6, which displays the ray history as 

function of initial angle at the source. All facts and features of the acoustic fields such as the 

transmission loss, transfer function and time responses are derived from the ray traces and 

their history The two plots show the ranges and travel times to where the rays cross the 

receiver depth line (marked by the red dashed line in Figure 5). A particular ray may 
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intersect the receiver depth line, at several ranges. For instance at the range of 2 km, there 

are 11 eigenrays and from  Figure 6 the initial angles of these rays are approximately found 

to be 5.9°, 9.6°, 22°, 24° for the positive (down going) rays and2.0°,3.6, ° 7-4° 15.0° 

17.0° 25.0°,27.0°, for the negative (up-going waves). However, the values found in this 

way are often not sufficiently accurate for the determination of the sound field. Further 

processing may therefore be required to obtain accurate results.  

The graphs of Figure 6 are composed of independent points, but it is evident that the points 

are clustered in independent clusters or groups. This property is used for sorting the points 

into branches of curves that represents different ray history. These branches are in most case 

relatively continuous and therefore amenable to interpolation. An additional advantage of 

this method is that the contribution of the various multipath arrivals can be evaluated 

separately, thereby enabling the user to study the structure of the field in detail.  

 

Figure 6.  Ray history of the initial ray tracing in Figure 5 showing range (left) and travel time (right) to 

the receiver depth as function of initial angel at the source. 

In most cases the eigenrays are determined by one simple interpolation yields values that 

are sufficiently accurate for most application, but the accuracy increases with increasing 

density of the initial angles at the cost of longer computation times.  

Figure 7 shows examples of eigenrays traces with rays a receiver located at 2.5 km from the 

source for the scenario shown in Figure 5. To this receiver there are a total of 12 eigenrays, 

spanning the range of initial angles from -30° to 29°.  

 

Figure 7. Eigenrays from a source at 150 m depth to a receiver at 50 m depth and distance of 2.5 km 

from the source. 
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5. Acoustic absorption in sea water 

Sound absorption is important for long range propagation especially at higher frequencies. 

The absorption increases with frequencies and is dependent on temperature, salinity, depth 

and the pH value of the water. There exists several expressions for acoustic absorption in sea 

water; one of the preferred options is the semi-empirical formulae by Francoise and 

Garrison [12]. Figure 8 shows sound absorption as function of frequency in sea water using 

this expression for the values given in the figure caption. 

 

Figure 8. Acoustic absorption (dB/km) for fresh water and saltwater, plotted as a function of frequency 

(kHz) for water temperature of 10C, atmospheric pressure of one atmosphere (surface), salinity of 35 

pro mille, and pH value of 7.8. The various contributions to the absorption are also indicated. 

6. Boundary conditions at the surface and bottom interfaces 

Ray tracing is greatly simplified when no rays are traced into the bottom, but stops at the 

water-bottom interface. This avoids tracing of multiple reflections in layered bottoms. 

Instead the boundary conditions at the sea surface and the bottom can be approximately 

satisfied by the use of plane wave reflection coefficient. 

A simple and useful bottom model is assuming a fluid sedimentary layer over a 

homogeneous solid half space. The reflection coefficient of a bottom with this structure is  
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where γp1 is the vertical wave number for sediment layer and D is the thickness of the 

sediment layer. The reflection coefficient between the water and the sediment layer, r01, is 

given as  
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and r12 is the reflection coefficient between the sediment layer and the solid half space,  
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In Eq (15) and (16) Zki is the acoustic impedance for the compressional (k = p) and shear 

(k = s) waves in water column (i = 0), sediment layer (i = 1) and solid half-space (i = 2), 

respectively. The grazing angle of the transmitted shear wave in the solid half-space is 

denoted θs2.  

Figure 9 shows an example of the bottom reflection loss as function of angle and frequency 

for a bottom with a sediment layer with the thickness D = 2 m with sound speed of 1700 m/s 

and density 1800 kg/m3 over a homogenous solid half space with compressional speed 3000 

m/s, shear speed 500 m/s and density 2500 kg/m3. The wave attenuations are 0.5 dB/ 

wavelength. The critical angle changes from 60° at very low frequencies to about 28° at high 

frequencies, the two angles are given by the sound speed in the water and the two bottom 

sound speed of 3000 m/s and 1700 m/s. The small, but significant, reflection loss at lower 

angles is caused by shear wave conversion and bottom absorption In this case the 

attenuation is about 1 dB in the frequency band around 50 Hz to 100 Hz. 

The reflection coefficient of a flat even sea surface is 1 for. For a sea surface with ocean 

waves there will be diffuse scattering to all other direction than the specular direction, 

which result in a reflection loss that in the first approximation can be modeled by the 

coherent rough surface reflection coefficient  
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In this expression  is the grazing angle and σh is the rms. wave height and λ, is the acoustic 

wavelength, both in meters.  

 

 

Figure 9.  Bottom reflection loss (dB) as function of frequency and incident angle for a 2 m sediment 

layer over solid rock. The parameters are given in the text. 
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The reflection loss associated with reflection from a rough sea surface is  

  20log10 .  cohRL R  (25) 

The same rough surface reflection coefficient may also be applied to a rough bottom. 

Figure 10 shows the rough surface reflection loss as function of grazing angle, calculated for 

a wave height of 0.5 m and the frequencies of 50 Hz, 100 Hz, 200 Hz and 400 Hz.  

 

Figure 10.  Reflection loss (dB) of rough surface with rms. wave height of 0.5 m as function of grazing 

angle, for the frequencies in the legend 

7. Synthesizing the frequency domain transfer function and the time 

responses 

The total wave field at any receiving point is calculated in the frequency domain by coherent 

summation of all the eigenray contributions. The first step in the calculation is to determine 

the geometrical transmission loss of each of the multipath contributions by applying Eq. (13) 

and Eq.(14) to the sorted and interpolated range-angle values. The frequency domain 

transfer function and the transmission loss are obtained by adding the multipath 

contributions coherently in frequency domain taken into account the phase shifts associated 

the travel times from the interpolated history of the travel times. The frequency dependent 

acoustic absorption of sound in water is included at this point in the process. The transfer 

function H( r) can be expressed as  

        , exp .    n n n n n

n

H r A B S T i  (26) 

Eq. (26) expresses the transfer function H( r) to a distance r from the source at the at 

angular frequency  as a sum over the n eigenrays that are included in the synthesis. An is 

the geometrical spreading loss factor, defined as the square root of the expression in Eq. (13). 

Bn, and Sn, are the combined effects of all bottom reflections and surface reflections, 

respectively, Tn, is 90 phase shift associated with caustics and turning points, and n is the 

travel time.  

The synthesis of the received signals is performed in the frequency domain by multiplying 

the frequency spectrum of the source signal with the transfer function of each of the 
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eigenrays and summing the contributions. The time domain response is obtained after 

multiplication with the frequency function of a source signal followed an inverse Fourier 

transform of the product. This requires the choice of a source signal, a sampling frequency 

(fs) and a block length (Nfft) of the Fourier transform.  

The total duration of the time window (Tmax) after Fourier transform is 

 max . fft

s

N
T

f
 (27) 

It is important to select the values of Nfft and fs such that Fourier time window, Tmax, is larger 

than the actual length or duration of the signal. In reality the real time duration of the 

received signal is often not known in advanced and therefore the user may have to 

experiment with different values to find appropriate values for of Nfft and fs.  

Figure 11 shows an example where the transmission loss (in dB) as function of range has 

been calculated for the frequencies of 100 Hz and 200 Hz. The dashed black line indicates 

the geometrical spreading loss, which is added for comparison and given by, 
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This expression yields a transmission loss proportional to 20log(r) when r< rt and 

proportional to 10 log(r) for r> rt . This approximation to the geometrical transmission loss 

may be used for approximate calculations of transmission loss for flat bottom and simple 

sound speed profiles. In the case shown in Figure 11 rt is set equal to the water depth at 

source location, which in this case is 200 m. 

 

Figure 11.  Transmission loss as function of range calculated for 100 Hz and 200 Hz The dashed black 

line is values of Eq.(28) 
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Figure 12 shows the synthesized time response at receivers spaced at 200 m separations in 

range up to 6 km. The sound speed and bathymetry is the same as in Figure 5 with the source 

at 150 m and all receivers at 50 m depth. The time scale is in reduced time to remove the gross 

transmission delay between the source and receiver. The reduced time is defined as 

 . red real

red

r
t t

c
 (29) 

In Eq. (29), treal and tred are the real and reduced times, respectively, r is range and cred is the 

reduction speed. The actual value of cred is not important as long as the chosen value results 

in a good display of the time responses.  

 

Figure 12.  Received time signals as function of range and reduced time. 

In the example shown above, the time signal and calculated assuming a narrow band-

limited source signal in the form of a Ricker pulse. An example of a Ricker pulse and its 

frequency spectrum are shown in Figure 13. 

 

Figure 13.  Ricker time pulse and frequency function the center frequency of 100 Hz 
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The time responses in  Figure 12 are sorted according to the history of their eigenrays and 

color coded to allow for studying the various multipath contributions. This is particularly 

useful when dealing with transient signal and broad band signal, especially when 

knowledge of the multipath structure is important. In many such situations only the direct 

arrival or the refracted arrivals in the water column may carry the useful signals and all the 

other arrivals represent interference. In this case there are direct arrivals, followed by 

surface reflected and refracted arrivals at the turning points. Notice the high sound pressure 

values caused by the caustics at 3 km, 6, km and 7 km, which are apparent in both plots, this 

issue is discussed in section 8.2. 

The red dotted line in Figure 12 represents an estimate of the duration of the cannel impulse 

response. This time duration is mainly given by the bottom reflection coefficient and the 

critical angle. Rays that propagate at angles closer to the horizontal plane than the critical 

angle experience almost no bottom reflection loss and may therefore propagate to long 

distances. Rays with steeper angles will experience higher reflection losses and die out more 

rapidly with range. Thus the time duration of the impulse is directly determined by the ratio 

of sound speeds in the water and the bottom as 
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This estimate of the time duration of the channel impulse response assumes that the bottom 

is fluid, homogenous and flat, but the estimate may also be useful in other cases with 

moderately range dependent depth and with solid or layered bottom.  

8. Special considerations  

8.1. Frequency of applications 

Ray tracing is a high frequency approximation to the solution of the wave equation and in 

principle more valid for high than for low frequency applications. However, high resolution 

prediction of higher frequency acoustic fields is difficult both for numerical and physical 

reasons. Principally most important is the physical limitation caused by the fact that the 

sound speed and the environment are generally not known in sufficient detail. This can be 

illustrated by a simple example. Consider coherent communication using a frequency of 10 

kHz with wavelength of 10 mm. The required accuracy in order to be correct at a distance of 

1 km is that the sound speed is known and stable with a relative error less 10-5, an impossible 

requirement to satisfy in practice regardless of the numerical accuracy of the computer 

model. 

8.2. Caustics and turning points 

As mentioned before, the locations where dr/d0=0 are called caustics where the ray phase is 

decreased by 90 and the where the intensity, according to ray theory, goes to infinity. In 
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reality the intensity is high, but finite, and the basic ray theory breaks down at these points. 

There exists theories to amend and repair the defects of ray theory at these points [1, 2, 13], 

but that is not discussed here. 

Figure 14 shows details of the field at a showing the rays with initial angles in the range of 

6° to 1°. The scenario is the same as in of Figure 5, but for clarity the tracing of rays have 

been stopped after the first bottom reflection and the figure concentrates on the details the 

field at the caustic at 1760 m range for a ray with initial angle of 5.6°. Figure 15 shows the 

time responses for ranges in the interval from 1.6 km to 1.9 km. In this case, the source signal 

is a Ricker pulse with a peak frequency of 200 Hz. There is a first direct arrival (black color) 

at all ranges. From the range 1760 there is also a refracted arrival a little later than the direct, 

but with higher amplitude, in particular near the range of 1760 m. Notice the effect of the 90° 

phase shift for ranges beyond the caustic at 1760 m and that the amplitude at this range is 

considerable higher than at the other ranges. 

 

 

Figure 14.  Rays through a caustic  

 

Figure 15.  Time responses around the caustic at 1.76 km. The transmitted signal is a Ricker pulse with 

peak frequency of 200 Hz. 
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8.3. The principle of reciprocity and its validity in ray modeling 

The principle of reciprocity is an important and useful property of linear acoustics and 

systems theory. The principle is very general and valid also in cases where the wave 

undergoes reflections at boundaries on its path from source to receiver [14]. The reciprocity 

principle is correctly represented in ray modeling, as can easily be understood from the 

eigenray plots of Figure 7. The eigenrays from a source position to the receiver position are 

the same as when source and receiver changes positions. The reflections at the bottom and 

at the sea surface are also symmetric in angles and consequently the acoustic fields are the 

same. However, it should be noted that the reciprocity principle applies to a point-to-point 

situation. This means that, for instance, that the development of the transmission loss as 

function source-receiver separation is generally not the same for the two directions.  

8.4. The validity of using plane wave reflection coefficients 

The accuracy of any ray model depends on the validity and limitation of ray theory and the 

implementation. A fundamental assumption of model is that the interactions with the 

boundaries are adequately described by plane wave reflection coefficient. In this section the 

validity of this assumption is investigated. 

 The general expression for the reflected field is given in text books, for instance in [13], over 

horizontal wave numbers k, as 

        (1)
0

0

exp( )
, ,     .

8


 
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ref r

i z zS
r z k kH kr dk

i
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Φref(r, zr ω) is the reflected field due to point source with frequency ω and source strength 

S(ω).  k  is the reflection coefficient,  1

0H kr  is the Hankel function of first kind, which 

represents a wave progressing in the positive r-direction. The horizontal wave number k and 

the vertical wave number are related to the sound speed, frequency and the angle  by 
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 (32) 

Eq.(31) states that the field is given as an integral over all horizontal wave numbers, or as 

consequence of Eq.(32) , integration over all angles both real and the imaginary. 

 Consider now the situation where  k   is constant and independent of k or the angle. 

The integral in Eq.(31) becomes a standard integral and  

   ( )
, ,   exp( ).

4
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r z ikR

R
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  22 .    s rR r z z  (34) 

According to Eq. (33) the reflected wave is the same as the outgoing spherical wave from the 

image of the source in the mirror position of the real source and modified by the constant 

reflection coefficient . The situation with a constant reflection coefficient is valid for 

perfectly flat sea surface where the reflection coefficient is equal to -1 for all angles of 

incidence. Thus the reflection from a smooth sea surface is accurately described plane wave 

reflection coefficients. 

In the general case, and for reflections from the bottom, the reflection coefficient  k  is not 

constant and the integral can only be solved approximately or numerically. In order to 

obtain an approximation of the integral in Eq.(31) , the Hankel function is expanded in a 

power series with the first terms being 
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2 1
exp 1 .

4 8
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Restricting the integral of Eq.(31) to the first term yields  

 

 

     

, ,  

1
= exp .

4 2






 





 

    

ref r

r s

r z

S k
k ikr i z z dk

r

 (36) 

The exponential in the integrand will normally be a rapid varying function and therefore the 

value of the integral will be small except when the phase term of Eq.(36) is nearly constant. 

The phase term of Eq.(36) is 

   .   r si z z ikr  (37) 

The stationary points are defined to the values of the horizontal wave number k where the 

derivative of the phase with respect to k is equal to zero, that is where dα/dk=0, giving the 

stationary point as 

 
 

 0

.
tan 


 sz z
r  (38) 

The interpretation of this result is quite simple; the reflected wave field is equal to that of the 

image source multiplied with the reflection coefficient at the specular angle 0. 

There are however situations where this approximation is not sufficient in practice. This is 

discussed in [13] and in the following their results are cited without proof. The accuracy of 

the approximation depends on the source or receiver distance from the bottom interface. 

The result of the analysis is that the distance z from the bottom must satisfy 
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With the water parameters of ρw = 1000 kg/m3 and cw=1500 m/s, and the bottom parameters 

of ρb = 1500 kg/m3 and cb=1700 m/s. Equation (39) requires than the distance from the bottom 

satisfy z>> 0.5 λ for the validity of using plane wave reflection coefficient at the bottom 

interface. A harder bottom with ρb = 1800 kg/m3 and cb=3000 m/s, gives the requirement that 

z>> 1.0 λ. Hence the condition for validity is somewhat easier to satisfy for a soft bottom 

than for a hard bottom.  

8.5. Bench marking ray modeling  

The wave number integration model OASES [15] has been used to validate the accuracy and 

the limitation of the ray trace model using the simple case with constant water depth of 100 

m and constant sound speed of 1500 m/s. 

Figure 16 show the calculated transmission loss for the frequencies of 25 Hz, 50 Hz, 100 Hz 

and 200 Hz. The agreements between the results are very god for the higher frequency, but 

with some discrepancies for the lower frequencies, in particular for 25 Hz. The discrepancy 

is mainly a phase shift in the interference patterns of the two results, most pronounced for 

low frequencies and long ranges. This observation agrees with the theory outlined earlier. 

The seriousness of this discrepancy or errors may not very important in practice since the 

mean level is nearly the same as shown by the comparison with the OASES model. 

 

Figure 16.  Comparison of the transmission loss as function of range for selected frequencies by 

PlaneRay (solid blue line) and OASES (dotted red line) for Pekeris’ waveguide with a homogenous 

solid bottom with compressional wave speed of 3000 m/s and shear wave speed 500 m/s. Both wave 

attenuations have the values of 0.5 dB/wavelength. 
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9. Case studies 

In the following we present two case studies that are relevant application of the modeling 

techniques descried in this article. The first if these is in connection with acoustic 

underwater communication and the transmission of digital information. In this case the 

multipath communication may be a significant problem causing intersymbol interference 

and significant degradation of reliability and performance. The second case is related to 

studies on the propagation of low frequency sound and the effect such noise may affect 

marine life, sea mammals and fish. 

9.1. Seasonal variations of communication links 

In connection with a study of underwater acoustic communication the propagation over a 6 

km track has been modeled for the various seasonal sound speed profiles. 

 The sound speed some months are shown in Figure 17. The sound speed profiles depend on 

the sea water temperature, the salinity and the depth. In the present case the sea water 

temperature variation with depth and the seasons is the main reason for changes in sound 

speed profile. During winters the surface water is cold and the sound speed is low, in the 

summer the surface water temperature and the sound speed is higher. The seasonal heating 

and cooling of the surface water propagates also to deeper depths, but with diminishing 

temperatures changes. At very large depths the water temperature is nearly the same at all 

seasons and the sound speed increases linearly and slowly with depth. 

 

Figure 17.  Sound speed profiles measured at specific dates for the months given in the figures 

Figure 18 shows ray tracing results are for the same profiles as displayed in Figure 17. The 

purpose of the study was to investigate the possibility of communication to positions beyond a 

sea mount and to study the multipath arrival structure as function of range and depth. 
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There is a seamount with a peak at about 3 km from the transmitting station. In order to 

simplify the interpretation ray tracings in these plots have been terminated after 6 bottom 

reflections, but all rays are included in the calculation of the acoustic field, but rays with so 

many bottom reflections, or more, will in most case not be useful for data communication 

because of the reflection loss and reduced coherence. 

 

Figure 18.  Ray tracing plots assuming a source depth of 15 meter for four monthly conditions at the 

Roberg test site. The sound speed profiles are the same as shown in Figure 17. 

Figure 19 shows examples of received time responses at 25 m depth using a Ricker pulse as 

source signal. The different multipath contributions are color coded for clarity. At distances 

from the source over 1.5 km the first arrivals is follow paths surface reflected and upward 

refracted paths 

Figure 20 shows the channel responses at a fixed range as function of depth down to 50 m. 

This figure shows the total response after adding all the individual multi path contributions. 

The plots demonstrate that the surface channel consists of deep refracted path and a number 

of paths reflected from the surface and deeper upwards refractions. The stability of these 

paths may be uncertain and subject to rapid changes in the environmental conditions near 

the surface due to temperature wind and current. 

 

Figure 19.  Time responses as function of range for receivers at depths of 25 m with a source at 15 m. 
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Figure 20.  Time responses as function of receiver depth at a fixed horizontal distance of 3 km from a source at 15 

m depth. 

9.2. Seismic noise propagation 

In many areas of the world anthropogenic noise often dominates over the natural ambient 

noise, especially in the low frequency band from approximately from 10 Hz and upwards to 

1000 Hz, or more. This frequency band coincides approximately with the frequencies of 

perception of sea mammals and fish and may therefore be harmful to their natural activities, 

or even cause physical damages. An example is the case of the seismic exploration for oil 

and gas in certain areas where there is important commercial fishing interest. The 

propagation and distribution of acoustic noise depends the environmental conditions, in 

particular the oceanographic parameters, the topography of the seafloor and the acoustic 

properties of the bottom. In this section some of examples are presented to illustrate how the 

environment may affect the distribution of sound and noise. This study and discussion is 

also relevant for passive sonar applications to detect and track submerged vehicles and 

objects base emitted acoustic noise 

The effects of bathymetric are illustrated in Figure 21 showing ray traces of upslope and 

downslope conditions for typical summer conditions at the Halten Bank in the Norwegian 

Sea. With downslope propagation there is a thinning the ray density with distance and 

upslope propagation gives a concentration of rays as the water depth diminishes.  

 

Figure 21.  The effect of up and down sloping bottoms on the acoustic field distribution calculated for 

the typical summer condition in the month of July. 
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Figure 22 and Figure 23 show the calculated sound pressure level as function of range for 

the downslope and upslope propagation. The sound pulse from an airgun array is modeled 

as s a Ricker pulse with a peak pressure of 260 dB rel. 1µPa, centered on the frequency of 50 

Hz, The horizontal dashed line is the assumed threshold value for fish reaction to sound. 

The bottom is modeled with a 2 m thick sedimentary layer over solid rock. The sound speed 

in the sediment layer is 1700 m/s and the density is 1800 kg/m3. The compressional sound 

speed in the rock is 3000 m/s, and density is 2500 kg/m3. The results in Figure 22 and Figure 

23 are obtained under two conditions: (a) with a shear speed of 500 m/s, and (b) with no 

shear wave in the rock, i.e. the shear speed is zero. The absorptions are assumed to be 0.5 dB 

per wavelength for all the waves in the sediment layer and the rock. In the first case (a) the 

bottom reflection loss is as shown in Figure 9 with a significant low frequency reflection loss 

at angles lower than the critical angle caused by absorptions and conversion to shear wave 

in the bottom, which draws energy for the reflected wave. In the case of Figure 22 this 

results in a low-frequency and low-angle reflection loss of about 1 dB. For long ranges and 

many reflections this adds up to a significant total propagation loss. With no shear 

conversion the reflection loss is considerably reduced and the sound propagates easier to 

long ranges. The difference between the sound level at 50 Hz and 100 Hz is partly a result of 

increase attenuation at the higher frequency and partly that the source level in this case is 

higher for 50 Hz than for 100 Hz. 

 

Figure 22.  Sound pressure level as function of range for downslope propagation and July conditions. 

Left: With shear wave conversion (500 m/s). Right: No shear wave conversion. 
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Figure 24 and Figure 23 show similar results for downslope and upslope propagation for 

typical winter conditions represented by a sound speed profile measured in the month of 

February. For downslope conditions the sound level decrease rapidly with increasing depth 

and much more rapidly with shear wave conversion (Figure 24a) than without shear (Figure 

24b). With upslope propagation (Figure 23) the sound levels are near independent of shear 

conversion except at the very long rages where the water depth becomes constant. The 

examples demonstrate that sound propagation in the ocean is strongly influenced by both 

by the oceanographic conditions and the geophysical properties of the bottom. Reliable 

prediction of acoustic propagation condition requires modeling tool that can that can handle 

both bottom and water properties.  

 

 

 

Figure 23. Sound pressure level as function of range for upslope propagation and July conditions. Left: 

With shear wave conversion (500 m/s). Right: No shear wave conversion. 

 

 

Figure 24. Sound pressure level as function of range for downslope propagation and February 

conditions. Left: With shear wave conversion (500 m/s). Right: No shear wave conversion. 
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Figure 25. Sound pressure level as function of range for upslope propagation and February conditions. 

Left: With shear wave conversion (500 m/s). Right: No shear wave conversion 

10. Summary 

The article has outlined the theory of ray modeling and described how the theory can be 

applied to study acoustic wave propagation in the ocean. The complete acoustic fields are 

calculated by coherent addition of the contributions of a large number of eigenrays. In this 

method no rays are traced into the bottom, but the bottom interaction is modeled by plane 

wave reflection coefficients. Ray tracing is, by definition, frequency independent and 

therefore the ray trajectories through the water column are valid for all frequencies. 

Frequency dependency is introduced by reflections from the sea surface and the bottom, 

including loss associated with absorption and diffuse scattering of a rough ocean and 

bottom interfaces. Ray tracing is therefore a computational effective method for modeling 

broad of frequency band wave fields and for calculation of time responses. 

Ray tracing is high-frequency approximation to the solution of the wave equation and the 

accuracy and validity at lower frequencies may be questioned, in particular the use of plane 

ray reflection coefficient to represent the bottom effects. This problem has been considered 

both theoretically and by simulations and comparison with more accurate model. The 

results of this study shows that source and receiver should be at a height above the bottom 

of at least half a wavelength, but there is no similar requirement to the distance from the sea 

surface. Less fundamental is the limitation of the numerical accuracy of the determination of 

the eigenrays, which is most serious in the calculation of the ray amplitude and the 

transmission loss. These inaccuracies are of more practical nature and can be reduced by 

refinements in the calculations.  

Examples relevant for application in acoustic underwater communication and active sonar 

have been presented. The propagation of low frequency sound to large distances has been 

presented showing the effect of the bathymetry and the acoustic properties of the bottom. 

An important conclusion is the effect of bathymetry and the sound speed structure interacts 

and that accurate modeling of sound propagation requires information about the 

oceanography, the bathymetry and the geology of the bottom. 
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