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1. Introduction 

In 1944, Bethe found the transmittance of electromagnetic (EM) waves through a tiny hole in 

a perfectly conducting screen varies as being proportional to (kr)4, where k=2π/λ, λ is the 

wavelength and r is the hole radius [1]. This result shows that a small hole has extremely 

low transmission or negligible cross section for EM waves of very long wavelength. For a 

hole of finite thickness, the transmittance is found to be reduced further, because no 

propagating mode exists inside the hole [2].   

However, in 1998, Ebbesen et al. has observed enhanced transmission of light through either 

a lattice of subwavelength holes or a single hole surrounded by surface periodical patterns 

on thin metallic films, where the optical transmission can be much larger than the area 

fraction of the holes at specific frequencies [3-13]. The holes, once organized or decorated, 

have the transmission cross section larger than themselves’ area, which is different radically 

from the theory by Bethe. Since then, the remarkable phenomenon has inspired a 

tremendous amount of attention and works on resonant transmissions of EM waves through 

various apertures on either metallic or dielectric structure [14-25]. Phenomenologically, 

various observed transmission resonances are associated with two geometrical factors: 

structural factor (SF) emerging globally from the lattice periodicity and aperture factor 

owned locally by the individual unit [26-29]. Structural-factor-related resonances typically 

have the transmission wavelength comparable to the lattice constant and are dependent 

strongly on the incidence angle. In sharp contrast, aperture-factor-related resonances have 

the wavelength determined mainly by the transversal/longitudinal dimensions of the 

aperture and are not sensitive to the incidence angle.  

It is well known that acoustic and EM waves share a lot of wave phenomena, but they have 

something in difference. In nature, acoustic wave is a scalar longitudinal wave in inviscid 

fluids, while EM wave is a vector transverse wave. Consequently, a subwavelength hole has 

no cutoff for acoustic wave, but does for EM wave, which underlies the distinct 
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transmissions of acoustic/EM waves through a hole in an ideally rigid/conducting screen. 

The acoustic transmission of a single hole approaches a constant, 8/2, dislike the EM case, 

with decreasing the ratio r/ [30].   

Transmission/diffraction by an acoustical grating is an old problem, and the previous 

investigations addressed some cases: one-dimensional (1D) periodic slits in a rigid screen 

[31,32], a single hole in a thick wall [33,34], and a 1D grating composed of parallel steel rods 

with finite grating thickness [35,36]. Here we studied the acoustic transmissions through 

two structures: (1) a two-dimensional array (square lattice) of subwavelength hole and (2) a 

single hole surrounded by the surface periodic grooves. It is found that the acoustic 

transmission phenomenon for the structured thin plates is analogous completely to the case 

of EM wave, except for the transmission phase. For the hole array in thick plates, the 

transmission peaks are related to the Fabry-Perot-like (FP-like) resonances inside the holes 

and can occur to the frequencies well below Wood’s anomalies. 

2. Ultrasonic measurements 

In our experiments, the measurements of far field transmissions of acoustic waves in the 

ultrasonic frequency regime (0.2–2.0 MHz) were performed in a large water tank. Two 

immersion transducers were employed as ultrasonic generator and receiver, and the sample 

was placed at a rotation stage located between the two transducers at an appropriate 

distance. The sample could be rotated, so that the oblique incidences were measured. The 

ultrasonic pulse was incident upon the sample and the transmitted signal was collected by 

the receiver, collinear with the incident wave. Transmission magnitude, T, and transmission 

phase, , of the sample were obtained by normalizing the Fourier transformed spectra of the 

signal through the sample,    exps sA f j f    , with respect to the signal through the water 

background (without the sample in place),    expb bA f j f    , where f is the frequency and 

2 1j   . Consequently,    /s bT A f A f , and     2 /s bf f f t c       (c =1490 m/s 

being the speed of acoustic wave in water, t being the sample thickness) .  

In the context, the term “transmission” when referring to the spectrum means the amplitude 

ratio, T, of the transmitted and the incident waves. To figure out whether the transmission is 

enhanced, we need calculate the ratio of transmitted energy flow to the energy flow incident 

on all holes. Within a unit cell of the hole array, the ratio can be expressed by: 
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where It (At) and Ii (Ai) denote the intensities (amplitudes) of transmitted and incident 

acoustic waves, respectively, a is the lattice constant, d is the hole diameter, and 

 2 2/ 4d a   is the area fraction of the holes. We call the squared transmission magnitude 

2T  as transmittance   representing the acoustic intensity transmission. If > 1  , then the 

enhanced transmission is obtained.   
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Apart from measuring the transmission spectrum, we also implemented point-by-point 

scanning to detect the pressure field distribution in the transmission process. A pinducer 

(1.5 mm in diameter) replaced the receiving transducer and was located at a distance, z, 

from the rear surface of the sample to detect the pressure field distribution there. The 

pinducer was mounted on a two-dimensional translation stage. The scanning was done 

along the x-y plane parallel to the sample surface, with a spatial step of 0.1mm×0.1mm.   

3. Experimental results  

3.1. Enhanced transmission of acoustic waves through hole array structure 

First we measured the acoustic transmission of a hole array with the hole diameter d = 0.5 

mm, the lattice constant a = 1.5 mm, and the plate thickness t = 0.5 mm. Figure 1 shows the 

transmittance of the hole array at normal incidence, compared to the transmittance of a 

smooth brass plate with identical thickness. For the smooth brass plate, very low 

transmittance is seen because of the acoustic impedance mismatch (ηbrass / ηwater ≈ 25). It is 

noticed that the transmittance rises at lower frequencies, which indicates a thin brass plate 

can not block acoustic waves of very long wavelength or very low frequency. This fact is 

different from the EM case where a sheet of metal as thin as skin depth works well. For the 

hole array, a pronounced peak is seen at 0.85 MHz and followed by a transmittance zero close 

to 1.0 MHz which is just Wood’s anomaly λ=a. The peak has the transmittance (68%), much 

lager than the area fraction (8.7%) of holes occupation in the array structure, and shows an 

acoustic transmission enhancement through the hole array, similar to the EM case.    

 

Figure 1. Transmittance of the acoustic waves at normal incidence through a hole array (solid line) and 

a smooth brass plate (dashed line) with the same thickness. The hole array has the parameters: the hole 

diameter d = 0.5 mm, the lattice constant a = 1.5 mm, and the plate thickness t = 0.5 mm. A schematic 

picture of the unit cell is illustrated as the inset. The level dot line represents the area fraction of holes in 

the array. Reprinted with permission from J. Appl. Phys. 104, 014909 (2008). Copyright 2008 American 

Institute of Physics. 
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We also investigated the dependence of the transmission peak on the lattice constant. Figure 

2 shows the normal transmissions of the hole arrays with identical lattice constant a = 2.0 

mm and different hole diameters. The transmission peak and two Wood’s anomalies 

(pointed by arrows) are identified at ~0.75 MHz and ~1.1MHz. With the larger diameter 

holes (d = 1.2 mm), the peak becomes more pronounced. Comparing with the array of a = 1.5 

mm in Figure 1, it is clear to show that the peaks and Wood’s anomalies downshift to lower 

frequencies as the lattice constant increases. In Figure 2, we also plotted the measured 

transmission phase   for the hole array of d = 1.2, a = 2.0, and t = 0.5 mm, and found 

0.98    at the peak frequency. The approximate    phase change reveals the 

oscillations of the acoustic field on the front and rear surfaces of the plate are out-of-phase, 

which is distinct from the corresponding characteristic in the EM case. For EM wave 

transmitted through a hole array, the hole acts as barrier due to the transmission frequency 

much lower than the cutoff frequency of the hole, and the wave has to tunnel through the 

hole in a form of evanescent field. So the phase change of the EM wave across the holey 

film/plate assumes nearly zero [37].  This difference in transmission phase bares the distinct 

behaviors of a hole to acoustic and EM waves, again.   

 

Figure 2. Acoustic transmissions at normal incidence through the hole arrays with the same lattice 

constant, 2.0 mm, and the same thickness, 0.5 mm, but different diameters as denoted. The measured 

transmission phase curve is for the hole array: d = 1.2, a = 2.0, and t = 0.5 mm. The arrows indicate the 

Wood’s anomalies, a  and / 2a  . Reprinted with permission from J. Appl. Phys. 104, 014909 

(2008). Copyright 2008 American Institute of Physics. 

Figure 3 shows the transmission spectra at oblique incidence measured with the incident 

angle θ varying from 0o to 25o for the hole array of d = 1.2, a = 2.0, and t = 0.5 mm. The 

transmission map is plotted as a function of both the frequency and the incidence angle. The 

predicted variation of Wood’s anomalies versus angle is plotted as solid lines and is 

superposed on the map. Derived from the conservation of momentum, the variation relation 

reads: 

    , 2 2 2 2/ sin cos / cos
l m

af c l l m       (2) 

for the Wood’s anomaly frequency f (l,m) of order (l, m). It is seen from the map that the 

measured shifting of Wood’s anomalies with the incidence angle agrees well with the solid 
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lines. On the other hand, the peaks exhibit a strong angle-dependent behavior in the same 

way as Wood’s anomalies. 

 

Figure 3. (a) The schematic picture of oblique incidence of acoustic waves. The wave vector kinc 

represents the incident wave illuminating the hole array at the incidence angle θ. The obliquity occurs 

along the [1,0] direction of the array. The wave vector k(0,0) represents the (0,0)-order transmitted wave. 

The wave vector kdiff(l,m) represents the (l,m)-order diffraction wave. (b) Acoustic transmission 

magnitude plotted as a function of the wave frequency and the incidence angle for the hole array, d = 

1.2, a = 2.0, and t = 0.5 mm. The solid lines superposed are the variation curves of Wood’s anomalies 

with the incidence angle. Reprinted with permission from J. Appl. Phys. 104, 014909 (2008). Copyright 

2008 American Institute of Physics. 

In recent investigations, it is demonstrated that the SF resonance can be responsible for 

enhanced transmissions of EM waves through subwavelength hole arrays [26,27].  We have 

considered that the acoustic surface wave at the brass-water interface might play no role in 

the present transmission phenomenon, and shown that the SF resonance holds for acoustic 

waves by generalizing the proof of EM waves [38,39]. The SF resonance has some spectral 

features: the resonant wavelength is determined essentially by the lattice constant and is 

very sensitive to the incidence angle with accompanied by Wood’s anomalies. Here, the 

experimental results for the enhanced acoustic transmission through the hole array in the 0.5 

mm thick plate manifests the features of SF resonance.  

When the plate thickness becomes larger, the situations begin to divide for two types of 

waves.  For EM wave, the transmission peak will diminish after the metallic film/plate 

becomes thick enough, because the holes have the cutoff. In sharp contrast, there is no cutoff 

for acoustic waves to propagate through the holes. When the thickness is large enough, for 

instance t = 2.3 mm, there can be multiple transmission peaks well below the Wood’s 

anomaly, as shown in Figures 4(a) and 4(b). The measured spectra show the typical 

characteristics of FP resonance in terms of the phase values at the transmission maxima and 

minima. From Figure 4(c), the peaks are not sensitive to the incidence angle. In fact, these 

transmission peaks are caused by standing-wave-formed resonances of the acoustic wave 
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establishing inside the hole channel. However, these resonances undergo a tuning, to some 

degree, by diffraction evanescent waves parasitical to a grating, and consequently deviate 

from the ordinary FP conditions while the plate thickness becomes comparable to the lattice 

constant, which will be further discussed later.   

 

Figure 4. (a) Normal transmission of acoustic waves through the hole array (open circles), d = 1.2, a = 

2.0, and t = 2.3 mm, immersed in water and through the effective fluid layer (solid line) immersed in 

water alike. Open circles are the measurement data, and the solid lines are the calculation based on the 

effective fluid model with 1.19n   and 0.28 water  . (b) Normal transmission for the hole array, d = 

0.5, a = 2.0, and t = 2.3 mm. Open circles are the measurement data, and the solid lines are the 

calculation based on the effective fluid model with 1.19n   and 0.05 water  . (c) Acoustic 

transmission magnitude plotted as a function of the wave frequency and the incidence angle for the 

hole array d = 1.2, a = 2.0, and t = 2.3 mm. The obliquity occurs along the [1,0] direction of the array. The 

solid line superposed are the variation curve of Wood’s anomaly (-1,0) with the incidence angle. The 

open circles superposed denote the variation of the transmission peaks, calculated from the FP 

resonance condition of the effective fluid model at oblique incidence. Reprinted with permission from J. 

Appl. Phys. 104, 014909 (2008). Copyright 2008 American Institute of Physics. 

3.2. Enhanced transmission of acoustic waves through bull’s eye structure 

Soon after the discovery of extraordinary optical transmission through a metallic film with 

two-dimensional array of sub-wavelength holes, it was found that there can be enhanced 

and collimated transmission through a single sub-micron hole surrounded by finite periodic 

rings of indentations (denoted as bull’s eye) [4]. We also examined the transmission of a 

bull’s eye structure for acoustic waves. The bull’s eye structure, shown in the inset of Figure 
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5, was fabricated by patterning both sides of a thin brass plate with concentric periodic 

grooves around a single cylindrical hole. The thickness of the brass plate is 1.6 mm, and 

the diameter of the central hole is 0.5 mm. The groove period is 2.0 mm, and there are a 

total of 15 grooves. The width and depth of each groove are 0.5 mm and 0.3 mm, 

respectively.  

In Figure 5, we showed the measured transmittances as a function of frequency for both 

bull’s eye structure and the reference sample (a smooth brass plate of the same thickness). It 

can be seen that there is a transmission peak at 0.71 MHz for bull’s eye structure, while such 

peak is missing for the reference sample. In Figure 5, we also plotted the power 

transmittance calculated by using COMSOL MULTIPHYSICS, a commercial finite-element 

solver. It can be seen that the predicted peak position agrees well with the experimental 

data. However, the measured transmittance is much lower than that predicted and the 

precise reason for this disagreement is yet to be uncovered.    

 

Figure 5. Measured transmittances for both the bull’s eye structure and the reference sample, together 

with calculated power transmittance for bull’s eye. Inset shows an image of the sample, fabricated by 

patterning both sides of a thin brass plate with concentric periodic grooves around a single cylindrical 

hole. The thickness of the brass plate is 1.6 mm, and the diameter of the central hole is 0.5 mm. The groove 

period is 2.0 mm, and the groove width and depth are 0.5 mm and 0.3 mm, respectively. Reprinted with 

permission from Appl. Phys. Lett. 92, 124106 (2008). Copyright 2008 American Institute of Physics.  

For ultrasonic waves in water, wavelength corresponding to 0.71 MHz is 2.1 mm, which is 

slightly larger than the groove period of bull’s eye, 2.0 mm. This close correspondence is a 

strong clue indicating that the enhanced transmittance is due to the diffraction effect. It has 

been shown that enhanced acoustic wave transmission through hole arrays in perfectly rigid 

thin plate, where there can be no surface wave, may be related (and understood via 

Babinet’s principle) to “resonant” reflection by its complementary structure, i.e., planar 

arrays of perfectly rigid disks [26, 39]. In fact, both were found to be associated with the 

divergence in the scattering structure factor, owing to the coherent addition of the Bragg 

scattering amplitudes from the periodic array of holes or disks. As a result, a quasi surface 

mode with frequency close to the onset of the first diffraction order (wavelength λ slightly 

larger than the lattice constant a) always exists. Such modes are denoted “structure-factor-
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induced surface modes,” or SF resonances. Since diffraction is the ultimate mechanism for 

the SF resonances, we expect the same to also apply to bull’s eye structure, which can be 

viewed as having 1D periodicity along the radial direction.  

Besides the transmission enhancement, the collimation effect of the bull’s eye structure is 

very striking [4,40]. As shown in Figure 6(a), the far-field acoustic wave on the transmission 

side is also in the form of a tight beam with a lateral dimension not exceeding the groove 

periodicity. The full width at half maximum (FWHM) divergence is  ±2o. As analyzed above, it 

is the coherent scattering which leads to the emergence of a strongly collimated beam in the 

far-field region. In Figures 6(b) and 6(c) we also plotted the scanned results at a distance of 

about 15 wavelengths from the transmission side of the surface, for both the bull’s eye 

structure and the reference sample. Compared with the reference sample, the collimation effect 

for bull’s eye structure is very evident. In addition, it is found by simulation that both the 

intensity of the acoustic wave field around the central hole region, as well as the collimation 

effect, would increase with the number of concentric grooves. This is reasonable, since the 

coherent scattering effect becomes stronger if more concentric grooves are involved.  

 

Figure 6. (a) Calculated far-field pressure amplitude distribution at 0.71 MHz in the axial symmetry 

coordinates. (b) Experimentally scanned far-field (~15 wavelengths from the transmission side of the 

plate surface) pressure magnitude distributions in an area of 40×40 mm2, for the bull’s eye structure at 

0.71 MHz. (c) Same as (b), for the reference sample. Reprinted with permission from Appl. Phys. Lett. 

92, 124106 (2008). Copyright 2008 American Institute of Physics. 

4. Discussions 

4.1. Fabry-Perot resonances tuned via diffraction evanescent waves 

For the hole arrays, we measured the acoustic samples with various plate thicknesses 

ranging from 0.5 mm to 3.1 mm, as plotted in the inset of Figure 7. In theory, we employed 

the mode expansion method to calculate analytically the transmission [39]. We found that 

the observed transmission peaks are the manifestation of a type of resonance mode that has 
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FP and SF resonances as the two limits. The diffraction evanescent modes play an important 

role in interpolating between the two limits. To make explicit the role of diffraction 

evanescent waves, we retained the lowest cylindrical mode inside the holes and 5 lowest 

plane wave modes outside the holes, and obtained the resonant mode equation as 
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in which 0 / 2  /k c f c   , 2 2
1 (2 / ) ( / )k a c    is the diffraction evanescent 

wavevector, and J1 is the first order Bessel function. Equation (3) is instructive, since a 

vanishing right-hand side would directly yield the FP resonance condition t =nλ/2, λ being 

the wavelength. A combination of hole and periodic diffraction evanescent wave effects 

constitute the correction to the usual FP condition in the form of a non-zero right hand side, 

implying that the FP resonance can be tuned by varying the periodicity and area fraction of 

holes. We denote such resonances the FPEV resonances. 

 

Figure 7. Solid symbols (measurement) and black solid lines (calculation) are the resonant transmission 

frequencies of normally incident acoustic wave through a square lattice of holes with r = 0.3a. Star 

symbols (measurement) and red dashed lines (calculation) denote the case of acoustic wave at 20o 

incidence angle along [0,1] direction, for which the Wood’s anomaly frequency is the horizontal dot 

line. Black dashed lines delineate the FP condition with the order n denoted. Blue line is determined by 

Equation (3), with a slope of ~0.42 (i.e. t≈0.42λ). Open symbols represent the measured transmission 

peaks of normally incident microwave on a metallic grating, 1D periodic slits, with area fraction 0.32. 

The inset shows the measured acoustic transmittances at normal incidence for various plate thicknesses, 

with a = 2.0 mm and r = 0.6 mm. The thickness (in mm) of each plate is given to the right of the 

spectrum. Reprinted with permission from Phys. Rev. B 76, 054303 (2007). Copyright 2007 by The 

American Physical Society. 

In Figure 7 we show the measured and calculated FPEV resonance frequencies plotted as a 

function of inverse plate thickness. The FP condition is indicated by the black dashed 
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straight lines, for n=1, 2, 3, 4, with slopes of 0.5, 1, 1.5 and 2, respectively. The FPEV 

frequencies are shown as solid black (normal incidence), and red dashed (20o oblique 

incidence) lines. Compared with the FP resonances, it is seen that the FPEV resonances 

always occur at lower frequencies, as though the effective plate thickness is greater than t. 

The prediction of Equation (3), for the n=1 FPEV resonance, is shown as the blue line. Except 

in the region of very small a/t values, the blue line has a slope of 0.42. Thus the effect of the 

diffraction evanescent waves is to shift the resonance condition by ~16%, in the direction of 

smaller channel length. The difference between the prediction of Equation (3) and the black 

lines appears at the small t limit, where the transmission peak frequency shows a clear 

dependence on the incidence angle. This is characteristic of the surface-wave-like mode 

induced by the SF resonance. In fact, these transmission peak frequencies all occur at close 

to the Wood’s anomaly, as required by the SF resonance condition. Thus the lowest 

frequency FPEV resonance, which shows little or no dependence on the incidence angle, is 

smoothly converted to the structure-factor-induced surface mode in the thin-plate limit. The 

diffraction evanescent wave contributions are dominant at the intermediate values of a/t. To 

a lesser degree, similar behavior can be observed for the higher order FPEV’s. 

It is seen that as the ratio a/t increases, the lowest order evanescent waves (Equation (3)) can 

no longer account for the resonant frequency trajectory. Also, in the large a/t limit the curves 

also display pronounced incident angle dependence, in contrast to FP resonances which are 

nearly independent of the incidence angle. These are the signals for (1) the lateral scattering 

interaction is contributing much more to the resonant modes, hence the lowest order 

evanescent modes are no longer sufficient to account for such strong lateral interactions, and 

(2) with the increased lateral interaction, SF effect becomes more pronounced, implying 

incidence angle dependence. These spectral features also correspond to the different field 

distributions, as shown in Figure 8, where the surface field is localized on the holes for FP-

like resonances and the interference pattern is seen in the region between the holes for SF 

resonances.  

 

Figure 8. The measured distribution of pressure field at the rear surface of the hole array a =2.0, r =0.6, 

and t =1.6 mm for two resonance frequencies 0.38MHz (a/λ=0.51) and 0.69MHz (a/λ=0.93). The holes are 

delineated by dashed lines.  

(a) 0.38 MHz (b) 0.69 MHz 0 

Max 
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It is interesting to note that the transmission of microwave through a metallic grating of 1D 

slits has the similar FPEV resonances for the incident polarization with E-field 

perpendicular to the silts, see open symbols in Figure 7 [37]. This is because the slits have no 

cutoff to the perpendicular polarization of EM waves, in the same physics as the holes to 

acoustic waves. 

4.2. The effective fluid model for thick plates 

For a very small a/t ratio, these resonance wavelengths are much larger than the lattice 

constant, allowing us to take a view of effective media. Here we employ a simple argument 

in the same fashion as the EM case [41] with the assumption of brass plate being rigid, and 

find that the hole array structure fabricated in a rigid plate and filled with a fluid (mass 

density 0  and bulk modulus  ) may be viewed as an effective fluid with the same 

thickness, effective mass density 0  and bulk modulus  . It is known that the acoustic 

wave is characterized by the pressure field, p  , and velocity field, u . Averaging the 

pressure field in the holes, we get the effective pressure field in the effective fluid p p  . 

Requiring the acoustic energy flow across the surface to be the same for the hole array and 

the effective fluid, i.e. 2 2/ 4p d p a  u u  , we obtain the effective velocity u = u  . Also the 

total acoustic energy for both systems are required to be the same, 

2 2 2 2 2 2
0 0

1 1 1 1
/ / 4 /

2 2 2 2
p d t p a t       

         
   

u u , which gives us the effective 

parameters 0 0     and     . Thereafter, the acoustic speed and impedance of the 

effective fluid are 0/      and 0      , where v and η are the acoustic speed 

and impedance of the filling fluid, respectively. The relations indicate the acoustic speed 

remains unchanged and the impedance is scaled by a factor of the area fraction of holes for 

the effective fluid. 

The above argument is applicable under long wavelength limit (a/→0) where diffraction 

evanescent waves are negligible. For the sample with thickness comparable to lattice 

constant, the diffraction evanescent waves tune the FP resonances and the resultant 

transmission resonances can occur for channel length ~16% thinner than required by the FP 

resonances. Superficially, this diffractive effect is substitutable by a slowing of acoustic wave 

propagation inside the holes, i.e. 0.84c   . Based on the above argument, the effective fluid 

equivalent to a 2.3 mm thick sample has the acoustic speed 0.84c   , or the acoustic 

refractive index / 1.19n c    , and the effective impedance water     . With these 

two effective parameters at hand, we calculated the transmission spectra, both magnitude 

and phase, of the effective fluid layer at normal incidence according to the formula: 
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where 0 2 /k f c  is the wavenumber of the incidence wave. The calculated results (solid 

lines) are shown in Figures 4(a) and 4(b) to compare with the experimental data (open 

circles) for two samples with identical thickness 2.3 mm, and identical lattice constant 2.0 

mm, but different hole diameters 1.2 and 0.5 mm. Good agreement between the calculations 

and the experiments is seen at the frequencies below the Wood’s anomaly (0.75 MHz), 

which verifies the applicability of the effective fluid model at normal incidence.  

In Figure 4(c), we see two flat bands appear below 0.75 MHz, and they are the first and 

second FP resonances, see Figure 4(a) where the phase values indicate the order of FP 

resonances. The open circles superimposed are the variations of the transmission peaks of 

the effective fluid layer which are obtained from the FP resonance condition at oblique 

incidence,  2sin 1 sin / 0ok nt n 
  

 
 . The agreement between the calculated variations of 

the transmission peaks and the measured results indicates the applicability of the effective 

fluid model persists to a range of incidence angle. The discrepancy at θ >15o for the second 

FP transmission peak is due to the emerging of the (-1,0) diffraction order nearby, and the 

red flat band is seen to terminate upon crossing with Wood’s anomaly (-1,0). Where the 

cross happens, there will be the strong coupling interaction between SF resonance of the 

array and FP-like resonance localized at each hole, which possibly gives rise to the 0.48 MHz 

band at θ =25o.  

The effective fluid model allows us to use the holey or slotted hard plate to realize an 

acoustic medium, and provides some freedom to design acoustic materials, because some 

material parameters, difficult to be tuned, are related simply to the structural factors of the 

hole array or the slits. In Figure 9, we illustrated conceptually an acoustic prism made of 

such slotted hard plate. A detailed discussion is seen in reference [42].  

 

Figure 9. Simulation results for a structured hard plate (upper) with tapered thickness to function as 

the acoustic prism. The pressure field is compared with a fluid with the effective parameters (lower). 
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5. Conclusion 

We investigated experimentally the acoustic transmission through subwavelength holes 

fabricated on brass plates at normal and oblique incidence within ultrasonic frequencies 

regime. The transmission phenomena for both hole array and bull’s eye structure in thin 

brass plates, analogous to the observed enhanced transmission of EM waves through 

subwavelength hole arrays in a metallic film, exhibit the transmission enhancement because 

of the SF resonance. At the peak frequency, the transmission phase is nearly , indicating 

the out-of-phase oscillations of the acoustic field at two surfaces of the plate. For the hole 

array in thick brass plates, the transmission peaks of acoustic waves are related to the FP-

like resonances inside the holes and therefore occur well below Wood’s anomaly, since a 

hole has no cutoff frequency for acoustic propagation. By varying the plate thickness or 

channel length, one makes the transition from the FP resonance (thick plate limit) to the SF 

resonance (thin plate limit). Between the two limits there can be interesting deviation from 

FP resonance conditions, owing to the interaction of the diffraction evanescent waves. In the 

case of thick plates, the structure can be viewed as a new fluid with effective mass density 

and bulk modulus scaled, under long wavelength limit, by a factor of area fraction of the 

holes. The effective medium model describes well the transmission properties of the hole 

array within a range of incidence angle. 

Our discussion assumed the approximation of hard plates and did not take acoustic surface 

waves into account. With acoustic surface waves being involved, transmissions of acoustic 

waves through structured plates have found far richer and more complicated physical 

phenomena in the past few years and will attract more attentions in the future [43-45]. 

Although this subject is an old problem, its new phenomena may appear from time to time 

and the underlying mechanism waits to be unlocked.   
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