
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



Chapter 9 

 

 

 
 

© 2013Fu and Wang, licensee InTech. This is an open access chapter distributed under the terms of the 
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits 
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

Optical Properties of Antiferromagnetic/Ion-

Crystalic Photonic Crystals 

Shu-Fang Fu and Xuan-Zhang Wang 

Additional information is available at the end of the chapter 

http://dx.doi.org/10.5772/56397 

1. Introduction 

Increasing attention has been paid to magnetic photonic crystals (MPCs) because the 

properties of the MPCs can be modulated not only with the change of their structure 

(including components, layer thickness or thickness ratio) but also with the external 

magnetic field. MPCs are capable of acting as tunable filters [1] at different frequencies, and 

that controllable gigantic Faraday rotation angles [2-6] are simultaneously obtained. The 

nonmagnetic media in MPCs generally are ordinary dielectrics, so the electromagnetic wave 

modes are just magnetic polaritons. The effect of magnetic permeability and dielectric 

permittivity of two component materials in MPCs on the photonic band groups were 

discussed, where the permeability and permittivity were considered as scalar quantities [7].  

Recently, our group investigated the optical properties of antiferromagnetic/ ion-crystal 

(AF/IC) PCs [8-11]. It is well known that the two resonant frequencies of AFs, such as, FeF2 

and MnF2, fall into the millimeter or far infrared frequencies regions and some ionic 

semiconductors possess a very low phonon-resonant frequency range like the AFs. 

Especially, these frequency regions also are situated the working frequency range of THz 

technology, so the AF/IC PCs may be available to make the new elements in the field of THz 

technology. Note that in ICs, including ionic semiconductors, when the frequencies of the 

phonon and the transverse optical (TO) phonon modes of ICs are close, the dispersion 

curves of phonon and TO phonon modes will be changed and a kind of coupled mode 

called phonon polariton will be formed. Therefore, in the AF/IC PCs, the TO phonon modes 

of ICs can directly couple with the electric field in an electromagnetic wave and this 

coupling generates the phonon polaritons, however, the magnetization’s motion in magnets 

can directly couple with the magnetic field, which is the origin of magnetic polaritons. Thus 

in such an AF/IC PCs, we refer to collective polaritons as the magneto-phonon polaritons 

(MPPs). In the presence of external magnetic field and damping, MPPs spectra display two 
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petty bulk mode bands with negative group velocity. It is worthy of mentioning that many 

surface modes emerge in the vicinity of two petty bulk mode bands, and that some surface 

modes bear nonreciprocality [11]. The optical properties of the AF/IC PCs can be modulated 

by an external magnetic field. 

In addition, we have concluded that there is a material match of an AF and an IC, for which 

a common frequency range is found, in which the AF has a negative magnetic permeability 

and the IC has negative dielectric permittivity [10]. Consequently, the AF/IC structures are 

thought to be of the left-handed materials (LHMs) which have attracted much attention 

from the research community in recent years because of their completely different 

properties from right-handed materials (RHMs). In a LHM, the electric field, magnetic field 

and wave vector of a plane electromagnetic wave form a left-handed triplet, the energy flow 

of the plane wave is opposite in direction to that of the wave vector [12-17]. LHMs have to 

be constructed artificially since there is no natural LHM. Several variations of the design 

have been studied through experiments [18-20]. Up to now, scientists have found some 

LHMs available in infrared and visible ranges [21-25], but each design has a rather 

complicated structure. We noticed a work that discussed the left-handed properties of a 

superlattice composed of alternately semiconductor and antiferromagnetic (AF) layers, 

where the interaction between AF polaritons and semiconductor plasmons lead to the left-

handedness of the superlattice [26]. However the plasmon resonant frequency sensitively 

depends on the free charge carrier’s density, or impurity concentration in semiconductor 

layers, so if one wants to see a plasmon resonant frequency near to AF resonant frequencies, 

the density must be very low since AF resonant frequencies are distributed in the millimeter 

to far infrared range. In the case of such a low density, the effect of the charge carriers on the 

electromagnetic properties may be very weak [27] so that there is not the left-handedness of 

the superlattice. According the discussion above, we propose a simple structure of 

multilayer which consists of AF and IC layers. An analytical condition under which both 

left-handeness and negative refraction phenomenon appear in the film is established by 

calculating the angle between the energy flow and wave vector of a plane electromagnetic 

wave in AF/IC PCs and its refraction angle. 

2. Magneto-phonon polaritons (MPPs) in AF/IC PCs  

Polaritons in solids are a kind of electromagnetic modes determining optical or 

electromagnetic properties of the solids. Natures of various polaritons, including the surface 

and bulk polaritons, were very clearly discussed in Ref. [28]. Recent years, based on 

magnetic multilayers or superlattices, where nonmagnetic layers are of ordinary dielectric 

and their dielectric function is a constant, the polaritons in these structures called the MPCs 

were discussed [29-34]. On the other hand, ones were interested in the phonon polaritons 

[35-36], where the surface polariton modes could be focused by a simple way and probably 

possess new applications. In this part, the collective polaritons, MPPs in a superlattice 

structure comprised of alternating AF and IC layers, will be discussed. In the past, for 

simplicity, the damping was generally ignored in the discussion of dispersion properties 
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regarding the polaritons[30,32-34]. Actually, most materials are dispersive and absorbing. 

Therefore, it is also necessary to consider the effect of damping.  

2.1. MPPs in one-dimension AF/IC PCs 

An interesting configuration in experiment is the Voigt geometry as illustrated in Fig.1, 

where the polariton wave propagates in the x-y plane and the magnetic field of an 

electromagnetic wave is parallel to this plane, but the wave electric field aligns the z 

direction. We concentrate our attention on the case where the external magnetic field and 

AF anisotropy axis both are along the z axis and parallel to layers. The y axis is 

perpendicular to layers in the structure. The semi-space ( 0y  ) is of vacuum, where ad  and 

id  are thicknesses of AF and IC layers, respectively. For the far infrared wave, the order of 

the wavelength is about 100μm. Thus, as long as the thicknesses of AF and IC layers are less 

than 10μm, the wavelength   will much longer than the period of AF/IC PCs. With this 

condition, the AF/IC PCs will become a uniform film by means of an effective-medium 

method (EMM). 

 

Figure 1. Illustration and coordinate system.  

2.1.1. EMM for one-dimensional AF/IC PCs  

We first present the permeability of the AF film. In the external magnetic field 0H


, the 

magnetic permeability is well-known, with its nonzero elements [33, 37] 

 2 2 1 2 2 1
xx yy 0 01 {[ ( i ) ] [ ( i ) ] },m a r r                         (1) 

 2 2 1 2 2 1
xy yx 0 0{[ ( i ) ] [ ( i ) ] }.m a r ri             

            (2) 

with 0 0H  ， 04m M  ， a aH  , e eH  , and 1 2[ (2 )]r a e a     , where 0M  is 

the sublattice magnetization, aH  represents the anisotropy field, and eH  the exchange field. 

r is the AF resonant frequency,   the gyromagnetic ratio, and   the magnetic damping 

constant. We use a as the dielectric constant of the AF. Subsequently, we present the 

dielectric function of the IC [38], 
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2

i 2 2

( )
,l h T

h

T i

  
 

  


 
 

 (3) 

Where h and l  are the high- and low-frequency dielectric constants, but T  is the TO 

resonant frequency of 0k   and   is the phonon damping coefficient. The IC is 

nonmagnetic, so its magnetic permeability is taken as 1i  . 

We assume that there are an effective relation effB H 
 

between effective magnetic 

induction and magnetic field, and an effective relation effD E 
 

  between effective electric 

field and displacement, where these fields are considered as the wave fields in the 

structures. But b h 
 

 and d e
 

 in any layer, where   is given in Eqs.(1) for AF layer and 

1 


 for IC layers. These fields are local fields in the layers. For the components of magnetic 

induction and field continuous at the interface, one assumes 

 
1 2 1 2 1 2, , ,x x x z z z y y yH h h H h h B b b       (4) 

And for those components discontinuous at the interface, one assumes 

 
1 2 1 2 1 2, , .x a x i x z a z i z y a y i yB f b f b B f b f b H f h f h       (5) 

where the AF volume fraction /a af d L  and the IC volume fraction /i if d L with the 

period a iL d d  .Thus the effective magnetic permeability is achieved from Eqs. (4),(5) and 

it is definite by effB H 
 

, 

 

0

0 ,

0 0 1

e e
xx xy

e e
eff xy yy

i

i

 

  

 
 
  
 
 
 

  (6) 

with the elements 

 e 2 e e e
xx a i a i i a yy i a xy yx a i aμ =f μ+f -(f fμ ) (μf +f ) ,μ (μf f ) ,μ μ f ( f f ) ,         (7) 

On the similar principle, we can find that the effective dielectric permittivity tensor is 

diagonal and its elements are  

 , / ( ).e e e
xx zz a a i i yy a i a a i if f f f              (8) 

On the base of these effective permeability and permittivity, one can consider the AF/IC PCs 

as homogeneous and anisotropical AF films or bulk media. The similar discussions can be 

found in the Chapter 3 of the book “Propagation of Electromagnetic Waves in Complex 

Matter” edited by Ahmed Kishk [39].  

2.1.2. Dispersion relations of surface and bulk MPP with transfer matrix method (TMM) 

The wave electric fields in an AF layer and IC layer are written as 
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 zE ( )exp( )e ,y y
A BE e E e ikx i t    

 
 (9) 

 zE ( )exp( )e ,y y
C DE e E e ikx i t    

 
 (10) 

respectively. k  is the wave-vector component along x axis.   and   are the decay 

coefficients when they are real, otherwise they correspond to the y wave-vector components. 

jE  (j=A, B, C or D) denotes the amplitudes of the electric fields. Additionally, the 

corresponding magneticfields can be found with the relation E i B 
 

. The wave equation 

resulting from the Maxwell equations is 

 2 2 2
0( ) 0.E E c E        

  
 (11) 

We see from the wave equation that 

 2 2 2 2
a vk c      (12) 

with 2 2
v ( )      and c is the light velocity in vacuum, and 

 2 2 2 2 .ik c     (13) 

Employing the well-known TMM, together withthe boundary conditions of zE   

and xH  continuous at the interfaces, we can find a matrix relation between wave 

amplitudes in any two adjacent bi-layers, or the relation between amplitudes in the nth and 

n+1th bi-layers 

 1

1

an an

bn bn

E E
T

E E





   
   
   
   

 (14) 

where T is the transfer matrix expected and its components are 

 
2

11 12

(1 )
[( )cosh( ) (1 )sinh( )], sinh( ),

a ad d

i i i

e e
T d d T d

 
  

          
      

 (15) 

 
2

21 22

( 1)
sinh( ), [( )cosh( ) ( 1)sinh( )],

a ad d

i i i

e e
T d T d d

 
  

          
      

 (16) 

with 2 2( ) / [ ( )]k         and 2 2( ) / [ ( )]k          . The Bloch’s theorem 

implies another relation 

 1

1

.iQLan an

bn bn

E E
e

E E





   
   
   
   

 (17) 

Based on matrix relations (14) and (17), we obtain the polariton dispersion equation 
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2 2 2

vcos( ) cosh( )cosh( ) ( )sinh( )sinh( ).
2 2

a
a i a i

k c
QL d d d d

  
   

 


    (18) 

Q  is the Bloch wave number for an infinite structure and is a real number, and then 

equation (18) describes the bulk polariton modes.  

For a semi-infinite structure, it is interesting in physics that Q i  is an imaginary number. 

Thus equation (18) can be used to determine the surface modes traveling along the x axis. 

We need the electromagnetic boundary conditions at the surface of this structure to find 

another necessary equation for the surface polariton modes. This equation is just 

 1
11 12 21 22exp( ) ,T T L T T        (19) 

where 0 0( ) / ( )        with 2 2 2 2
0 ck   . 0  is the decay coefficient in vacuum 

and must be positive. It needs to be emphasized that the existence of surface modes requires 

Re(  ) >0 .Eqs. (18) and (19) will be applied to determine the bulk polariton bands and 

surface polaritons. 

Numerical simulations based on FeF2/TlBr will be performed with TMM. The reason is that 

their resonant frequencies lie in the far infrared range and are close to each other. The 

physical parameters here applied are 533kGeH  , 04 7.04kGM  , 197kGaH  ,  , 

45 10   , and 498.8kGr  ( 152.45cm ) for AF layers; 30.4l  , 5.34h  , 148T cm  , 

38 10    for IC layers. The external field 0 3.0H T [10,33,34]. 

The MPP spectra are displayed in Fig.2, 3, and 5. In these spectra for dimensionless reduced f 

 

Figure 2. Bulk polariton bands (shaded areas) and surface polaritons (thick solid curves) for 

/ 4 : 1a id d   via TMM: (a) a whole dispersion pattern; (b) and (c) are the partially enlarged figures. 

After Wang & Ta, 2010.  

5.5
a
 
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Figure 3. Effective magnetic permeability and dielectric function for / 4 : 1a id d  . (a) The magnetic 

permeability and (b) the dielectric function. After Wang & Ta, 2010. 

The MPP spectra are displayed in Fig.2, 3, and 5. In these spectra for dimensionless reduced 

frequency r  versus k, the shaded regions stand for the bulk bands whose boundaries are 

determined by Eq. (18) or (19) with 0Q   and 0k  , respectively. Meanwhile, the surface 

modes are obtained by Eqs. (18), (19) and (21). The thick curves with the serially numbered 

sign S denote the surface polaritons. The photonic lines 2 2( / )k c  in vacuum are labeled 

as L1 and L2.Fig.2 shows the bulk bands and surface modes for the ratio / 4 : 1a id d 

a( 0.8)f  , which are obtained by the TMM. Four bulk continua appear including two 

minibands (see Figs. 2(b) and 2(c)). The top and bottom bands (see Fig.2(a)) correspond to 

the positive real parts of the effective magnetic permeability and dielectric function, so the 

effective refraction index is positive in the two bands. However, the two mini bands (see 

Figs.2(b) and 2(c)) are related to the negative real parts of the permeability and dielectric 

function, which can be found from Fig.3. It means that the effective refraction index is 

negative in the mini bands. Ref.14 proved that the negative refraction and left-handedness 

exist in the mini bands, where the transmission and refraction of the same structure were 

examined in the absence of the external magnetic field. 

Fig.4 displays the bulk bands and surface modes for ratio / 1 : 1a id d  . The top bulk band is 

distinctly ascended to the high frequency direction, together with surface mode 1and 2. The 

bottom bulk band is widened conspicuously. Contrary to the previous situation, the two 

mini bands get significantly narrower. Compared with Fig.2, the slopes of surface modes 7 

and 12 diminish appreciably, meaning their group velocity dwindles as the AF volume 

fraction ( af ) decreases. 
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Figure 4. Bulk polariton bands and surface modes with the parameters and explanations as the same as 

those in Fig.2, except for / 1 : 1a id d  . After Wang & Ta, 2010.   

 

Figure 5. Bulk polariton bands and surface polaritons for / 4 : 1a id d  . The interpretations of (a), (b) 

and (c) are the same as those of Fig.2. After Wang & Ta, 2010. 

2.1.3. Limiting case of small period (EMM) 

To examine the limiting case of small period or long wavelength is meaningful in physics. 

We let 0ad  and 0id   in Eqs.(18) ,(19) and then find 

 2 e e 2 e 2
xx yy λ( / )k ( / ) 0,e

zzQ c        (20) 

for the bulk modes with 2( ) /e e e e e
xx yy xy yy      , and  

 e e e 2 e e 2 e 2
xy yy 0 xx yy λ( / )k 0, ( / )k ( / ) 0,e

zz c                 (21) 

for the surface polaritons. If the external magnetic field implicitly included in Eqs.(20) and (21) 

is equal to zero, the dispersion relations can be reduced to those in our earlier paper [10].Hence 

equations (20) and (21) also can be considered as the results achieved by the EMM. 
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Fig.5 shows the bulk bands and surface modes for the ratio / 4 : 1a id d  ( a 0.8f  ), which are 

obtained by the EMM. For the bulk bands, we see that the results obtained within the two 

methods almost are equal. However, the surface modes obtained by the EMM start from the 

photonic lines and are continuous, but those achieved by the TMM do not. It is because the 

interfacial effects are efficiently considered within the TMM, but the EMM neglects these. 

For the surface polaritons, their many main features attained by the two methods are still 

analogous. 12 surface mode branches are seen from Fig.2 within the TMM, but 11 surface 

modes from Fig.5 within the EMM. 10 surface mode branches arise in the common vicinities 

of two AF resonant frequencies and TO phonon frequency.Except branches 1 and 2, all 

surface modes are nonreciprocal and their non-reciprocity results from the magnetic 

contribution in AF layers. Surface polaritons 1 and 2 should be called the quasi-phonon 

polaritons since the contribution of the magnetic response to the polaritons is very weak in 

their frequency range. Another interesting feature is that many surface modes possess 

negative group velocities ( 0d dk  ), which is due to the combined contributions of 

magnetic damping and phonon damping.  

2.2. MPPs in two-dimension AF/IC PCs 

In this part, we consider such an AF/IC PCs constructed by periodically embedding 

cylinders of ionic crystal into an AF, as shown in Fig.6. We focus our attention on the 

situation where the external magnetic field and the AF anisotropy axis both are along the 

cylinder axis, or the z-axis. The surface of the MPC is parallel to the x-z plane. L and R 

indicate the lattice constant and cylindrical radius, respectively. We introduce the AF filling 

ratio, 2 21 /af R L  , and the IC filling ratio, 2 2/if R L . Our aim is to determine general 

characteristics of the surface and bulk polaritons with an effective-medium method under the 

condition of L   (λ is the polariton wavelength). 

2.2.1. EMM for the two-dimensional AF/IC PCs 

When the AF/IC PCs cell size is much shorter than the wavelength of electromagnetic wave, 

an EMM can be established for one to obtain the effective permeability and permittivity of 

the AF/IC PCs. The principle of this method is in a cell, an electromagnetic-field component 

continuous at the interface is assumed to be equal in the two media and equal to the 

corresponding effective-field component in the MPC, but one component discontinuous at 

the interface is averaged in the two media into another corresponding effective-field 

component [30,33,40-41]. Because the interface between the two media is of cylinder-style, 

before establishing an EMM, a TMM should be introduced. This matrix is 

 

cos sin 0

sin cos 0 ,

0 0 1

T

 
 

 
 

  
 
 

 (22) 

Thus, we find the expression of the permeability in the cylinder coordinate system 
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 1

0

0 .

0 0 1

rr r

a a rT T


 

 
   

 
    
 
 

 
 (23) 

 

Figure 6. Geometry configuration and coordinate system. 

with rr xx     and r xy  . The theoretical processes of obtaining effective magnetic 

permeability, e , and electric permittivity, e , are presented as follows. According to the 

principle,we can introduce the following equations: 

 z , ,az iz a iH h h H h h       (24) 

 ,r ar irB b b   (25) 

 ,r a ar i irH f h f h   (26) 

 z z, ,a a i i a az i iB f b f b B f b f b       (27) 

where the field components on the left side of Eqs. (24)-(27) are defined as the effective 

components in the AF/IC PCs and those on the right side are the field components in the AF 

and IC media within the cell. In the AF, the relation between b and h is determined by (23) 

in the r z  system, but in the IC, the relation is 

 .b h
 

 (28) 

After defining the relation between the effective fields in the AF/IC PCs, eB H 
 

, the 

effective permeabilityresulting from (24)-(27) is 
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0

0 ,

0 0 1

e e
rr r

e e e
r



 

 

  

 
 
  
 
 
 


 (29) 

with 

 ( )e
rr rr a rr if f     (30) 

 2 ( )e
a rr i a i r a rr if f f f f f         (31) 

 ( ) .e e
r r a a rr i rf f f          (32) 

Formula (29) is the expression of the effective magnetic permeability in the r z  system. 

When we discuss the surface polaritons, the AF/IC PCs will be considered as a semi-infinite 

system with a single plane surface, so the corresponding permeability in the rectangular 

coordinate system (orthe xyz system) will be used. Applying the transformation matrix (22) 

again, we find  
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   
 
    
 
 
 


 (33) 

If one applies directly this form into the Maxwell equations, the resulting wave equation 

will be very difficult to solve. Thus, a further approximation is necessary. We think that if 

the wavelength of an electromagnetic wave is much longer than the cell size, then the wave 

will feel very slightly the structure information of the AF/IC PCs. Here, the averages of some 

physics quantities are important. Hence, e


 is averaged with respect to angle   and one 

determines the averaged effective magnetic permeability, 

 

( ) 2 0

( ) 2 0 .

0 0 1

e e e
rr r

e e e e
a r rr

 

 
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 
 
   
 
 
 


 (34) 

This means e e e
xx yy    . In physics, this AF/IC PCs should be gyromagnetic and be of C4-

symmetry, as shown by Fig.1, which leads to the xx and yy elements of the final 

permeability should be equal and its xy element equal to -yx element.  

By a similarprocedure, the effective dielectric permittivity can be easily found. According to 

the principle of EMM, we present the equations for the electric-field and electric-

displacement components as follows, 
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 z a ae , e , ,z iz i r ar irE e E e D d d         (35) 

 Z a a r, , e ,a z i iz a i i a ar i irD f d f d D f d f d E f f e         (36) 

with ( ) ( )a i a id e
 

 in the AF or IC. After using the definition, eD E
 

, the effective dielectric 

permittivity of the AF/IC PCs in the r z  system is determined as 

 

0 0

0 0 ,

0 0

e
rr

e e

e
zz





 



 
 
 
 
 
 


 (37) 

With  

 ( ), ,e e e
rr a i i i a a a i i zz a a i ia

f f f f f f                 (38) 

Transforming (37) into the form for the xyz system, we see 

 

2 2

2 2

cos sin cos sin sin cos 0

cos sin sin cos sin cos 0 .

0 0

e e e e
rr rr

e e e e e
rr rr

e
zz

 

 

         

          




  
 
   
 
 
 

  (39) 

Then, its average value with respect to angle   is 

 

( ) 2 0 0

0 ( ) 2 0 .
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e e
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  (40) 

We see e e e
xx yy    . Now, this AF/IC PCs can be considered as an effective medium with 

effective electric permittivity e
a


and magnetic permeability e

a


. If the AF medium is taken 

as FeF2 with its resonant frequency about 1/ 2 52.45r c cm   , proper wavelengths should 

be between 170 and 190m. When the cell size is taken as m  order of magnitude, such as 

5 m , the effective-medium theory is available and expressions (34) and (40) are reasonable. 

2.2.2. Dispersion equations of surface and bulk MPP 

The effective permittivity (40) and permeability (34) are applied to determine the dispersion 

equations of surface and bulk MPP in the AF/IC PCs. In the geometry of Fig.6, if the 

magnetic field of a plane electromagnetic wave is along the z-axis, the sublattice 

magnetizations in the AF do not couple with it, so the AF plays a role of an ordinary 

dielectric. Thus, we propose the electric fields of polariton waves in the AF/IC PCs are along 

the z-axis and the magnetic field is in the x-y plane. For a surface polariton, its electric field 

decaying with distance from the surface can be written as 
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 0 0 z[ exp( )exp( )]e , ( 0)E E y ikx i t y    
 

 (41) 

 1 z[ exp( )exp( )]e , ( 0)E E y ikx i t y   
 

 (42) 

in the AF/IC PCs, where k is the wave-vector component along the x-axis, but   and 0  are 

the decay coefficients and are positive for the surface polariton. The corresponding 

magneticfield can be obtained with the relation E i B 
 

. From the Maxwell equations, 

we confirm the electric field obeys the wave equations 

 2 2( / ) 0, ( 0)E c E y   
 

 (43) 

 2 2( / ) 0, ( 0)e e
zz vE c E y     

 
 (44) 

which lead to two relations 

 2 2 2 2 2 e 2
0 vk ( / ) , k ( / )e

zzc c          (45) 

with 2 2[( ) ( ) )] /e e e e
v r     . The dispersion relation can be found from the boundary 

conditions of the field components, zE  and xH , continuous at the surface. Through a simple 

mathematical process, we obtain this relation 

 
0k ,e e e

r vi         (46) 

where   and 0  are determined by (45) with the conditions, 0   and 0 0  . Of course, 

it is very easy to find the dispersion relation of bulk polaritons. For the infinite AF/IC PCs, 

we find from the wave equation (44) that the dispersion relation in the x-y plane is 

 2 e 2
vk ( / )e

zz c    (47) 

The bulk polariton bands are just such regions determined by (46). One can calculate 

directly the dispersion curves of the surface polariton from (45). 

FeF2 and TlBr are utilized as constituent materials in the AF/IC PCs, which the parameters 

have been introduced in the last section. We place the AF/IC PCs into an external field of 

0 5.0H T along the z-axis and employ a dimensionless reduced frequency r  in figures. 

Surface mode curves are plotted against wave vector k along the x-axis. Bulk modes form 

some continuous regions shown with shaded areas.  

For comparison, we first present the polariton dispersion figures in the AF FeF2 and IC TlBr, 

as indicated in Fig. 7, respectively. For the AF, there exist three bulk bands and two surface 

modes. The surface modes appear in a nonreciprocal way and have a positive group 

velocity ( 0d dk  ). For the IC, its surface modes and bulk bands are depicted in Fig. 7(b). 

The surface modes are of reciprocity. Comparing Fig. 7(b) with the previous results without 

phonon damping [42], it is different that the two surface modes bear bended-back and end 

on the vacuum light line, due to the phonon damping. 
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Figure 7. (a) Bulk polariton bands (shaded regions) and surface polaritons of FeF2. (b) Bulk polariton 

bands and surface modes of TlBr, with two vacuum light lines (thin lines). After Wang & Ta, 2012. 

 

Figure 8. Bulk polariton bands (shaded regions) and surface polaritons of the MPC for 0.9af  : (a) a 

whole dispersion pattern;(b) and (c) are the partially amplified figures. After Wang & Ta, 2012. 

For the AF/IC PCs with a 0.9f  , Fig. 8 illustrates the dispersion features of magneto-phonon 

polaritons. Four bulk bands and 13 surface mode branches are found, where the surface 

modes are nonreciprocal (meaning the surface modes are changed when reversing their 

propagation directions). Two mini bulk bands and 11 surface mode branches exist in the 

vicinities of two AF resonant frequencies, where they are neither similar to those of the AF 

nor to those of the IC. Due to the combined contributions of the magnetic damping and 

phononic damping, the surface-mode group velocities become negative in some frequency 

ranges. For frequencies near the higher AF resonant frequency, the top bulk band bears a 

resemblance in nature to the top one of the AF, but the bottom band is analogous to the 

bottom one of the IC for frequencies close to the IC resonant frequency. 

Figure 9 shows the bulk bands and surface modes for a 0.8f  . The bulk bands in this figure 

are characteristically similar to those in Fig. 8, but the two mini bands are narrowed and the 

top one risesstrikingly. For the surface modes, mode 6 in Fig. 8 splits into two surface modes 

in Fig. 9. Modes 5 and 11 in Fig. 8 disappear from the field of view. The surface modes are 

still nonreciprocal. 
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The two mini bulk bands possess a special interest, corresponding to the negative effective 

magnetic permeability and negative effective dielectric permittivity of the AF/IC PCs. We 

present Fig. 10 for a 0.8f   to display the relevant effective permeability and permittivity. 

One can see that dielectric permittivity, e
zz , is negative in a large frequency range. The two 

AF resonant frequencies lie in this range and the magnetic permeability, e , is negative in 

the vicinities of the AF resonant frequencies. Thus, for electromagnetic waves traveling in 

the x-y plane, the refraction index is negative and the left-handedness can exist in the two 

mini bulk bands. When electromagnetic waves propagate along the z-axis, there is no 

coupling between AF magnetizations and electromagnetic fields, so the electromagnetic 

waves cannot enter this range where 0e   (see Eq. (1-30b)). The negative refraction and 

left-handedness were predicted in a one-dimension structure composed of identical 

materials [10]. 

 

Figure 9. Bulk polariton bands and surface polaritons of the MPC for  . The explanations of (a), (b) and 

(c) are identical to those of Fig.8. After Wang & Ta, 2012. 

 

Figure 10. Effective permittivity and permeability in the MPC for : (a) the effective permittivity and (b) 

the effective permeability. After Wang & Ta, 2012. 
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3. Presence of left-handedness and negative refraction of AF/IC PCs 

In the previous section, we have discussed MPPs in AF/IC PCs with the TMM and EMM for 

one- and two-dimension. Based on FeF2/TIBr, there are a number of surface and bulk 

polaritons in which the negative refraction and left-handedness can appear. In order to 

investigate the formation mechanism of LHM in AF/IC PCs, the external magnetic field and 

magnetic damping is set to be zero. In this case, according Eqs.(7) and (8), the effective 

permeability e and dielectric permittivity e will be described as  

 ( ), / ( ), 1,e e e
xx a i yy a i zzf f f f           (48) 

 / ( ), ( ),e e e
xx yy a i a i i a zz a a i if f f f              (49) 

where /a af d D  is the AF filling ratio, and /i if d D  is IC filling ratio with i aD d d   as a 

bi-layer thickness. 

Let us consider an incident plane electromagnetic wave propagating in the x-y plane as 

shown in Fig.11. Such a wave can be divided into two polarizations, a TE mode with its 

electric field parallel to axis z and a TM mode with its magnetic field parallel to axis z. 

According to Maxwell’s equations, these wave vectors and frequencies of the two modes 

inside the film satisfy the following expressions    

  
2 2

2   ,( / )
y x

e e e e
zz xx zz yy

for T
k k

c E mode
   

   (50) 

  2 2 2   / ,( ) e e
y x xx zz for TE m dk k o ec     (51) 

Since 1e
zz   is a positive real number, relation (51) corresponds to the case of an ordinary 

optical (when 0e
xx  ) or an opaque (when 0e

xx  , contributing to an imaginary yk ) film, 

and so, we no longer consider the TM case, but deal with only the case of TE incident mode, 

and found the left-handed feature and negative refraction behavior. For the TE mode, the 

presence of left-handed feature (or negative refraction) needs the satisfaction of the 

prerequisite condition that 0e
zz   and e

xx and e
yy can not be simultaneously positive [i.e., 

at least one of e
xx and e

yy  is negative, see (50)]. According to expressions (48) and (49), 

 
01 ( ) / ( ) ( , 0)e

T T i a a i zzf forf f               (52) 

 2 2 ( 0),e
r r a a m xxorf f          (53) 

 2 22 2 ( 0),e
r i a m r a m yyforf             (54) 

where a aH   and 04m M  . Frequency region (52) is very large and covers regions 

(53) and (54) for the selected physical parameters. It is noted that both 0e
xx   and 0e

yy   



 
Optical Properties of Antiferromagnetic/Ion-Crystalic Photonic Crystals 227 

can occur simultaneously only when AF layers are thicker than IC layers, which 

corresponds to spectral domain 2 1/2 2 1/2( 2 ) ( 2 )r i a m r a a mf f          .The wave electric 

field in the film can be written at 

 0 0[ exp( ) exp( )]exp( ),z y y xE A ik y B ik y ik x i t     (55) 

and the corresponding magnetic field can be given by  

 
1

.z z
e e
xx yy

E E

i y x  

    
  
 

yx
ee

H  (56) 

 

Figure 11. Draft for incidence, reflection, refraction and transmission rays. After Wang & Song, 2009. 

The radiation in the film consists of two parts, one is the forward light (refraction light) 

related to amplitude 0A  and the other is the backward light (reflection light) related to 

amplitude 0B . Here, yk is defined as a negative number, otherwise the refraction wave 

corresponds to amplitude 0B . These two situations are equivalent in essence. According to 

the definition of energy flow density of electromagnetic wave *Re( ) / 2 S E H , the flow 

densities of the two lights can be given by 

 

2 2

0 0Re ( ) , Re ( ) .
2 2

y yx x
e e e e
yy xx yy xx

k kA Bk k

    

   
      
   
   

A x y B x yS e e S e e  (57) 

The inner product between a wave vector ( [ , ,0]x yk kAK or [ , ,0]x yk k BK ) and its 

corresponding energy flow is given by expression
2

0Re( ) / 2e
A zzI A  , or

2

0Re( ) / 2e
B zzI B  . Thus the angle between energy flow and wave vector can be 

expressed as 

 (arccos[ / )],j jI  j jK S  (58) 

where j=A or B. It is obvious that A  is equal to B  and larger than / 2  in the range (52).  
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It can be seen from the expression (57) of AS  that its x component is negative and y 

component is positive when both 0e
xx   and 0e

yy  , since xk  is positive and identical to 

the equivalent component of the incident wave vector. Thus an important condition is found 

for the existence of negative refraction, or AF layers must be thicker than IC layers. The 

refraction angle can be expressed as 

 arctan( / ).e e
x xx y yyk k     (59) 

FeF2 and TlBr are used as constituent materials where the AF resonant frequency r  is 

closer to the phonon resonant frequency T  and located in the far infrared regime. Fig.12 

shows this angle as a function of frequency for 0.8af  and 0.6. It can be seen from Fig.12 

that for most of the frequency range occupied by the curves, angle   is at least bigger than

160o  for various incident angles. So the wave vector, electric and magnetic fields form an 

approximate left-handed triplet. The operation frequency range becomes narrow as af  

decreases, as shown in Fig.12b. 

As shown in Fig.13(a) for 0.8af  , the refraction angle is positive on the left side and 

negative on the right side of the intersection point of the curves. This corresponds to the 

following critical frequency obtained under the condition of 0e
xx   and 0e

yy  : 

 2 2 .c r i m af      (60) 

It can be seen from Fig.13(b) in comparing with Fig.13(a) that the frequency region of 

negative refraction is obviously narrower and the negative refraction angle becomes smaller. 

Numerical simulations also show both positive and negative refraction angles are in the 

spectral range of approximate left-handed feature shown in Fig.12. 

 

Figure 12. Angle   beteen refraction energy flow and corresponding wave vector versus frequency for 

different incident angles and for filling ratios (a) 0.8af   and (b) 0.6af  . After Wang & Song, 2009. 
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Figure 13. Refraction angle versus frequency for various incident angles, and for filling ratios (a)

0.8af   and (b) 0.6af  . After Wang & Song, 2009. 

4. Transmission, refraction and absorption properties of AF/IC PCs 

In this section, we shall examine transmission, refraction and absorption of AF/IC PCs, 

where the condition of the period much smaller than the wavelength is not necessary. The 

transmission spectra based on FeF2/TIBr PCs reveal that there exist two intriguing guided 

modes in a wide stop band [11]. Additionally, FeF2/TIBr PCs possess either the negative 

refraction or the quasi left-handedness, or even simultaneously hold them at certain 

frequencies of two guided modes, which require both negative magnetic permeability of AF 

layers and negative permittivity of IC layers. The handedness and refraction properties of 

the system can be manipulated by modifying the external magnetic field which will 

determine the frequency regimes of the guided modes.  

The geometry is shown in Fig. 1. We assume the electric field solutions in AF and IC layers 

as  

 [ exp( ) exp( )]exp( ),j z j j j j xE e A ik y B ik y ik x i t   
 

 (61) 

where ,j a i signify AF or IC layers, respectively. The corresponding magnetic field 

solutions are also achieved via j jE i B 
 

. According to the boundary conditions of zE  

and xH  continuous at interfaces, the relation between wave amplitudes in the two same 

layers of the two adjacent periods can be shown as a transfer matrix T


 [43]. The matrix 

elements are expressed by the following equations:
 

 11 [( )cos( ) (1 )sin( )] / ( ),a i i i iT k d i k d             (62)
 

 1 2
12 (1 )sin( ) / ( ),a i iT i k d          (63)

 
 2

21 ( 1)sin( ) / ( ),a i iT i k d        (64)
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 1
22 [( )cos( ) ( 1)sin( )] / ( )a i i i iT k d i k d               (65) 

with  /x a iik k k      and  /x a iik k k      . In AF layers, there are the 

relation 2 2 2 2
aa v xk c k     with  2 2

v     , 2 2 2 2sinxk c  and a  the dielectric 

constant. The magnetic permeability tensor components of AF layers are represented by 

 2 2 2 2
0 01 {1 / [ ( ) ] 1 / [ ( ) ]},m a r ri i                    (66) 

 2 2 2 2
0 0{1 / [ ( ) ] 1 / [ ( ) ]}.m a r ri i                    (67) 

with 04m M  , a aH  , 1 2[ (2 )]r a e a     , e eH   and 0 0H  . 0M represents 

the sublattice magnetization, and 0H , aH  and eH indicate the external magnetic field, 

anisotropy and the exchange fields, respectively. r  denotes the zero-field resonant 

frequency,   and   are the gyromagnetic ratio and the magnetic damping. In IC layers, we 

have the relation 2 2 2 2
i i xk c k    with the dielectric function 

   2 2 2( )i h l h T T i            , where h and l  are the high- and low-frequency 

dielectric constants, but T  indicates the frequency of the TO vibrating mode in the long-

wavelength limition and   denotes the phonon damping. The magnetic permeability of IC 

layers is considered as 1i  . We assume here that the stacking number included in the 

magnetic superlattices is N. Then transmission and reflection coefficients of the AISL can be 

written as 
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
 (68) 

Note that incident wave amplitude is taken as 1. Therefore, the transmission and reflection 

coefficients can be determined with Eq. (68), and then the transmission ratio is 
2

t  and 

reflection ratio is 
2

r . Additionally, absorption ratio is represented with
2 2

1A r t   . 

Other quantities in Eq. (68) are  1 1/x aik k k      ,  1 1/x aik k k      , 

exp( )i i iik d  , 2 2 2 2
1 cosk c  .  

As described in Ref. [8], magnetic superlattices possess two mini-bands with negative group 

velocity. When the incident wave is located in the frequency regions corresponding to the 

two mini-bands, what are the optical properties of the AF/IC PCs? In the preceding section, 

the expressions of transmission and absorption to be used have been derived. To grasp 

handedness and refraction properties of the AF/IC PCs, the refraction angle and 

propagation direction need to be determined. Therefore, subsequently we give the 

expression of the refraction angle. However, this structure possibly possesses a negative 

refraction, and generally the directions of the energy flow of electromagnetic wave and the 

wave vector misalign. We start with the definition of energy flow ( *Re[ ] / 2S E H 
  

) with a 
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view to achieving refraction properties. Based on wave solutions of the electric field and 

Maxwell equations, the magnetic field components of the forward-going wave in AF layers 

are shown as 

 
0

( / )
exp( ).a x

ax a a x

k ik
H A ik y ik x i t



 


 


    (69) 

 
0

( / )
exp( ).a x

ay a a x

ik k
H A ik y ik x i t



 


 
 

    (70) 

The magnetic field components of the forward-going wave in the adjacent IC layers are  

 
0 0

exp( ), exp( ).i i x i
ix i x iy i x

k A k A
H ik y ik x i t H ik y ik x i t 

 
        (71) 

The amplitudes of two neighboring layers satisfy  

 
1

1 2

1
1 2

(1 ) (1 )

(1 ) (1 )

i a a a

i aa a

A A

B B

 

 





       
               

 (72) 

According to boundary conditions, the electric and magnetic fields of every layer are 

acquired when the incident wave is known. Then the expressions of refraction energy flow 

in all layers are written as 

      * * *Re 2 Re 2 ,  , .j j j jy jz x jz jx y jS E H H E e E H ae i    
    

 (73) 

What needs to be emphasized is that we here concentrate only on the refraction, so only the 

forward-going wave corresponding to the first term in Eq.(61) is considered and the 

backward-going wave is ignored. Owing to refraction angles being different in various 

layers, the refraction angle of the AF/IC PCs should be effective one. The angle between the 

energy flow and wave vector, and the refraction angle of the AF/IC PCs are defined as 

 arccos[( ) / ( )],K S K S  
  

 (74) 

 1 2 1 2' [( ) / ( )],ax ix ay iyarctg f S f S f S f S     (75) 

with  1 2x x a i yK k e f k f k e  
  

 and 1 2a iS f S f S 
  

, where volume fractions are 

 1 a a if d d d   and 2 11f f  , respectively. 

Numerical calculations based on FeF2/TlBr PCs. We take the AF layer thickness 4ad m  

and the thickness of IC layers 1id m . The stacking number is 9N  . Figure 14 shows the 

transmission spectra with specific angles of the incidence in an external magnetic field 

0 3H T . As illustrated in Fig. 14(a), the forbidden band ranges from 0.9 r  to 1.2 r   



 

Ferromagnetic Resonance – Theory and Applications 232 

 

Figure 14. Transmission spectra for the fraction 1 0.8f  , external magnetic field 0 3H T  and 

stacking number 9N  . (a) the incident angle 00  ; (b) a zoomed view of guided modes in (a); (c) 

the incident angle 045  ; (d) a zoomed view of guided modes in (c). After Wang & Ta, 2012. 

corresponding to the band gap of magneto-phonon polariton in Ref. [8]. Here the most 

interesting may be that guided modes arise in the forbidden band. The two guided modes 

lie in the proximity of 0.943 r   and 1.064 r  , corresponding to the mini-bands with 

negative group velocity in Ref. [8]. At the same time, the magnetic permeability of AF layers 

and the dielectric function for IC layers are both negative. To distinctly observe two guided 

modes, the partially enlarged Fig. 14(b) corresponding to Fig. 14(a) is exhibited. Seen from 

Fig. 14(b), the maximum transmission of the guided mode with lower-frequency is 40% and 

that of higher mode is 28.4%. As is well known, the optical thicknesses of films are 

determined by the frequency-dependent magnetic permeability and the dielectric function. 

Then the optical thicknesses of thin films are varied with the frequency of incident wave. 

The optical path of wave in media can also be altered by changing the incident angle. Fig. 

14(c) shows the transmission spectrum with incident angle o45  and other parameters are 

the same as those in 14(a). The partially enlarged Fig. 14(d) corresponding to Fig. 14(c) is 

given. Compared with the normal incidence case, for 0   the forbidden band becomes 

wide and their maximum transmissions are reduced to 27.1% and 21.9%, but two guided 

modes keep their frequency positions unaltered. 

As already noted, the damping is included and then the absorption appears. We are more 

interest in the two guided modes, so only the absorption corresponding to two guided 

modes will be considered in Fig. 15 (a) and (c) display the absorption spectra in the case of 

right incidence, but (b) and (d) illustrate the absorption spectra for incident angle o45  . 

We see that the absorption has a great influence on the transmission spectra. In the 

absorbing band at 0.9426 r  , relative tiny absorption corresponds exactly to the 
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maximum transmission. In the absorbing band at 1.024 r  , the absorption is obviously 

strengthened with enhancing the incident angle. 

 

Figure 15. Partially enlarged absorption spectra with 1 0.8f  , 9N  , 0 3H T and 0 1H T . (a) 

corresponding to Fig. 14(b); (b) corresponding to Fig.14(d); (c) corresponding to Fig. 15(b); (d) 

corresponding to Fig. 15(d). After Wang & Ta, 2012. 

To capture the handedness and refraction behaviors of the AF/IC PCs, the angle of refraction 

and the angle between the energy flow and wave vector are illustrated. Fig. 16 shows the 

angle   between the energy flow and wave vector of forward-going wave varies with 

frequency for 0 3H T and o45  . As illustrated in Fig. 16, the angles in the vicinities of 

0.943 r   and 1.064 r   are greater than o90 , but less than 180 . It indicates that the 

AF/IC PCs possesses a quasi left-handedness in these frequency regions. 

Figure 17 shows the refraction angle '  versus frequency under the same condition as Fig. 

16. We find the refraction angles are negative in the neighborhood of 0.943 r  and

1.064 r  . The two frequency ranges for negative angle do not completely coincide with 

those of the quasi-left-handedness in Fig. 17. Namely, the frequency regime of negative 

refraction near to 0.943 r   is strikingly greater than that occupied by the quasi-left-

handedness in Fig.17. However, the result is opposite in the vicinity of 1.064 r  . 

Therefore, we here reckon the left-handedness is not always accompanied by negative 

refraction. FeF2/TlBrsuperlattices have the natures of either negative refraction or quasi left-

handedness, or even simultaneously bear them at the certain frequencies of two guided 

modes. 

To have a deeper understanding of the negative refraction and quasi- left-handedness of the 

AF/IC PCs, subsequently the expressions of the dielectric function  
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Figure 16. Angle   between energy flow and wave vector of down going wave versus the change of 

frequencies at 0 3H T , 
045   and 1 0.8f  . After Wang & Ta, 2012. 

 

Figure 17. Refraction angle '  versus the alteration of frequencies at 0 3H T , 
045   and 1 0.8f  . 

After Wang & Ta, 2012. 

   2 2 2( )i h l h T T i             of IC layers and the magnetic permeability of AF 

layers are analyzed. We find that when frequency lies in 

  1 2
,T l h T       (76) 

the dielectric function i  is negative, namely the range 0.9152 2.1835r r    .  This 

completely covers the frequency range of AF resonance, so the dielectric function must be 

negative in the region of negative magnetic permeability v . It is found from Fig.18 that the 

magnetic permeability v  is negative in certain regions, where the dielectric function i  is 

also negative. In our previous work [8], utilizing the effective medium theory, we verified 

the effective dielectric function and magnetic permeability are both negative in the long 

wavelength limit when v  and i  are negative. In other words, the AF/IC PCs is of negative 
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refraction in the limit of long wavelength. Regarding the results arising from the two 

methods mentioned above, we conclude that the necessary condition of negative refraction 

or left-handedness is that v  and i  are both negative in this PCs. 

 

Figure 18. Voigt magnetic permeability v versus the different frequencies at 0 3H T , 045   and 

1 0.8f   (solid line denotes real parts and broken line indicates imaginary parts). After Wang & Ta, 

2012. 

5. Summary 

This chapter aims to discover optical properties of AF/IC PCs in the presence of external 

static magnetic field. First, within the effective-medium theory, we investigated dispersion 

properties of MPPs in one- and two-dimension AF/IC PCs. The ATR (attenuated total 

reflection) technique should be powerful in probing these MPPs. Second, there is a 

frequency region where the negative refraction and the quasi left-handedness appear when 

the AF/IC PCs period is much shorter than the incident wavelength. Finally, an external 

magnetic field can be used to modulate the optical properties of the AF/IC PCs. 
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