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1. Introduction

The interplay between oceanic plate subduction and the development of continental margins
is of considerable geological interest, and of a particular interest for Asian structural geologists
and petrologists is the subduction of the present and ancient Pacific plates, which triggered
orogenic development and contributed to crustal evolution in the circum-Pacific regions
through the Phanerozoic [1, 2]. Since the Triassic, the northwestern circum-Pacific region (also
known as the East Asian continental margin) initiated the evolution of a continental arc
stretching several thousand kilometers, which resulted in an East Asia-wide crustal shortening
and thickening, orogenic basin formation, and landward magmatic progradation [2, 3, 4, 5, 6,
7, 8, 9]. It is noted that although the paleo-Pacific subduction along this region was also present
in Paleozoic time, it did not exert a major tectonic impact on the Asian continents [10, 11, 12],
and that this lack of impact was probably related to the fact that the Paleotethys Ocean lay
between Laurasia and Gondwana until the Triassic period when the East Asian continental
blocks had not been yet assembled [13, 14].

The Korean Peninsula, situated in the middle of the East Asian continental margin (Fig. 1), was
plunged into a tectonically active phase in Mesozoic time, and three major orogenies are
recorded; the Songnim, Daebo, and Bulguksa [4]. Among these, the Songnim orogeny (260–
220 Ma) is represented by regional metamorphism in a close association with the final
amalgamation of Chinese continental blocks in Permian–Triassic period [15, 16]. A drastic
tectonic transition followed this orogeny, and the evolution of a continental-magmatic arc
occurred during the Daebo (190–135 Ma) and Bulguksa (100–45 Ma) orogenies, which resulted
from the flat slab subduction and subsequent slab rollback of the western paleo-Pacific plates,
respectively [5, 8, 17, 18]. It is evident that the Songnim–Daebo tectonic transition led to a
radical shift of the Korean sedimentary environments, from Paleozoic marine to Mesozoic
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nonmarine domains [12, 19]. The evolution of the continental arc ultimately produced a
derivation of Korean-derived detrital sediments in the Pacific-side regions, such as in the Inner
Zone of Southwest Japan [20, 21, 22, 23, 24, 25].

Figure 1. (a) Simplified tectonic map of East Asia, and (b) close-up of South Korea showing the major tectonic provin‐
ces with the study area (boxed) (modified after Egawa and Lee [7]). BG, Bansong Group; CB, Chungnam Basin; GB,
Gyeongsang Basin; GG, Gimpo Group; GM, Gyeonggi Massif; NG, Nampo Group; OB, Okcheon Belt; TB, Taebaeksan
Basin; YM, Yeongnam Massif.

The tectonism, magmatism, and sedimentation of South Korea have been systematically well
reviewed and summarized by Korean geologists [4, 12, 19, 26, 27]. However, such work has
included only limited description and minor discussion on Jurassic basinal evolution because
of the very limited distribution and publication of research in comparison with studies related
to other Phanerozoic basins (Fig. 1). In contrast, many of Jurassic structural and igneous events
have been reported and detailed [4, 5, 18, 28, 29, 30, 31].
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It has been conventionally interpreted that Jurassic non-marine basins are interorogenic basins,
formed during the period between the Songnim and Daebo orogenies [4, 19, 32]. However,
recent radiometric dating of detrital zircon [30, 33, 34] has provided an alternative view of this
conventional interpretation and has shown that the depositional age of these Jurassic basins
corresponds to the early phase of the Daebo orogeny; indicating a close association with the
subduction-induced continental arc evolution.

From recent petrologic analyses and radiometric dating, the Chungnam region in western
South Korea (known as the Hongseong Belt) has been interpreted as being an eastern extension
of the Qinling–Dabie–Sulu Belt (the collisional belt between the North and South China blocks)
(Fig. 1) [15, 35]. In the Chungnam region, it appears that Proterozoic to Paleozoic basement
rocks were regionally metamorphosed with a high to ultra-high pressure facies during the
Songnim orogeny [35, 36, 37, 38, 39]. The subsequent rapid uplift and denudation of these
basement rocks then delivered their detritus into the Jurassic Chungnam Basin [34], which was
followed by a structural disturbance during the late stage of the Daebo orogeny [31, 40].

The author of this paper has been studying the Chungnam Basin for several years [7, 40, 41,
42, 43, 44], and has demonstrated that the basin filling and thermal history are closely related
to the Daebo continental-arc evolution. This paper presents an overview of the characteristics
and mechanisms of Mesozoic flat slab subduction in East Asia, and then summarizes the
sedimentary and structural evolution of the Chungnam Basin during the Daebo orogeny, with
the intention of promoting a better understanding of the basin-filling processes in West Korea
and also of the interplay between basinal and crustal evolution at the active continental margin
of East Asia.

2. Flat slab subduction

2.1. Evidence of flat slab subduction in and around Korea

Recent igneous studies suggest that the Mesozoic continental arc evolution was triggered
by the flat slab subduction of the western paleo-Pacific plates underneath the East Asian
continent [6, 45, 46]. According to the observation of modern subduction zones in the Andes,
there is a close relationship between flat slab subduction, crustal shortening and thicken‐
ing, and inlandward-migrating magmatism [47, 48, 49, 50]. Subducted slab dip is fundamen‐
tally constrained by slab buoyancy. Therefore, a slab with oceanic plateaus or ridges is flatly
subducted over a long distance, while steeper subduction occurs when such features are
absent [49, 51].

Evidence for the subduction of such buoyant oceanic materials is found in the Mesozoic
accretionary complexes along the eastern margin of Asia, stretching a distance of several
thousand kilometers, and is seen particularly in Japan and Russian Far East [2, 52]. These
complexes generally consist of oceanic plateau basalts and deep marine deposits, which were
accreted and underplated underneath the Asian continental crusts during subduction [53, 54,
55]. Paleomagnetic analysis has revealed that the Japanese Islands were geologically connected
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to the Asian continent before the opening of the Japan Sea in Miocene epoch [6, 56], and that
the Jurassic accretionary complex in Southwest Japan was situated next to South Korea during
its formation [25, 29], which was initiated in, at the latest, the early Late Triassic period [57]
and continued through the Jurassic period [52]. Adakitic granites, which are indicators of slab
melting, intruded widely into the Korean continental crusts with an inlandward younging
trend during the Jurassic period [5, 8, 18, 58], supporting the interpretation of inlandward slab
migration [47, 48, 59].

2.2. Orogenic gaps between Korea and South China

The geology of South China records two major Mesozoic orogenies: the Indosinian orogeny
(250–205 Ma) indicated by inlandward-migrating magmatic front with crustal thickening and
shortening, and the Yanshanian orogeny (180–66 Ma) characterized by an oceanward-
retrograding magmatic front with crustal thinning and stretching [6, 60]. These two orogenic
events resulted from a flat slab subduction with a length of 1400 kilometers, and a subsequent
slab rollback [6, 45]. The Korean Peninsula is situated just 500 km northeast of South China,

Figure 2. Landward and subsequent oceanward migration of subducted slab and magmatic fronts (direction indicat‐
ed with a heavy line) in Korea and South China: (a) Triassic, (b) Jurassic, and (c) Cretaceous periods (modified after Li
and Li [6], Choi et al. [8], Egawa [44], Kiminami et al. [46], and Zhou et al. [60]). Migration of magmatic front is linked
to the morphology of the subducted slab of oceanic plate. BO, Bulguksa orogeny; DO, Daebo orogeny; EYO, Early Yan‐
shanian orogeny; LYO, Late Yanshanian orogeny; IO, Indosinian orogeny; SO, Songnim orogeny.
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and two peninsula-wide orogenies, the Songnim and Daebo orogenies, occurred almost
contemporaneously with the Indosinian and Yanshanian orogenies, respectively. It has
therefore been conventionally interpreted that these Chinese and Korean orogenies progressed
under the same subduction processes [2, 4, 61].

It is necessary to reiterate here that the Songnim and Daebo orogenies are represented by a
regional metamorphism related to the Chinese final assembly and by the evolution of the
continental-magmatic arc associated with the paleo-Pacific subduction, respectively. Such
facts therefore provide an alternative interpretation: there were distinct orogenic gaps between
South China and Korea (Fig. 2) [8, 18]. This implies that when the Triassic flat slab subduction
has already initiated the Indosinian orogeny in South China, the Songnim regional metamor‐
phism in Korea was then caused by the ongoing final amalgamation of the Chinese continental
blocks. The subsequent Daebo continental-magmatic arc evolution then occurred 60 m.y. later
than the compressional Indosinian orogeny, and by this time South China was already in the
phase of the extensional Yanshanian orogeny.

3. Synorogenic basin evolution in West Korea

The foregoing flat slab subduction then triggered and drove the Daebo orogeny in Korea, with
a significant crustal shortening and thickening [4, 30]. This crustal deformation created an
orogenic wedge in middle South Korea, which consists of the southeast- and northwest-
vergent fold-and-thrust belts (Fig. 3) [62]. The former belt corresponds to a pro-wedge region,
which includes the Okcheon Belt and the Taebaeksan Basin, and the latter-mentioned belt
developed as a retro-wedge region, which includes the Chungnam region [4, 7, 30, 33]. Such
wedge structures were probably formed under a NW–SE-directed compressional setting
during the orogeny [63, 64].

The Chungnam Basin (consisting of several separated subbasins―the Ocheon, Oseosan, and
Seongju subbasins, and other unnamed) was filled with a Jurassic nonmarine deposit, known
as the Nampo Group (Fig. 4). This group unconformably covers the pre-Jurassic metamorphic
basement rocks, and was structurally underlain by these rocks due to the postdepositional
thrust faulting [40, 41]. The stratigraphy of the Nampo Group is subdivided into the Hajo,
Amisan, Jogyeri, Baegunsa, and Seongjuri formations with decreasing age [65, 66]. Among
them, the Hajo, Jogyeri, and Seongjuri formations are mainly composed of conglomerate and
sandstone, whereas the Amisan and Baegunsa formations are dominated by an alternation of
coal-bearing shale and sandstone. In this study, the stratigraphy of the Oseosan Subbasin (as
defined by Egawa and Lee [7, 41]) is revised on the basis of the recognition of the Oseosan
Thrust, which allows the structurally repetitive distribution of the Hajo and Amisan forma‐
tions (Figs. 4, 5). The depositional age of the Nampo Group is inferred as being between
Sinemurian and Aalenian, based on U–Pb zircon dating of regionally metamorphosed
basement rocks (230–220 Ma) [35, 37, 38] and felsic lapilli tuff of the Baegunsa Formation (170
Ma) [30], which is synchronous with the magmatic event in the early stage of the Daebo
orogeny (180–170 Ma; U–Pb sphene and Rb–Sr whole-rock ages) [5].
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3.1. Basin filling controlled by a tectonic cycle

Egawa and Lee [7] detailed and classified the nonmarine sedimentary characteristics of the
Nampo Group into seven sedimentary facies associations: colluvial fan, alluvial fan, braid‐
plain, delta plain, delta front, offshore lacustrine, and volcaniclastic plain (Fig. 5). A combina‐
tion of these facies associations reveals a vertical cyclic pattern presented by the fining- to
coarsening-upward lower and upper sequences of the alluvio-lacustrine system in the Ocheon,
Oseosan, and Seongju subbasins. These depositional cycles are subdivided by the thick,
progressive colluvial/alluvial fan deposits of the Jogyeri Formation, along with strong
interformational unconformities occurring between the Amisan and Lower Jogyeri formations
(U1 unconformity) and between the Lower and Upper Jogyeri formations (U2 unconformity).

Such  stratigraphic  features  correspond  to  typical  alluvial  basin-filling  patterns,  and  are
attributable to tectonically-driven sediment flux or climate-driven diffusivity occurring over
a relatively short time-scale [67, 68]). The lack of stratigraphic or temporal variations in the
degree  of  chemical  weathering  [69],  along  with  the  presence  of  coal  deposits  [70,  71],
indicates little or no climate fluctuation at the time of basin filling. This illustrates that a
process of tectonically-driven sediment flux is most likely to have occurred. As variation
of sediment flux is an index of tectonic activity, the remarkable gravel progradation of the
Jogyeri Formation probably records a time of low sediment flux and quiescent tectonism
(Fig.  6)  [67,  72,  73].  Under this  assumption,  therefore,  the fine-grained sediments  in  the

Figure 3. (a) The possible tectonic arrangement of South Korea and the Inner Zone of Southwest Japan during the
Jurassic period (modified after Egawa and Lee [7]). CB, Chungnam Basin; GM, Gyeonggi Massif; MTL-TTL, Median Tec‐
tonic Line–Tanakura Tectonic Line; OB, Okcheon Belt; TB, Taebaeksan Basin; TMAB, Tanba–Mino–Ashio Belt (Jurassic
accretionary complex); YM, Yeongnam Massif. (b) Schematic cross section along the b'–b'' section in (a) showing the
possible evolution of a continental arc (not to scale).
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other four formations are interpreted to have been deposited under active tectonism. It is
assumed that the phase of Jogyeri gravel progradation reflected the progressive encroach‐
ment  of  deformation  into  the  foreland  [74,  75]  due  to  the  subduction-induced  crustal
shortening. These relationships permit a possible interpretation of the Chungnam Basin as
being a piggyback or wedge-top basin [76, 77].

Figure 4. Geological map of the Chungnam Basin (which consists of the Ocheon, Oseosan, and Seongju subbasins)
filled with the Jurassic Nampo Group (modified after Egawa and Lee [7]). BT, Baegunsa Thrust; CT, Cheongla Thrust;
OcT, Ocheon Thrust; OsT, Oseosan Thrust.
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3.2. Postdepositional thermal events

In the late stage of the Daebo orogeny (late Jurassic to earliest Cretaceous time), the orogenic
activity was further accelerated by the oblique subduction of the paleo-Pacific plates with
strike-slip motion [29, 78, 79, 80], leading to significant crustal shortening and thickening
represented by thrust-imbricate stacking [4, 30, 31]. Most of the Daebo granites were synde‐

Figure 5. Strato-sedimentological interpretation of the Jurassic Nampo Group in the Ocheon, Oseosan and Seongju
subbasins (modified after Egawa and Lee [7]). HJ, Hajo Formation; AM, Amisan Formation; BG, Baegunsa Formation;
LJG, Lower Jogyeri Formation; SJ, Seongjuri Formation; UJG, Upper Jogyeri Formation.
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positionally intruded in the early stage of the orogeny, followed by a quiescent phase of
magmatic activity of ca. 60 m.y. before the initiation of the Bulguksa orogeny (Fig. 7) [2, 5].
Such a magmatic hiatus is likely to have resulted from the existence of oceanic plateaus or
ridges subducting underneath the East Asian continental crusts [81, 82]. South China, however,

Figure 6. Schematic syntectonic evolution of the Chungnam Basin in the depositional stages of (a) the Hajo, (b) Ami‐
san, (c) Lower Jogyeri, (d) Upper Jogyeri, (e) Baegunsa, and (f) Seongjuri formations (modified after Egawa and Lee [7])
(not to scale).
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shows no interval of quiescent magmatism between the Indosinian and Yanshanian orogenies,
and this is probably related to the slab delamination and rollback that occurred immediately
after the flat subduction [6, 45].

Figure 7. Inlandward and oceanward migration of the Daebo and Bulguksa granites in South Korea, respectively
(modified after Kim [4], Sagong et al. [5], and Park [17]). BO, Bulguksa orogeny; DO, Daebo orogeny.

The Nampo Group has experienced high-grade diagenesis or low-grade metamorphism. This
is evidenced by the presence of very high-rank coals (anthracite to meta-anthracite) and by the
very high vitrinite reflectance values (5 to 6%) which occur entirely in the Seongju Subbasin
[70, 71], as well as the high illitization occurring within the three subbasins which ranges in
the thermal grade of anchizone to epizone [40]. Both coal and illite in sediments are commonly
used as an indicator of paleotemperature, and Egawa and Lee [40] classified this postdeposi‐
tional thermal event into early and late histories: tectonic burial metamorphism and hydro‐
thermal alteration, respectively.

3.2.1. Tectonic burial metamorphism

The early tectonic burial resulted from crustal loading induced by the postdepositional
basement overthrusting on the Nampo Group (Fig. 8). The grade of mechanical compaction
textures in sandstones tends to increase down the sequence (Fig. 9), and the lowermost strata
(Hajo Formation) appear to have been deformed in a ductile manner [40, 41, 83]. Similarly, the
illite in sandstones shows a down sequence increase in its crystallinity, from anchizone to
epizone (Fig. 9). Based on the equations proposed by Underwood et al. [84] and Kosakowski
et al. [85], the measured illite crystallinity approximates the possible maximum paleo-
temperature and total burial depth of the Nampo Group in the Ocheon Subbasin as being 340
°C and 9700 m, respectively, although the total depositional thickness is 3300 m. This estima‐
tion is in good agreement with the observations of ductile deformation, epizonal metamor‐
phism, and basement overthrusting.

Mechanism of Sedimentary Basin Formation - Multidisciplinary Approach on Active Plate Margins70



Figure 8. Conceptual structural models showing the postdepositional crustal shortening and thickening in the Chung‐
nam region (modified after Egawa and Lee [40, 42]) (not to scale). BT, Baegunsa Thrust; CT, Cheongla Thrust; OcT,
Ocheon Thrust; OsT, Oseosan Thrust.

Radiometric dating of illite in sediments is helpful in constraining the latest diagenetic and
low-grade metamorphic ages [86, 87], and is used to interpret the timing of regional over‐
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thrusting [88]. A mixture of authigenic (1Md) and detrital (2M1) components of illite is common
in argillaceous sediments. Based on this knowledge, Egawa and Lee [42] measured the K–Ar
ages of different-size clay fractions from the Amisan shale in the Ocheon Subbasin, and
estimated the latest age of authigenic illite to be 157–140 Ma (Fig. 8), by using a linear regression
model defined by the detrital amount and the K–Ar age of different size fractions [89, 90, 91].
The estimated age, therefore, is younger than the depositional age of the Nampo Group (~170
Ma) [30] and ranges within the duration of the Daebo orogeny (190–135 Ma) [4], which suggests
that the tectonic burial metamorphism of the Nampo Group occurred in the late stage of the
Daebo orogeny.

3.2.2. Hydrothermal alternation

The subsequent hydrothermal alternation was much affected by a magmatic intrusion and hot-
fluid migration, probably during the Bulguksa orogeny [40]. The coal rank and illite crystal‐
linity of the Seongju sediments plot into a very high thermal grade, with little stratigraphic
variation (Fig. 9) [40, 70, 71]. When fluids warmed by pluton migrate along faults and fractures
in the basin, they can transfer heat to the basin fills and lead to thermal alteration even at a
relatively shallow depth of burial [85, 92, 93]. The Nampo Group in the Seongju Subbasin is
highly faulted and folded in places, and there are granite intrusions into the southeastern
subbasin (Fig. 4). These structures and intrusions probably enhanced the illitization and
anthracitization after tectonic burial.

Figure 9. Simplified diagram showing the structural and diagenetic characteristics in the Ocheon, Oseosan and
Seongju subbasins (modified after Egawa [43]). Az, anchizone; Ez, epizone; KI, Kübler Index; TG, thermal grade.
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4. Conclusions

Mesozoic tectonism, magmatism, and sedimentation in East Asia were fundamentally
controlled by a series of flat slab subduction and subsequent slab rollback of the northwestern
paleo-Pacific plates, which allowed the evolution of an Andean-type continental arc several
thousand kilometers-long. Paleo-Pacific oceanic crusts with buoyant materials (such as oceanic
plateaus and ridges) had subducted and migrated inlandward underneath the Asian continent,
leading to a significant magmatic progradation and crustal shortening and thickening. The
subsequent delamination and rollback of the inland subducted slab resulted in the retrogra‐
dation of the magmatic front, together with crustal stretching and thinning. These dynamic
events are closely associated with the evolution of major orogenies in Korea and South China:
the flat slab subduction caused the Daebo and Indosinian orogenies, and the slab rollback
produced the Bulguksa and Yanshanian orogenies. There is a clear time lag between the flat
subduction- and rollback-induced orogenies in Korea and those in South China, which were
initiated 60 m.y. and 80 m.y. later in Korea, respectively, probably due to the effect of the
Chinese final amalgamation.

The Chungnam Basin in central western Korea was filled with a Lower to Middle Jurassic
nonmarine succession, known as the Nampo Group, the deposition and structural develop‐
ment of which occurred simultaneously with the evolution of the flat subduction-induced
continental-magmatic arc during the Daebo orogeny. An integrated stratigraphic, sedimento‐
logic, diagenetic, and geochronologic analysis has demonstrated that the basin-filling proc‐
esses and subsequent structural and thermal evolution of the Nampo Group were
fundamentally controlled by subduction tectonics. The Nampo Group is composed of the two
repeated, fining- to coarsening-upward alluvio-lacustrine sequences, separated by an interval
of thick breccia–gravel progradation deposits and relative strong proximal unconformities.
The observed relationships of the succession provide a record of sedimentation that was most
likely controlled by the temporal variations of tectonism during the early stage of the Daebo
orogeny. The postdepositional basement thrusting over the Nampo Group then led to a
tectonic burial, resulting in low-grade metamorphism. Burial heating is strongly suggested by
the down-sequence increase in illitization from anchizone to epizone, and in the degrees of
mechanical grain compaction and ductile deformation. The maximum paleotemperature and
burial depth of the Nampo Group are estimated to be 340°C and 10 km, respectively, and the
extrapolated K–Ar illite dating of 157–140 Ma indicates that the tectonic burial metamorphism
was completed at the end of the Daebo orogeny. A subsequent granite intrusion and hydro‐
thermal alteration, probably occurring during the Bulguksa orogeny, have enhanced the
illitization and anthracitization, regardless of the stratigraphy.
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