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1. Introduction

Rice is a traditional staple food crop in Korea and many other countries. Although the center
of rice origin is still unclear, it is believed to be introduced from China to the Korean Peninsula
in the early Bronze Age via one of two possible routes—across the West Sea or along the
northeastern seashore from China according to Hammer (2005) and Vavilov (1935). Rice
germplasm has evolved through several millennia of cultivation and selection by our farming
ancestors. An important consequence of the domestication of both plants and animals is a
reduction of genetic variability (Hancock, 2004). Maintaining biodiversity is an important
worldwide problem and different countries have various policies intended to preserve
biodiversity. Because conservation of biodiversity and ecosystems is closely linked to the
quality of human life, the preservation and improvement of ecosystems are problematic for
agriculture.

Genetic diversity in a crop species is essential for sustained high productivity. Breeding efforts
have been devoted to improving grain quality, yield potential, resistance to diseases and insect
pests, and environmental stress tolerance. Progress in plant breeding requires a continuous
supply of genes or gene-complexes. In this respect, the researcher is often handicapped by the
limited availability of germplasm resources. The assembly of large varietal collections,
systematic screening for desired traits and subsequent incorporation of the relevant genes into
existing cultivars is imperative to meet these needs. The use of landrace varieties has increased
in recent years. Wild rice accessions have contributed greatly to rice breeding as a source of
resistance genes (e.g., Xa21, BPH14, BPH15) (Ronald et al., 1992; Song et al., 1995; Yang et al.,
2004; Du et al., 2009; Hu et al., 2012). Much of the diversity in the rice gene pool is contained in
gene banks around the world. Molecular biology has contributed significantly to an increased
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understanding of many aspects of plant biology by generating technologies and methods of
analysis that provide new approaches or supplement classical methods of analysis. Plant
genetic resource scientists and other researchers are increasingly aware of the potential benefits
of applying new technologies to germplasm conservation and research.

The integration of genetic data with molecular biotechnology will help breeders produce new
rice varieties with the desired traits and make the conservation of rice genetic resources more
efficient. Because of newly developed methods for association mapping of genes or QTLs
related to desired traits, many genome-wide association analyses have been conducted in rice
and resulted in valuable genome-wide association maps to describe the genetic architecture
of complex traits. However, further efforts are needed to obtain more genomic information to
fill in the gaps of our knowledge and meet the needs and challenges of rice breeding. This
chapter will focus on the status of rice germplasm preservation activities, research programs,
and outcomes of association mapping in rice in Korea.

2. Research on rice germplasm in Korea

The Ministry of Foreign Affairs and Trade (2009) had outlined eight major environmental
issues as current threats to Korea; global warming, desertification, wildlife extinction, rain
forest reduction, acid rain, depletion of the ozone layer, marine pollution, and air pollution.
The rate of climate change is faster in Korea than the global average, leading to a rapid
reduction in national biodiversity. One hundred and ninety families comprising 4000 species
of vascular plants and ferns occur in Korea (Lee and Yim, 1978). Approximately 3700 different
kinds of flowering plants are estimated to occur naturally (Chung, 1957; Lee, 1980). Four
hundred and seven different endemic taxa in six genera are distributed throughout Korea (Lee,
1982). However, some plant species are on the verge of extinction because of pollution and a
wide range of developmental activities during the last 20 years in Korea (Ministry of Envi‐
ronment, 1994), highlighting the importance of conservation efforts (Ahn et al., 1994). Conser‐
vation programs usually involve activities such as collection, characterization, evaluation,
regeneration, documentation, and storage of each germplasm accession.

The National Biodiversity Strategy was implemented in 1997 to integrate and consolidate plans
formulated by various ministries and government institutes, including Comprehensive
Biological Resources Conservation Plans. The Rural Development Administration (RDA) Gene
Bank is one of the institutions responsible for these plans. Rice research programs covering
agronomic practices, physiology, post-harvest technology, grain quality evaluation, rice
breeding and genetics, and biotechnology, are led by the National Institute of Crop Science
(NICS) under the RDA. Other institutions affiliated with NICS carry out rice research programs
to target specific problems in various regions of Korea. From 1980 to 1990, rice sheath blight
(Acrocylindirum oryzae) was the most destructive disease affecting production from damaging
approximately 555,000 hectares of rice paddy fields in Korea. Furthermore, rice pests including
brown plant hopper, white-backed plant hopper, and small brown plant hopper attacked
586,000 hectares of rice nationwide during the same period (NASTI, 1996). A continuous
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cultivation of only five or six cultivars countrywide should be responsible to the extensive
losses from the pests.

Rice season normally begins in mid-April and ends in mid-October in Korea. The lowest
temperature in both April and October is 13°C. Because of the unprecedented yield loss due
to cold damage in 1980 (damage to 80% of total rice hectarage and a yield reduction of 3.9 tons
per hectare), cultivation of high-yielding “Tongil-type” rice cultivars declined rapidly, and
only high-yielding japonica cultivars have been grown since 1990. In 2010, 20 mid- to late-
maturing japonica cultivars were grown on 891,493 hectares, accounting for 92.9% of the total
rice production area (Kang and Kim, 2012). Large decrease of temperature also occurred in
1971 and 2003, causing damage to 17% and 20% of total rice hectarage, respectively. Preharvest
sprouting may become a serious problem for rice production, as well as for other crops, because
of the trend in recent years for frequent and unusually heavy rain at harvest time. Breeders
are making efforts to address this problem.

Rice breeders see the development of genetically improved cultivars using modern breeding
techniques as an efficient way to reduce the losses in rice production caused by biotic and
abiotic stresses. Sequencing the rice genome for genotyping and developing marker-assisted
selection (MAS) system have fast-tracked research efforts. In the past, most national programs
gave a lower priority to collecting wild relatives of rice than to collecting rice cultivars. Wild
rice resources are agronomically unattractive, relatively expensive to conserve, and difficult
to use. However, wild rice germplasms are known to contain a broad array of useful genes
(Hodgkin, 1991). The benefits for the landrace germplasms to be used in breeding new cultivars
in response to climate and environment changes in Korea are resistances to diseases in order
to maintain superior qualities suited to consumers’ preferences. Plant germplasm resource
activities in Korea are performed by The Basic Conservation Programme for Nature and
Environment (1994–2003) under the Ministry of Environment (NASTI, 1996).

The RDA Gene Bank conserves 24,673 rice accessions, including Korean landraces and wild
types. Many gene banks are having financial difficulty to maintain germplasm collections due
to a rapid increase of accession number. These problems may restrict a full exploitation,
evaluation, and utilization of these accessions, thus managing such collections presents major
challenges (Holden, 1984). The concept of a core collection for resolving these problems has
received increased attention over the last few years. Germplasm sampling methods include
sequential, stratified, biased (for example, by ecology or country), and random sampling. An
understanding of factors underlying the traits being sought will help reduce the time required
for identification of useful genes. For very rare traits, such as some associated with resistance
to virus infection, searching among wild Oryza species and O. glaberrima may be most appro‐
priate. Efficient methods for evaluation of germplasm to identify genes for crop improvement
will promote the use of conserved germplasm. Frankel and Brown (1984) proposed the concept
of a core set of lines to resolve such problems. A desire core set should include the maximum
genetic diversity in a crop species including its wild relatives with minimum repetition and
provide a manageable set of accessions to gene bank managers, plant breeders, and research
scientists. Such a core collection would become the focus of the search for desirable new
characteristics, detailed evaluation, and development of new techniques. An initial set of 4406
rice accessions was selected based on ecological types and accession passport information,
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including their countries of origin. Using simple sequence repeat (SSR) genotype information,
a final core set comprising the 166 conserved accessions currently used by the RDA was
generated by a heuristic approach using the PowerCore software developed by Kim et al.
(2007). Based on this resulted core set, some association mapping studies have been conducted
and further researches are still being undertaken.

3. Association mapping in rice

Association mapping analyzes loci in diverse populations and associates them with both one
another and with phenotypes. It is a powerful genetic mapping tool for crops and provides
high-resolution, broad allele coverage, and cost-effective gene tagging for the evaluation of
plant germplasm resources. Genetic mapping of QTL can be performed in two main ways
(Ross-Ibarra et al., 2007): (1) Linkage-mapping as well as “gene tagging” using experimental
populations (also referred to as “biparental” mapping populations) and (2) LD-mapping or
“association mapping” using diverse lines from the natural populations or germplasm
collections (Abdurakhmonov and Abdukarimov, 2008). LD mapping is based on identification
of associations between phenotype and allele frequencies. The advantage of LD mapping for
the breeder is that mapping and commercial variety development can be conducted simulta‐
neously (Langridge and Chalmers, 2005). For phenotypes or traits that are governed by
multiple genes or QTLs, diverse alleles or advantageous allele combinations should be mined
by association mapping followed by gene-tagging efforts using biparental crosses.

The localization of alleles relies on creating a statistical association between markers and QTL
alleles and on the efficacy of markers. For markers to be effective, they must be closely linked
to the target locus and be able to detect polymorphisms in material likely to be used in a
breeding program. Improvements in marker screening techniques have facilitated the tracking
of genes (Subudhi et al., 2006). Isoenzyme and other protein-based marker systems had in wide
long been used before DNA markers became popular (Langridge and Chalmers, 2005). Since
then, a variety of DNA-based molecular markers have been developed, including restriction
fragment length polymorphisms (RFLPs), random amplified polymorphic DNAs (RAPDs)
(Williams et al., 1990), amplified fragment length polymorphisms (AFLPs) (Vos et al., 1995),
SSRs (Litt and Luty, 1989), single-strand conformational polymorphisms (SSCPs), cleaved
amplified polymorphic sequence (CAPS) markers (Koniecyzn and Asubel, 1993), sequence
tagged sites (STSs) (Olson et al. 1989), sequence-characterized amplified region (SCAR)
markers (Martin et al., 1991), and single nucleotide polymorphisms (SNPs) (Brookes, 1999). A
total of 2740 SSRs were experimentally confirmed for rice in 2002 or approximately one SSR
for every 157 kb (McCouch, 2002). The highly polymorphic nature of many microsatellites is
of particular value (Banni et al., 2012, Yoon et al., 2012, Moe and Park, 2012, Zhao et al., 2012a;
Khaing et al., 2013) for analysis of closely related genotypes or within narrowly adapted gene
pools. Thus, the availability of a high-density SSR map is a valuable public resource for
interpretation of the functional significance of the rapidly emerging rice genome sequence
information.

The next generation of genetic markers is based on SNPs, which provide an attractive tool for
QTL mapping studies and marker-assisted selection in plant breeding programs (Mohler and
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Schwarz, 2005). SNP discovery is performed primarily in silico or using new sequencing
approaches (Henry and Edwards, 2009). Large-scale SNP analysis is now possible in plants
using a range of platforms. The increasing ease of sequencing and automated genotyping has
made association mapping in plants a more attractive option by altering the conventional plant
genome mapping method, which involves linkage analysis in a segregating population. This
trend is likely to continue as the sequencing of genomes increases. Recently, genome-wide
association studies (GWAS) with SNP variants have been conducted using new sequencing
platforms (Table 1).

3.1. International rice association-mapping activity

Genome mapping of rice was first attempted using linkage analysis of appearance or pheno‐
type (Nagao and Takahashi, 1963). Nowadays, improvement of the linkage map has been
achieved using isozymes (Nakagahra, 1977) and RFLPs and SSRs (McCouch et al., 1988; Saito
et al., 1991; McCouch et al., 1991 and Yu et al., 1991, Tanksley et al., 1991, Causse et al., 1994;
Kurata et al., 1994; Harushima et al., 1998; McCouch et al., 2002). Relatively few association-
mapping studies in rice have been performed. Some rice association-mapping studies using
various populations and molecular markers are summarized in Table 1 in which most are
conducted using SSR markers.

Whole-genome resequencing is a promising strategy to identify the relationship between
sequence variation and normal or mutant phenotypes. High-throughput genome resequenc‐
ing - if accurate - has the advantage of allowing researchers to identify the specific nucleotides
associated with a given phenotype, and allowing the effective detection and analysis of genetic
variations important for molecular breeding. An important application of NGS is the rese‐
quencing of targeted regions for the identification of mutant alleles, and we believe that
mapping by sequencing will become a centerpiece in efforts to discover the genes responsible
for QTLs. Generally speaking, the availability of a wide range of low- and high-multiplex single
nucleotide polymorphism (SNP) assay methods (sequencing accuracy and depth of coverage
relies on the experimental design) makes SNPs an ideal marker option for QTL mapping,
association analysis, MAS, and the construction of high-density genetic maps for fine mapping
and cloning of agronomically important genes (McCouch et al., 2010).

SNP discovery by resequencing whole-genome or subgenome of sample materials is often
among the first use of a reference genome sequence. For inbreeding species such as rice, lines
to be resequenced are normally purified through 1 or 2 generations of inbreeding (via single
seed descent). After a DNA sample is resequenced using NGS technology, SNPs can be
identified by comparing the sequenced genome with a reference genome like Nipponbare for
japonica rice. For example, using information on the features of the B73, Gore et al. (2009)
targeted the gene fraction of the maize genome for resequencing in the founder inbred lines
of the nested association mapping population. Two data sets comprising 3.3 million SNPs were
used to produce a first haplotype map (“HapMap”) and to analyze the distribution of recom‐
bination and diversity along the maize chromosomes.

A suitable example is the construction of a comprehensive HapMap for rice that was used for
the genome-wide associate study of 14 agronomic traits, such as heading date and tillering
(Huang et al., 2010). The researchers made use of low-coverage (1-fold per rice line) sequence
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data across lines, for a combined coverage of ~508-fold, and detected 3.6 million SNPs which
can explain ~36% of the phenotypic variance for 14 agronomic traits. This work provided a
new approach to low-fold sequence coverage, which can be used to detect not only SNPs but
also more complex polymorphisms, and partially overcome the need for deeper sequence
coverage (Clark, 2010). Further study was performed with the similar strategy for 950 world‐
wide rice varieties by Huang et al. (2012) and thirty-two novel loci associated with flowering
time and ten grain-related traits were identified. Additionally, 40 cultivated accessions selected
from the major groups of rice and 10 from their wild progenitors (O. rufipogon and O. nivara)
were resequenced to >15X raw data coverage (Xu et al., 2012). After mapping the sequence read
back to an IRGSP reference genome, the authors investigated the genome-wide variation
pattern in a comparative analysis. The data revealed examples of structural variation in
genomes and included 6.5 million high-quality SNPs after excluding sites with missing data
in any accession. Using these population and SNP data, the authors also identified thousands
of new rice genes and tracked down those with a significantly lower diversity in cultivated,
but not wild rice. These variants represent a valuable resource for those interested in improving
rice cultivars.

Preferences in terms of the processing, cooking, and eating qualities of rice differ globally.
Plant breeders are attempting to fulfill consumer demand for rice varieties with specific
qualities. The major components of rice grain quality include appearance, milling, cooking,
eating, and nutritional aspects. The chemical composition of rice grain is important because
of its relationship with eating quality of rice. Amylose content is one of the most important
traits that determine cooking quality, which is controlled by a major locus waxy (Wx) on
chromosome 6 (Wang et al., 1992; He et al., 1999; Tan et al., 1999). Genes associated with amylose
content, such as starch synthase IIa (SSIIa) and Wx, are of particular interest. Sano et al. (1986)
identified two alleles of the Wx locus using RFLP markers that correspond to the indica and
japonica subspecies. Most grain quality mapping studies have used the O. sativa germplasm
(He et al., 1999; Tan et al., 1999, 2000, 2001; Zhou et al., 2003). Borba et al. (2010) conducted
association mapping study on yield traits and grain quality traits including amylose content,
and the significant association detected between amylose content and RM190 was in agreement
with previous QTL analyses. Zhao et al. (2011) identified 44,100 SNP variants across 413 diverse
rice accessions collected from 82 countries and observed GWAS for six categories of traits
covering morphology related traits; yield-related traits; seed and grain morphology related
traits; stress-related phenotypes; cooking, eating and nutritional-quality-related traits; and
plant development, represented by flowering time. This study demonstrated that different
traits have different genetic architectures.

Olsen and Purugganan (2002) elucidated the origin and evolution of glutinous rice based on
the haplotype of the Wx gene. By using dCAPS markers, waxy mutations and waxy rice
cultivation were shown to have occurred predominantly in the japonica line during the
evolution of domestic rice cultivation (Yamanaka et al., 2004). Genetic polymorphisms of
starch-synthesis genes have been demonstrated to be associated with starch physicochemical
properties using molecular markers such as SSRs, SNPs, and STSs. These markers can be
extremely useful in marker-assisted breeding (Bao et al., 2002; Bao et al., 2006a). SSIIa was
identified as the major gene responsible for determination of gelatinization temperature (GT).
Among four SNPs in the SSIIa gene, some that cause amino acid substitutions have been
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identified. The GC/TT SNP is strongly associated with GT (Bao et al., 2006b; Nakamura et al.,
2005; Umemoto and Aoki, 2005; Waters et al., 2006).

Rice nutritional quality is another important factor for consumer acceptance. In developing
countries where rice is the main food, its nutrient content makes a significant contribution to
the intake of some essential nutrients. Interest in natural antioxidants in rice is growing due
to their role in preventing oxidative stress-related diseases (Aguilar-Garcia et al., 2007; Willcox
et al., 2004; Zhang et al., 2013). Rice contains antioxidant compounds such as γ-oryzanols, tocols,
and polyphenols, which are associated with a reduced risk of developing chronic diseases such
as cardio vascular disease, type 2 diabetes, and some cancers (Liu, 2007; Tan et al., 2001;
Toyokuni et al., 2002). Pigments and flavonoids in colored rice are positively correlated with
the antioxidant capacity (Xia et al., 2003; Yawadio et al., 2007). Association mapping of pigments
and flavonoid contents was carried out in brown rice using SSR markers. Significant correla‐
tions between phytochemical content and marker loci were found and markers associated with
multi-phenotypic traits such as grain color, phenolic content and antioxidant capacity were
identified (Shao et al., 2011).

The amino acid composition of rice grain is an important characteristic related to nutrient
quality. Environmental conditions, potash, and nitrogen dramatically influence the amino acid
and protein contents of rice (Wu et al., 2004). Few reports of mapping of QTLs for the contents
of protein and amino acids in rice grain have been published. Twelve main effect QTLs (M-
QTLs) were identified for 10 components of amino acid content in milled rice. Most of the main
effect QTLs for amino acid content tended to co-localize within the genome (Lu et al., 2009).

Although many QTL analyses and genetic mapping studies of grain quality have been
conducted, association-mapping studies of biotic and abiotic traits in rice are few in number.
The genes or QTLs related to these traits are complex. Genetic mapping, including association
mapping and linkage mapping, are useful methods of identifying alleles for these traits. As
shown in Table 1, most association-mapping studies focused on morphological and agronomic
characteristics. Four studies were related to grain and eating quality and only one addressed
disease resistance and aluminum tolerance. Biotic and abiotic stress-tolerance traits remain to
be explored by association mapping.

Reference

Number of

accessions and

population type

Number and types

of markers used
Traits

Virk et al., 1996 200 rice accessions 7 RAPD Ten morphological traits; culm number, culm

length, culm diameter, grain length, grain width,

leaf length, leaf width, days to 50% flowering,

panicle length and seedling height

Zhang et al., 2005 218 inbred lines,

worldwide

germplasms

60 SSR, 114 RFLPs Multiple agronomic traits such as plant height,

heading date, flag leaf length and width, tiller

number, stem diameter, panicle length, grain

length and width, grain length/width ratio, grain

thickness, 1000-grain weight
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Reference

Number of

accessions and

population type

Number and types

of markers used
Traits

Iwata et al., 2007 332 rice accessions 179 RFLPs Size and shape of milled rice grains

Agrama et al.,

2007

183 rice accessions 123 SSRs Grain length and width, grain length/width ratio,

100 grain weight, grain thickness

Yan et al., 2009 90 accessions 108 SSRs + 1 indel Single, dual and total stigma exsertions and spikelet

characteristics

Wen et al., 2009 170 rice accessions 126 SSRs, 6 indels Heading date, plant height, panicle length

Borba et al., 2010 242 inbred lines,

worldwide

germplasms

86 SSRs Yield, amylose content, head-milled rice

Huang et al.,

2010

517 landraces

including japonica

and indica

~3.6 million SNPs Fourteen agronomic traits

Iwata et al., 2010 332 rice accessions 179 RFLPs Grain shape variation

Jin et al., 2010 416 rice accessions 100 SSRs Grain color

Ordonez Jr. et al.,

2010

192 elite rice breeding

lines and tropical

japonica germplasm

base

97 SSRs Grain quality and flowering time

Zhao et al., 2010 395 diverse O. sativa

accessions

1,536 SNPs Amylose content

Famoso et al.,

2011

373 diverse O. sativa

accessions

36,901 SNPs Al tolerance

Hu et al., 2011 303 O. sativa

accessions

24 SSRs Awness

Zhao et al., 2011 413 diverse accessions

of O. sativa

44,100 SNPs Thirty-four traits of agronomic characteristics,

cooking and eating quality, disease resistance

Bryant et al.,

2011

174 accessions 156 SSRs Silica concentration in rice hulls

Li et al., 2011 217 accessions 154 SSRs and 1 indel Yield and yield components among 14 traits

Lou et al., 2011 48 accessions 218 markers (SSRs +

indels)

Grain metabolites

Shao et al., 2011 416 rice accessions

including 361 white

rice, 50 red rice, and 6

black rice

100 SSRs Color parameters of brown rice grain, phenolic

content, flavonoid content and antioxidant activity

Zhang et al., 2011 A core collection

consisting of 150 rice

varieties

274 SSRs Six morphological traits: glume hair, phenol

reaction, length of 1st-2nd rachis internode, glume

color at heading, leaf hair, and grain length/width

Zhou et al., 2012 128 japonica rice

varieties

152 SSRs Eleven quantitative traits of agronomic and

economic importance
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Reference

Number of

accessions and

population type

Number and types

of markers used
Traits

Huang et al.,

2012

950 worldwide rice

cultivars

1,345,417 SNPs Flowering time and grain yield traits

Jia et al., 2012 217 entries 154 SSR markers

and 1 indel marker

Sheath blight resistance

Li et al., 2012 203 accessions 154 SSRs and 1 indel Harvest index and related components among 14

traits

Clark et al., 2013 233 rice (Oryza sativa)

accessions

36,901 SNPs Root growth and development

Table 1. International association-mapping studies of various traits using various markers in rice.

3.2. Association mapping of rice in Korea

To identify useful alleles from a representative core set of rice lines for transferring into
elite  lines,  an  allele-mining  set  of  166  accessions  (Zhao  et  al.,  2010)  was  successfully
developed from 4046 rice accessions which were selected from 10368 accessions in the Korea
RDA  Gene  Bank  by  39  phenotype  traits  (Chung  and  Park,  2009),  through  a  modified
heuristic algorithm approach based on 15 SSR markers using the PowerCore software (Kim
et al., 2007). Chung et al. also employed the PowerCore software of Kim et al. to develop
the first preliminary core set by phenotypes. The gene diversity and population structure
(Q) were analyzed using PowerMarker 3.25 (Liu and Muse, 2005) and Structure 2.2 (Evanno
et al., 2005) based on 170 SSR markers. Analysis of these data identified the major substruc‐
ture groups when the number of populations was set at four (Fig. 1).

Association mapping was conducted on this core set of lines over the past 2 years (as shown
in Table 2).  Zhao et  al.  (2012b) analyzed 130 accessions from the core set using 170 SSR
markers for association analysis of physicochemical traits related to eating quality. Linkage
disequilibrium (LD) patterns and distributions are of fundamental importance for genome-
wide  mapping  associations.  The  mean  r2  value  for  all  intrachromosomal  loci  pairs  was
0.0940. LD between linked markers decreased with distance. Marker–trait associations were
investigated using the unified mixed-model approach considering both Q and kinship (K).
In  total,  101  marker–trait  associations  (P  <0.05)  were  identified  using  52  SSR  markers
covering  12  chromosomes  (Fig.  2.).  Although  direct  comparisons  of  the  chromosomal
locations of marker–trait associations with previously reported QTLs are difficult because
different materials and mapping molecular markers were used, most marker–trait associa‐
tions were located in regions containing QTLs associated with a given trait. Indeed, some
were located in similar or proximal regions related to starch synthesis. The new markers
related  to  eating  quality  will  facilitate  the  understanding  of  QTLs  and  marker-assisted
selection (Zhao et al., 2012b).
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Figure 1. Values of ΔK, with its modal value used to detect the true K of four groups (K = 4). For each K value, five
independent runs (blue diamonds) were considered and averaged over the replicates (Zhao et al., 2012b).

Reference
Numbers of lines and

population type
Number and types of markers used Traits

Zhao et al., 2009
84 accessions from

land race core set
25 SSRs 16 amino acids

Zhao et al., 2012
130 accessions from

core set
170 SSRs Eating quality

Lu et al., 2012a
104 accessions from

core set
86 SNPs and indels Amylose content, RVA

Lu et al., 2012b
107 accessions from

core set
83 SNPs, indels, and SSRs Amylose content, RVA

Table 2. Rice association-mapping studies for various traits and marker types in Korea.

Association analysis of candidate genes has been used to trace the origin of agronomically
important traits. Lu et al. (2012a) used the rice core lines for association-mapping to investigate
the relationship between sequence variations from parts of 10 SSRGs and the amylose content
(AC) and rapid viscosity analysis (RVA) profiles. Eighty-six sequence variations were found
in 10 sequenced amplicons including 79 SNPs, six insertion-deletions (indels), and one
polymorphic SSR. Among them, 61 variations were exon-based, of which 41 should lead to
amino acid changes. The association mapping results showed a sum of four significant
associations between three phenotypic indices and three sequence variations. An ADP -
glucose pyrophosphorylase small subunit 1 (OsAGPS1) SNP (A to G) was significantly
associated with increased AC (P <0.001, r2 = 15.6%) while a 12-bp deletion of an AGPase large
subunit 4 (OsAGPL4) (Table 3) was significantly related to decreased breakdown viscosity
(P <0.001, r2 = 16.6%) in both general linear model (GLM) and mixed linear model (MLM) (Lu
et al., 2012a). One SNP with a g/c transversion at the 63rd nucleotide downstream of the OsBEIIb
gene termination codon on rice chromosome 2 was significantly associated with multiple trait
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indices in both the GLM and MLM, including the final viscosity (P <0.001, r2 = 23.87%), in both
2009 and 2010, and AC (P <0.01, r2 = 11.25%) and trough viscosity (P <0.01, r2 = 20.43) in 2010
(Table 4). This study provided a new perspective on the use of allele mining in breeding
strategies based on marker-assisted selection (Lu et al., 2012b).

AAc, amino acid changes; P_GLM, adjusted P-values with 1000 permutations; P_MLM, P-values significant in the FDR
test; amino acid code: S, serine; A, alanine; N, asparagine; D, aspartic acid; BDV, breakdown viscosity; AC, amylase content;
FV, final viscosity (Lu and Park, 2012a).

Table 3. Association between sequence variations and phenotype

Figure 2. The positions of markers used and marker–trait associations on 12 chromosomes except unmapped mark‐
ers. Genetic distances are indicated as cM on the left of each map and the corresponding trait-marker names are indi‐
cated on the right. AC, amylase content; PKV, peak viscosity; TV, trough viscosity; BD, breakdown viscosity; FV, final
viscosity; SBV, setback viscosity; PKT, peak time; fa, degree of polymerization (DP) ≤12; fb2, 24<DP ≤36; fb3, DP<36
(Zhao et al., 2012b).
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P_GLM: adjusted P-values with 10,000 permutations in GLM; P_MLM: nominal P-values in MLM; Q value: adjusted
nominal P-value in MLM by false discovery rate; AC: amylose content; PV: peak viscosity; TV: trough viscosity; FV: final
viscosity (Lu and Park, 2012b).

Table 4. Associations between sequence variations and eating quality indicators.

Zhao et al. (2009) evaluated the contents of 16 amino acids in brown rice by genotyping using
25 SSR markers. A total of 42 marker-trait associations for amino acid content covering three
chromosomes (P <0.05) were identified by the MLM model (Fig. 4), which accounted for more
than 40% of the total variation (Zhao et al., 2009). In our research group, association mapping
of rice traits related to cold-stress tolerance during germination, preharvest sprouting resist‐
ance, salt tolerance, blast disease resistance, and grain physicochemical properties are under‐
taken using SSRs and SNP variants on advanced resequencing platforms.

In conclusion, association mapping is a promising approach to overcoming the limitations of
conventional linkage mapping in plant breeding. Recent research has demonstrated the
significant potential of LD-based association mapping of physicochemical traits and other
important agronomic traits in rice accessions using SSR/SNP markers. This type of mapping
could be a useful alternative to linkage mapping for the detection of marker–trait associations,
and lead to implementation of marker-assisted selection in rice breeding programs.

4. Future directions

4.1. Genomics and GWAS in germplasm research

With the development of next- and third-generation sequencing technologies, the whole
genomes of individual rice accessions can now be sequenced with less than $ 1000 (US dollar).
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Also, new efficient genotyping technologies, such as RADs (Restriction Associated DNAs)
(Baird et al., 2008) and GBS (Genotyping-by-Sequencing) allow the generation of genotyping
data for up to 40,000 genes at low cost in few days.

Natural alleles and alleles obtained from artificially mutagenized populations provide an
important resource for crop breeding. By using all available alleles and detailed phenotyp‐
ic data from core sets of rice lines, new genes and useful traits can be identified. Molecu‐
lar  tags  for  useful  traits  developed  using  GWASs  based  on  genotypic  and  phenotypic
information can be  used to  track  target  traits  during segregation of  populations  in  rice
breeding (Figure 4).

To identify new alleles from a representative core set of rice lines and transfer them into elite
lines, we finally selected 166 from ~25,000 accessions in the RDA Gene Bank. We completed
whole-genome resequencing of 84 core accessions with 7x coverage in 2012. We plan to
resequence the whole genomes of the remaining 82 core accessions in addition to 84 bred
varieties from a validation set in 2013. We are currently undertaking the phenotyping of the
core accessions for agronomic traits, and chemical composition for the GWAS analysis with
the resequence information. We are also planning to improve the software algorithm for the
association analysis to increase the ability to identify alleles from the core set of lines using
whole genomic SNP or indel genotype data and phenotypic information. More precise
characterization of rice traits that confer resistance to stress from climate change is required to

Figure 3. Three regions of putative marker–trait associations on three chromosomes (3, 7, and 8) for amino acid con‐
tent in brown rice. Genetic distances are indicated in cM on the left of each map and the corresponding marker names
are indicated on the right. Ala, alanine; Arg, arginine; Asp, aspartic acid; Glu, glutamine; Gly, glycine; His, histidine; Ile,
isoleucine; Leu, leucine; Lys, lysine; Met, methionine; Phe, phenylalanine; Pro, proline; Ser, serine; Thr, threonine; Tyr,
tyrosine; Val, valine (Zhao et al., 2009).
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screen useful alleles using GWASs. Using whole-genome genotype information, we are able
to develop large numbers of molecular tags across 12 different rice linkage groups based on
their contributions to specific phenotypes.

4.2. Strategy for identification of major and minor QTLs for molecular breeding

The core accessions are highly diverse with many traits useful for rice breeding. Upon selection
of an accession with a desirable trait, bi-parental mapping populations will be developed using
two japonica varieties (Shindongjinbyeo and Junambyeo) and one indica variety (Hanareum‐
byeo). Major QTLs will be surveyed with an F8 RIL-segregating population using whole-
genome resequencing of 96 samples for first mapping, and then, we can resequence this target
region using the expanded 3000 to 5000 samples for fine mapping till the targeted gene can be
cloned. We expect that all major QTLs will contribute more than 10% to target traits. To identify
minor QTLs that contribute less than 10% to a target trait, BC4F1 population will be first
developed, and then, selfing will be done till BC4F8. The recurrent parent will be an elite line
for the purposes of QTL mapping and for transferring target traits into the elite lines. Mapping
of minor QTLs will be performed using a BC4F8 segregating population (as shown in Fig. 5).

Figure 4. A schematic illustration of inter-disciplinary relationships between genomic research and other fields in the
breeding of crop species.
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Natural variation results from the expression of different alleles during evolution. As a result
of the contributions to farmers over the past ~8000 years, many important traits have been
accumulated in the natural germplasm collections currently maintained in seed banks. Whole
genome resequencing allows efficient identification of unused alleles from conserved germ‐
plasm. We are at present developing a platform for allele mining in rice breeding systems using
GWAS approaches and diverse germplasm accessions with the support of the Next-Generation
BioGreen 21 Program (No.PJ009099) from Rural Development Administration, Republic of
Korea. We believe our effort will facilitate the molecular breeding of rice.

Figure 5. Strategies for identification of major and minor QTLs in rice from selected accessions carrying useful traits
through GWAS. The major QTLs will be localized and tagged by molecular markers in the F8 generation. Minor QTLs
will be localized using a BC4F8 population.
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