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1. Introduction

Cryptographic protocols are divided in two main classes, symmetric systems where keys are secret and

asymmetric approaches with public keys. The security of this second category is based on algebraic

problems known to be difficult to solve. Historically, in 1976, Diffie-Hellman described a protocol

[26] which was one of the first crypto-systems based on the discrete logarithm problem. Later, the

introduction of the elliptic curve in cryptography was promoted by V. Miller [55] and N. Koblitz [47]

and a large spectrum of crypto-systems appeared. Pairings are bilinear maps which allow to transform

an approach on abelian curves, such as elliptic ones, to a problem on finite fields. A first use of such

maps concerns cryptanalysis and was proposed in1993 by Menezes Okamoto and Vanstone [53] and in

1994 by G. Frey and H.G. Rück [36] they linked pairings to the discrete logarithmic problem on curves.

In 2000, A. Joux [45] had proposed a tripartite Diffie-Hellmann keys exchange using pairing. That was

the beginning of a blossoming literature on the subject. In 2003, D. Boneh and M. Franklin broke a

challenge given by Shamir[65] in 1984, creating an identity-based encryption scheme [19] based on

pairings. The construction of the pairings is based on the algorithm proposed in 1986 by Victor Miller

[54, 56]. A consequence of the rich literature on this subject [62] was the creation of a conference

devoted to pairing based cryptography, Pairings [60].

With the birth of this new domain of investigation in cryptography, the problem of implementing these

protocols occurs. This point is very relevant to the interest of pairings, the costs and the performances

of the implementation make a cryptosystem available. Some good studies on pairings implementation

are given by P. Barreto et al [13, 15], we can also refer to some books [29, 37]. We detail later what is

a pairing, but at a high level: a pairing is a bilinear map between two groups G1,G2 into a third group

G3 all abelian groups and of the same order.

e : G1 ×G2 −→ G3
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The bilinearity is the property that

e(a ·A,b ·B) = e(A,B)a·b.

For efficient realization G1 and G2 are subgroups of an elliptic curve and G3 is a subgroup of a finite

field. The size of the group is fixed by security considerations and lays on the fact that the discrete

logarithm problem is hard to solve over G1,G2 and G3. The pairings are mainly computed with the

Miller’s algorithm. As a pairing evaluation can be enclosed in a smart card, the question of an efficient

implementation is very important.

Several publications are dealing with the efficiency of implementation of pairings. Each of them focus

on one aspect of the implementation. We want here to bring together each possible optimizations. The

outline of the chapter is the following. First in Section 2 we present the necessary background for a

pairing implementation. We present the two first pairings the Weil and the Tate pairings, as well as

the optimizations of these, the Eta pairing, the Ate pairing, the twisted Ate pairing, which leads to the

notion of optimal pairing and pairing lattices. We also give a first analysis of the arithmetic of pairings.

In Section 4, we present the mathematical optimizations of pairings. The use of twisted elliptic curves

which leads to the denominator elimination, the improvement of a squaring using cyclotomic subgroups.

In Section 5, we present the arithmetical optimizations of a pairing implementation. We describe the

different options for an efficient multiplication in Section 5.2, 5.3, 5.3.1 and 5.4. We describe as well

how an original representation of a finite field can improve a pairing computation in Section 5.5. In

Section 5.6, we describe how the choice of the model of elliptic curve and of its coordinates has a

consequence on the implementation. Finally, we conclude in Section 6.

2. Background and notation

Let E be an elliptic curve over a finite field Fq, with P∞ denoting the identity element of the associated

group of rational points E(Fp). For a positive integer r|#E(Fp) coprime to p, let Fpk be the smallest

extension field of Fp which contains the r-th roots of unity in Fp; the extension degree k is called the

security multiplier or embedding degree. Let E(Fp)[r] (respectively E(Fpk )[r]) denote the subgroup

of E(Fp) (respectively E(Fpk )) of all points of order dividing r. The two groups G1 and G2 will be

subgroups of elliptic curve groups and G3 is a subgroup of the multiplicative group of a finite field.

2.1. The Weil, Tate and Ate pairings

2.1.1. The Miller algorithm

The Miller algorithm is the most important step for the Weil, Tate and Ate pairings computation. It is

constructed like a double and add scheme using the construction of [r]P. Miller’s algorithm is based on

the notion of divisors. We only give here the essential elements for the pairing computation.

The Miller algorithm constructs the rational function fr,P associated to the point P, where P is a

generator of G1 ⊂ E(Fp); and at the same time, it evaluates fr,P(Q) for a point Q ∈ G2 ⊂ E(Fpk ).

Theory and Practice of Cryptography and Network Security Protocols and Technologies52



Algorithm 1: Miller(P,Q, l)

Data: l = (ln . . . l0)(radix 2 representation), P ∈G1(⊂ E(Fp)) and Q ∈G2(⊂ E(Fpk ));
Result: FP(Q) ∈G3(⊂ F∗

pk );

1 : T ← P ;

2 : f1← 1 ;

3 : f2← 1 ;

for i = n−1 to 0 do

4 : T ← [2]T , 5 : f1←− f1
2
×h1(Q), h1(x) is the equation of the tangent at the point T ;

if li = 1 then

6 : T ← T +P ;

7 : f1←− f1×h2(Q), h2(x) is the equation of the line (PT );

end

end

return f1

2.1.2. The pairings

Definition 2.1. The Weil pairing, denoted eW , is defined by:

eW : G1×G2 → G3,

(P,Q) → (−1)r fr,P(Q)
fr,Q(P)

.

Definition 2.2. The Tate pairing, denoted eTate, is defined by:

G1×G2 7→ G3

(P,Q) 7→ eTate(P,Q) = fr,P(Q).

Here, the function fr,P is normalized, i.e. (ur
0 fr,P)(P∞) = 1 for some Fp-rational uniformizer at P∞.

This pairing is only defined up to a representative of (Fpk )r. In order to obtain a unique value we raise

it to the power
pk
−1
r , obtaining an r-th root of unity that we call the reduced Tate pairing

êTate(P,Q) = fr,P(Q)
pk
−1
r .

Let πp be the Frobenius map over the elliptic curve: πp : E → E : (x,y)→ (xp,yp). We denote the

Frobenius trace by t. Let T = t−1, G1 := E[r]∩Ker(πp− [1]) and G2 := E[r]∩Ker(πp− [q])

Theorem 2.3. For P ∈G1 and p ∈G2 the following properties hold [43]:

⋄ fT ,Q(P) is a bilinear pairing called the Ate pairing.

⋄ Let N = gcd(T k
− 1, pk

− 1) and T k
− 1 = NL, then eTate(Q,P)L = fT ,Q(P)

c(pk
−1)/N , where c =

∑
k−1
i=0 T k−1−i pi

≡ kpk−1mod(r)

⋄ for r not dividing L, the Ate pairing is non degenerated.
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We therefore obtain the reduced Ate pairing fT ,Q(P)
(pk−1)/r which is a power of the Tate pairing. As

the trace t is in average of size
√

p, for r∼ p, the loop length of Miller’s algorithm when computing the

Ate pairing is obviously going to be two times shorter than the loop length for the Tate pairing.

2.2. The Duursma-Lee pairing

Duursma and Lee use a family of hyperelliptic curves including supersingular curves over finite fields

of characteristic three and adapt it to pairing.

For Fp with p = 3m and k = 6, suitable curves are defined by an equation of the form

E : y2 = x3− x+ b,

with b = ±1 ∈ F3. If Fp3 = Fp[ρ ]/(ρ3− ρ − b), and Fp6 = Fp3 [σ ]/(σ2 + 1) then the distortion

map φ : E(Fp)→ E(Fp6 ) is defined by φ (x,y) = (ρ− x,σy). Then, setting G1 = G2 = E(F3m ) and

G3 = Fp6 , Algorithm 2 computes an admissible, symmetric pairing.

Algorithm 2: The Duursma-Lee pairing algorithm.

Input : P = (xP,yP) ∈G1 and Q = (xQ,yQ) ∈G2.

Output: e(P,Q) ∈G3.

f ← 1;

for i = 1 upto m do

xP← x3
P, yP← y3

P;

µ ← xP + xQ + b;

λ ←−yPyQσ −µ2;

g← λ −µρ−ρ2;

f ← f ·g;

xQ← x1/3
Q , yQ← y1/3

Q ;

end

return f p3−1;

2.3. The η and ηG pairings

Barreto et al. [12] introduce the η pairing by generalising the Duursma-Lee pairing to allow use of

supersingular curves over finite fields of any small characteristic; Kwon [49] independently used the

same approach and in both cases characteristic two is of specific interest. The η pairing has already

a simple final powering, but work done by Galbraith et al. [38] (see [59, Section 5.4]) demonstrates

that it can be eliminated entirely; the crucial step is the lack of normal denominator elimination,

which is enabled by evaluation of additional line functions. Interestingly, the analysis of this approach

demonstrates no negative security implication in terms of pairing inversion and so on. We follow

Whelan and Scott [71] by terming this approach to the ηG pairing.

For Fp with p = 2m and k = 4, suitable curves are defined by an equation of the form

E : y2 + y = x3 + x+ b
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Algorithm 3: The η pairing algorithm.

Input : P = (xP,yP) ∈G1 and Q = (xQ,yQ) ∈G2.

Output: e(P,Q) ∈G3.

f ← 1;

for i = 1 upto m do

xP← x2
P, yP← y2

P;

µ ← xP + xQ;

λ ← µ + xPxQ + yP + yQ + b;

g← λ + µt +(µ + 1)t2;

f ← f ·g;

xQ← x1/2
Q , yQ← y1/2

Q ;

end

return f p2−1;

Algorithm 4: The ηG pairing algorithm.

Input : P = (xP,yP) ∈G1 and Q = (xQ,yQ) ∈G2.

Output: e(P,Q) ∈G3.

with b ∈ F2. If Fp2 = Fp[s]/(s2 + s + 1) and Fp4 = Fp2 [t]/(t2 + t + s) then the distortion map

φ : E(Fp)→ E(Fp4 ) is defined by φ (x,y) = (x+ s2,y+ sx+ t). Note that s = t5 and that t satisfies

t4 = t +1, so we can also represent Fp4 as Fp[t]/(t4 + t +1). Then, by setting G1 = G2 = E(Fp) and

G3 = Fp4 , Algorithm 4 computes an admissible, symmetric pairing.

Historically, the Weil and Tate pairing was developed by mathematicians without any consideration

for cryptography. As efficient implementation of pairings become an interesting question for

cryptographers, they searched for improving these two pairings. The Ate and twisted Ate pairing were

improvement of the Tate pairing, throught mathematical properties [43]. The notion of Optimal pairing

[70] and pairing lattices [42] are the latest properties of pairing. The number of iterations is reduced

to the minimum in [70]. In [42], F. Hess proves that every pairing are in relation, because the different

pairings are in fact element of a lattice in which each pairing is a power of another pairing. To present

the following Sections, we work over the Tate pairing, since as any optimizations of the Tate pairing

can be easily adapted to others pairings.

2.4. Analysis of the arithmetic

In order to present the different existing options for the optimizations of a pairing computation, we will

focus on the Miller’s algorithm. Among the several algorithms which exist to compute a pairing, the

most efficient implementations are obtained with the Miller’s algorithm.

Let P = (XP,YP) be a point in affine coordinates of the set E(Fp)[r] (or in Jacobian coordinates with

ZP = 1). We consider the point p of order r in E(Fpk ), also given in affine coordinates (xQ,yQ). Let

G1 =< P > be the subgroup of order r of E(Fp) generated by the point P and G2 =<Q> the subgroup

of order r of E(Fpk ). We want to compute a pairing between G1 and G2, under the condition G1 6= G2.

The group G3 is a subgroup of order r of F⋆

pk .
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Let T = (XT ,YT ,ZT ) be a point of E(Fpk ) in Jacobian coordinates. The main advantage of Jacobian

coordinates is that there is no inversion during the arithmetical operation over the elliptic curve.

The Miller’s algorithm is given in Algorithm 5.

Algorithm 5: Miller(P,Q,r)

Données: r = (rn . . .r0)(binary representation), P ∈G1(⊂ E(Fp)) and Q ∈G2(⊂ E(Fpk ));
Résultat: fr,P(Q) ∈G3(⊂ F⋆

pk );

1. T ← P ;

2. f1← 1 ;

3. f2← 1 ;

for i = n−1 to 0 do

4. T ← [2]T ;

5. f1←− f1
2
× l1(Q), l1 is the tangent at point T of E. ;

6. f2←− f2
2
× v1(Q), v1 is the vertical line at point [2]T . ;

( Div( l1
v1
) = 2(T )− ([2]T )−P∞);

if ni = 1 then

7. T ← T +P ;

8. f1←− f1× l2(Q), l2 is the line (PT ) ;

9. f2←− f2× v2(Q), v2 is the vertical line at P+T ;

( Div( l2
v2
) = (T )+DP− ((T )⊕DP)−P∞);

end

return
f1

f2

end

The functions l1(Q), l2(Q), v1(Q) and v2(Q) occurring in Miller’s algorithm have their images in F⋆

pk .

The parameters f1 and f2 are elements of F⋆

pk .

The order r of the subgroups is chosen with a very sparse binary decomposition. In this case, the

addition step in Miller’s algorithm is not often executed, whereas the doubling step is computed for

every iteration of the Miller’s algorithm. As a consequence, we consider that the complexity of Miller’s

algorithm is approximately given by the doubling step. So we will only consider the computation of l1
and v1 in the complexity evaluation of Miller’s algorithm.

In a general case, we consider that the equation of the elliptic curve is given into the Weierstrass form

E : Y 2 = X3 + aXZ4 + bZ6, with a and b elements of Fp. In order to be very general, we consider

a and b ordinary. Indeed, it is possible to consider that a = −3 [20] and the value of b is also a

vector of optimizations, but we do not take in consideration these options. We denote P = (XP,YP),
T = (XT ,YT ,ZT ) is the current point in the Miller’s algorithm and 2T = (X2T ,Y2T ,Z2T ) the doubling

of T .

The formulas of the doubling in Jacobian coordinates are the following [25]

C = 2Y 2
T , D = Z2

T , A = 4XTY 2
T = 2XTC, B = (3X2

T + aZ4
T ) (1)
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X2T = B2
−2A, Y2T = B(A−X2T )−2C2, Z2T = 2YT ZT . (2)

In this case, the expressions of l1 and v1, for Q = (xQ,yQ) ∈ E(Fpk ) are given by

l1(xQ,yQ) = Z2
P(Z2T DyQ −B(DxQ −XT )−2YT ) (3)

v1(xQ,yQ) = Z2
2T ZPxQ + 4Y 2

P (XPD+XT Z2
P)−Z2

PB2. (4)

We could remark that some intermediary results of the previous formulas may be reused, for instance

Y 2
T , Z2

T , 4XTY 2
T , (3X2

T + aZ4
T ). This precomputation reduce the cost of the doubling step, considering

the number of operations over the finite field Fp.

Let Ape (respectively Subpe , Sqpe and Mpe ) denote an addition (respectively a subtraction, a squaring and

a multiplication) in the finite field Fpe , for e a natural integer. Let also Ma be the cost of a multiplication

by a. The Table 1 gives the cost of each operation occurring in the computation of the doubling step.

Each cost is given in number of operations over the finite fields. We optimize the computation as

possible without any trick different from the one which are following. We consider that a multiplication

by 2 is nothing more than a shift in binary representation and thus may be neglected. As a consequence,

a multiplication by 3 can be seen as a multiplication by 2 plus an addition and then a multiplication by

3 is equivalent to an addition.

Doubling of a point over E 4Ap + 3Subp +Ma + 4Sp + 4Mp

Evaluation of l1 2Subp + Subpk SP +(3+ 3k)MP

Evaluation of v1 2Ap + Subp + 3SP +(5+ k)MP

Step 1 in Algorithm 5 6Ap + 4Subp + Subpk + 8Sp +(12+ 4k)Mp + 2Spk + 2Mpk

Table 1. Cost of the doubling step in Miller’s algorithm

We will present in Section 4 the optimizations related with mathematics and in Section the optimization

in pairings related with the arithmetic of finite fields, in Section 4 the optimizations related with

mathematics, in Section 5 the optimizations related with algorithmical breakout.

3. Pairing based cryptography

The first use of pairing in cryptography was destructive: in [53] the Weil pairing was used to shift the

discrete logarithm problem from an elliptic curve to a finite field. As the discrete logarithm problem is

more easily solved over a finite field than over an elliptic curve, the MOV attack consists in transfering

a hard problem over a structure where the same problem is easier. The MOV attack is named after its

authors Menezes Okamoto and Vanstome. Later on the pairing was used to improve existing protocols

as tri-partite Diffie Hellman key exchange [45] and to construct original protocol like identity based

encryption [19, 21].

The aim of identity based encryption is that a person λ , even if λ does not know anything about

cryptography, is able to receive and more importantly to read an encrypted message with almost no

help.
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The public key of λ is its identity, its private key would be send to λ by a trusted authority T. This

trusted authority will have all the private keys related with the identity based protocol.

The general scheme of identity based encryption is the following.

The public data are an elliptic curve E over a finite field Fp, a pairing ê and a hash function H, this hash

function associates a point of E(Fp) to an identity: H : {Identity} → E(Fp). We consider that two

person Alice and Bob want to exchange a common secret for use it as a key in a secure communication.

With the public data, Alice can compute QB = H(Bob) the public key of Bob and Bob can compute

QA = H(Alice) the public key of Alice.

Alice and Bob request the trusted authority to receive their secret key. The secret key is a point of

E(Fp).

The trusted authority chooses s, as its secret key, then it generates PA = [s]QA the secret key of Alice

and PB = [s]QB the secret key of Bob.

Then, Alice (respectively Bob) can compute ê(PA,QB) (resp. ê(QA,PB), by bilinearity, Alice and Bob

have calculated the same key: ê(QA,QB)
[s]. Indeed:

ê([s]H(A),H(B)) = ê(H(A), [s]H(B)) = ê(H(A),H(B))[s].

4. Mathematical optimizations

We recall here the mathematical optimizations of pairings. As a pairing is defined over an elliptic

curve which is an abelian variety, the first optimization for a pairing computation comes from the

mathematical background of pairings. We will use the twist of an elliptic curve, the pairing friendly

elliptic curve will follow. We will consider the cyclotomic subgroup of a finite field and then how the

final exponentiation in a pairing computation can be improve.

4.1. The twist of an elliptic curve

The twisted elliptic curve of E is another elliptic curve isomorphic to E. Using twisted elliptic curves

(when it is possible) in pairing based cryptography is a way to avoid the denominator evaluation in

Miller’s algorithm. The execution of Miller’s algorithm involves computation over E(Fpk ), considering

a twist of degree d of E(Fpk ) allows some computations to be executed in Ẽ(Fpk/d ), where Ẽ(Fpk/d )

is the twisted elliptic curve of E(Fpk ) [64].

Definition 4.1. Let E and E ′ be two elliptic curves, the elliptic curve E ′ is a twisted elliptic curve of

E if there exists an isomorphisme Φ defined over Fp mapping each point of E ′ to a point of E.

There is a limited number of twisted elliptic curves of E. The number of twisted curves depends on the

finite field on which the elliptic curve E is defined. The Theorem 4.2 from [64] gives the classification

of the possible twists.

Theory and Practice of Cryptography and Network Security Protocols and Technologies58



Theorem 4.2. Let E be an elliptic curve of equation y2 = x3 + ax+ b defined over Fpk . Following

the value of k, the possible degrees d of twists are 2, 3, 4 and 6. Let E ′ be a twist of E, the morphism

between E and E ′ is one of the following.

• d = 2, E ′ : Dy2 = x3 + ax+ b defined over Fpk/2 , where D ∈ Fpk/2 is not a quadratic residue, i.e.

such that the polynomial X2 −D has no solution over Fpk/2 . The morphism Φd is defined by

Φd : E ′ → E

Φd(x,y) → (x,yD1/2).

• d = 4. The elliptic curve E has a twist of degree 4 if and only if b = 0. The equation of E ′ is then

y2 = x3 + a
D x, where D is not a residue of degree 4, i.e. D is not solution in Fpk/4 of a polynomial

X4 −D. The morphism is then

Φd : E ′ → E

Φd(x,y) → (xD1/2,yD3/4).

• d = 3 (resp. 6), the curve E has a twist of degree 3 or 6 if and only if a = 0. The equation of

E ′ is then y2 = x3 + b
D , where D is not a residue of degree 3 (resp. 6), i.e. D is not solution of a

polynomial X3 −D (resp. X6 −D). The morphism is then

Φd : E ′ → E

Φd(x,y) → (xD1/3,yD1/2).

Considering the definition above, an elliptic curve can admit a twist of degree 2, 3, 4 or 6. We will

only consider here the twisted elliptic curve for an even degree. In order to simplify the notations,

we will consider a twist of degree 2. The same method can be applied for twists of degree 4 and 6.

The case of twist of degree 3 is a little different, but can also be considered, we refer to [31] for more

details. Using a twisted elliptic curve of E(Fpk ) allows to make some computation of the Miller’s

algorithm in a subfield of Fpk , instead of Fpk and thus allows to simplify the computation. Using a

twisted elliptic curve is the solution to avoid the denominators in the Miller’s algorithm (i.e. the update

of the function f2). We will denote Ẽ(Fpk/2 ) the twisted curve of E(Fpk ), for an even k. We could

remark that the twisted elliptic curve of E is an elliptic curve define over an extension of degree half of

the initial extension (Fpk ) [11]. Let ν ∈ Fpk/2 a non square element in Fpk/2 , then
√

ν is an element of

Fpk \Fpk/2 . We can define Ẽ the twisted elliptic curve of E(Fpk ) of equation νy2 = x3 −3x+ b. The

morphism mapping Ẽ(Fpk/2 ) to E(Fpk ) is Ψ2 define by

Ψ2 : Ẽ(Fpk/2 ) → E(Fpk )
(x,y) → (x,y

√
ν).

The probability that the point Q = (x,y
√

ν) image of Q′ = (x,y) ∈ Ẽ by Ψ2 belongs to the subgroup

generate by P ∈ E(Fp) is negligeable [11]. This assures us that the pairing is non degenerated between
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P ∈ E(Fp) and Q = Ψ2(Q
′). As a consequence, we can consider that the coordinates of the point Q

are element of Fpk/2 plus a multiplication by
√

ν .

We give the formulae for Miller’s algorithm with the use of a twisted elliptic curve. Let A, B, C, D, E and

F be the intermediate values in the doubling and addition of a point over E (in Jacobian coordinates).

These values are dependant only on the point P = (XP;YP;ZP) and multiples of P: T = (XT ;YT ;ZT );
2T = (X2T ;Y2T ;Z2T ) and T +P = (X3;Y3;Z3). The equations of functions l1, l2, v1 and v2 are

l1(xQ,yQ

√
ν) = Z2

P(Z2T DyQ

√
ν −B(DxQ −XT )−2YT ),

v1(xQ,yQ

√
ν) = Z2

2T ZPxQ + 4Y 2(XPD+XT Z2
P)−9Z2

P(X
2
T −Z4

T )
2,

l2(xQ,yQ

√
ν) = Z2

T+P(Z
3
T EyQ

√
ν −ZT F(Z2

T xQ)−YT E),
v2(xQ,yQ

√
ν) = Z3

T E(Z3
3xQ +E(A+B)−Z2

T Z2
PF).

(5)

The multiplications and additions in these formulae are made in Fp and Fpk/2 . For xQ ∈ Fpk/2 , if

we consider carefully the equations of v1 and v2, we can remark that the results v1(xQ,yQ

√
ν) and

v2(xQ,yQ

√
ν) are elements of Fpk/2 . Indeed, the y-coordinate of Q does not appear in the denominator

v1 and consequently
√

ν either. This simple remark allows the elimination of the denominators during

the Tate pairing computation.

Property 4.3. During the evaluation of Miller’s algorithm for the Tate pairing, the evaluation of f2
and thus the computations of v1 and v2 can be omited [11].

Indeed, when using a twist, the equation shows that v1(Q), v2(Q) ∈ Fpk/2 and then f2 ∈ Fpk/2 . By

definition of the embedding degree k of the elliptic curve,
pk−1

r is a multiple of pk/2 −1 and f
pk−1

r

2 = 1

by the following proposition.

Property 4.4. Let r be a prime divisor of #E(Fp) and E be an elliptic curve of embedding degree k

relatively to r. Then
pk−1

r is a multiple of pk/2 −1.

Proof. The demonstration is a straight forward consequence of the construction of k as the smallest

integer such that r divides pk −1. So for an even k, pk −1 = (pk/2−1)(pk/2 +1) and r a prime integer

divides pk − 1. Using the Gauss theorem, r divides (pk/2 − 1) or (pk/2 + 1). If r divides (pk/2 − 1),
then the definition of k would be wrong, thus the only possibility is that r divides (pk/2 + 1).

For all ξ ∈ Fpk/2 , we know that ξ pk/2−1 ≡ 1 (from the Little Fermat’s theorem). Consequently the final

exponentiation of the Tate pairing kills every factor of the result belonging to a proper subfield of Fpk .

The Miller’s computation can be simplified by forgetting v1 and v2. But with the same remark, we can

also simplify the function l1 and l2 into

l1(xQ,yQ

√
ν) = Z2T DyQ

√
ν −B(DxQ −XT )−2YT ,

l2(xQ,yQ

√
ν) = Z3

T EyQ

√
ν −ZT F(Z2

T xQ)−YT E.
(6)

This method can be applied for every pairing with a final exponentiation. In the case of the Weil

pairing, we can also apply it by raising the result of Weil pairing at the power pk/2 −1. The cost of this

exponentiation will be study in Section 4.4.
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In order to illustrate the simplification of the computation with the use of a pairing, we compare two

computations of the doubling step in Miller’s algorithm. The Miller Lite execution is the computation of

the Miller’s algorithm for the Tate pairing (Miller(P,Q)). The Miller full execution is the computation

of Miller(Q,P). The Table 2 compare the cost of the doubling step in Miller Lite and Miller Full with

and without the use of twisted elliptic curve.

Miller Without twist With twist

Lite 8Sp +(12+ 4k)Mp + 2Spk + 2Mpk 4Sp +(7+ k)Mp + Spk +Mpk

Full 3kMp + 10Spk + 14Mpk kMp + 5Spk + 7Mpk

Table 2. Cost of Miller Lite and Miller Full

4.2. Pairing friendly fields and elliptic curves

The computation of pairings implies computations over extension fields of the form Fpk . If the

embedding degree k is smooth, than the arithmetic in Fpk can be computed step by step. A complete an

extensive nice definition of smooth number is given in [50], we recall here an intuitive naive definition.

Definition 4.5. A smooth integer is an integer such that its prime factor are composed only by small

primes.

Example 4.6. An integer of the form 2i3 j is smooth.

We illustrate how a smooth integer k allows a construction of Fpk with a tower field.

Example 4.7. Let l be a prime number and m an integer such that k = lm. The extension Fpk of Fp

can be constructed like an extension of degree l of Fpm . We suppose that we have already constructed

the extension Fpm . Let P(X) be an irreducible polynomial of degree l in Fpm [X ]. Then Fplm = F(pm)l

is constructed with the quotient

Fplm = Fpm [X ]/ (P(X)) .

We use the tower field construction in order to optimize the multiplication over Fpk . We will see

in Section 5 that for extensions of degree 2 and 3, we can use the Karatsuba and Toom Cook

multiplications. The tower field construction reduce the number of elementary operations over Fp

to compute a multiplication in Fpk [35].

A.Menezes and N.Koblitz [48] proposed the definition of pairing friendly elliptic curves. There are

elliptic curves suitable for pairing computation. Pairing friendly fields are defined with k smooth.

Definition 4.8. A pairing friendly field Fpk is an extension of a finite field Fp with the following

property

• the characteristic p is such that p ≡ 1 mod(12),

• the embedding degree k is such that k = 2i3 j.

Pairing friendly field are such that the polynomial reduction over the extension Fpk is very easy to

compute [50, Theorem 3.75].

Efficient Computation for Pairing Based Cryptography: A State of the Art
http://dx.doi.org/10.5772/56295

61



Theorem 4.9. Let β ∈ Fp be a neither a square nor a cube in Fp and Fpk a pairing friendly field with

k = 2i3 j. Then the polynomial Xk −β is irreducible in Fp.

Using the definition and the above property, we construct the extension Fpk = Fp[X ]/(Xk −β ) using

several extensions of degree 2 and 3. The construction is done step by step with square or cubic root of

β and the results.

Example 4.10. Example of possible tower field for k = 2231 :

Fp
2
→ L = Fp[T ]/(T

2 −β ),

K
3
→ M = L[U ]/(U3 −T ),

L
2
→ N = M[V ]/(V 2 −U).

The representation of fields L, M and N are as follow

L = {l0 + l1β , with l0, l1 ∈ Fp},

M = {m0 +m1T +m2T 2, with m0,m1,m2 ∈ L},

N = {n0 + n1U , with n0,n1 ∈ M}.

The arithmetic in Fpk can be composed in each floor of the tower field construction. As k is a product

of power of 2 and 3, the Karatsuba and Toom Cook methods are the more suitable for improving

the multiplication in Fpk . We consider that a multiplication in Fpk with k = 2i3 j involves 3i5 j

multiplications in Fp, which is denoted Mpk = 3i5 jMp.

4.3. Cyclotomic subgroup and squaring

A. Lenstra and M. Stam introduce in [52] an efficient method for squaring. They use the structure

of a cyclotomic subgroup. They construct an extension of degree 6 with a polynomial different from

X6 −β . The cyclotomic subgroup Gφk(p) is the subgroup of order φk(p) of F⋆

pk , where φk(p) is the

kth cyclotomic polynomial evaluated at p. The cyclotomic polynomials are constructed such that there

roots are the primitive roots of unity.

The multiplication developed by Lenstra and Stam is interesting for computing squares in degree 6

extension of Fp (or a degree multiple of 6). It could be interesting to generalize it for other degree

extension. They construct the degree 6 extension using the cyclotomic polynomial φk(X) = Xk/3 −
Xk/6 + 1. This method can be used for every degree extension multiple of 6.

Let α ∈ Gφk(p), α =
k−1

∑
i=0

aiγ
i, where for all i, ai ∈ Fp and B = (1,γ ,γ2, . . . ,γk−1) is a basis of Fpk .
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We are seeking for the general expression of an element in Gφk(p). We consider that α is a polynomial

in several variables in Fp (the ais), with coefficients power of γ in Fpk .

As α belong to the cyclotomic subgroup Gφk(p), the order of α divides the cardinal of Gφk(p) which is

φk(p). So, we have that α pk/3−pk/6+1 = 1 in Gφk(p). This equality can be written α pk/3+1 = α pk/6

.

In order to find the decomposition of α ×α pk/3

−α pk/6

, we can then formally compute α pk/3

and α pk/6

α ×α pk/3

−α pk/6

=
k−1

∑
i=0

viγ
i.

Where

v0 = a2
1 −a0a2 −a4 −a2

4 + a3a5,

v1 = −a0 + a1a2 + a3 −2a0a3 + a2
3 −a2a4 −a1a5,

v2 = −a0a1 + a3a4 −a5 −2a2a5 + a2
5,

v3 = −a1 −a2a3 + 2a1a4 −a2
4 −a0a5 + a3a5,

v4 = a2
0 + a1a2 + a3 −2a0a3 −a4a5,

v5 = −a2 + a2
2 −a1a3 −a0a4 + a3a4 −2a2a5.

As α ∈ Gφk(p), we have that
k−1

∑
i=0

viγ
i = 0. With this equation, we construct a system in the αi, the

resolution of this system will give us the general form of an element in Gφk(p).

The subgroup Gφk(p) is the set of elements α such that ∀i, vi = 0, which gives α2 = α2 +B.Γ.tv, with

B = (1,γ ,γ2, ...,γk−1) and with Γ a chosen matrix. As v is zero in Fp, we can reduce the cost of a

square with this method.

Denoting α2 =
k

∑
i=1

siγ
i, we have the equality

k

∑
i=1

siγ
i = (

k

∑
i=1

aiγ
i)2 +B.Γt .v.

We can formally develop the right expression and for a well chosen matrix Γ, the formulae for a square

in Fpk would be simplified. For instance, for k = 6[52] :
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α2 = B.

















2a1 + 3a4(a4 −2a1)
2a0 + 3(a0 + a3)(a0 −a3)
−2a5 + 3a5(a5 −2a2)

2(a2 −a4)+ 3a1(a1 −2a4)
2(a0 −a3)+ 3a3(2a0 −a3)

−2a2 + 3a2(a2 −2a5)

















. (7)

Granger, Page and Smart apply this method to construct the Table 3 [41].

Degree extension k cost of a square in Fpk

6 4,5Mp

12 18Mp + 12Sp

24 84Mp + 24Sp

Table 3. Complexity of a square in F
pk

In the particular case where k = 6 and p ≡ 2 (mod 9), the cost of a square with the Lenstra and Stam

method is less than 0,75Mpk , which is usually the ratio of a square compare to a multiplication.

Example 4.11. In Fp6 , a square with Lenstra and Stam method cost 6× 0,75Mp ≈ 4,5Mp. With the

classical ratio, a square in Fp6 costs 15×0,75Mp ≈ 10Mp.

4.4. The finale exponentiation

The Tate pairing (and also the Ate, optimal Ate) is composed of two steps, first the Miller’s execution

and then a final exponentiation. This exponentiation is a very expensive operation as it takes place in

Fpk and the exponent
pk−1

r is a large integer. In order to simplify this exponentiation it is split in two

parts [48] using the fact that:

(pk −1)

r
=

(pk −1)

φk(p)
×

φk(p)

r
,

where φk(p) is the evaluation in p of the k-th cyclotomic polynomial.

The first part of the exponentiation uses the twisted elliptic curve and it is equivalent to computing

the Frobenius map of elements in Fpk . The second part is a reduced exponentiation in Fpk which is

performed with classical method for exponentiation.

4.4.1. First part of the exponentiation

We consider here the exponentiation to the power
pk−1

φk(p)
. We can first remark that if k = 2i3 j, then

φk(p) = pk/3 − pk/6 + 1 and
pk−1

φk(p)
= (pk/2 − 1)(pk/6 + 1). Using a twist, the result of Miller’s

algorithm is something like (X +Y
√

ν) avec X ,Y ∈ Fpk/2 .

The computation of (X +Y
√

ν)pk/2−1 can be decomposed in

(X +Y
√

ν)pk/2

× (X +Y
√

ν)−1.
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As (X +Y
√

ν)−1 = (X +Y
√

ν)pk/2

, we have that

(X +Y
√

ν)pk/2−1 = (X +Y
√

ν)2pk/2

.

Raising an element of Fpk to a power pk/2 is a Frobenius operation, which mainly consists in shifts. The

total cost of the exponentiation to the power (pk/2 −1) is a square in Fpk and a Frobenius application.

Let (X ′+Y ′√ν) be the result of (X +Y
√

ν)pk/2−1.

We then have to compute (X ′+Y ′√ν)pk/6+1 which is another application of the Frobenius.

Let γ be a root of Xk −β in Fpk . An element a of Fpk can be decomposed in a =
k−1

∑
i=0

aiγ
i, with ai ∈ Fp.

The property of a finite field gives ap =
k−1

∑
i=0

aiγ
ip and recursively

ap j

=
k−1

∑
i=0

aiγ
ip j

.

For i and j two integers let qi j and ri j be the quotient and the remainder of the Euclidien division of ip j

by k, we know that

γ ip j

= β qi j mod(p)γri j .

The computation of (X ′+Y ′√ν)pk/6+1 can be decomposed in

(X ′+Y ′√ν)pk/6+1 = (X ′pk/6

+Y ′pk/6√
ν
(pk/6)

)× (X ′+Y ′√ν)

For example, if we describe what happened for the variable X ′ raised to the power pk/6, we obtain the

following step







































X ′ =
k/2−1

∑
i=0

xiγ
i,

X ′pk/6

=
k/2−1

∑
i=0

xiγ
ip(k/6)

,

X ′pk/6

=
k/2−1

∑
i=0

(xiβ
qi(k/6) mod (p))γri(k/6) .

We have to compute the k
2 products (xiβ

qi(k/6) mod(p)), with xi and β qi(k/6) mod(p) in Fp. The total

complexity of the first part of the exponentiation is 2kMp +Spk +Mpk plus shifts and multiplications by

β .
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Second part of the exponentiation

The second part of the exponentiation is the hard part. We use classical method of exponentiation like

the Lucas sequences [16] or sliding windows [40]. In [67], more tricky method are developed.

The Lucas sequence method induces a cost of a square and a multiplication in the intermediate field

Fpk/2 for each bit of the exponent. The sliding window method has the advantage that the squares are

computed in the cyclotomic subgroup and consequently we can use the method described in Section

4.3. The complexity of the two methods is linearly related to the number of the bits in the binary

decomposition of the exponent, we recall here the complexity of the methods and refer to for instance

the book [25] for more details.

Let br be the number of bits of r, the prime number dividing the cardinal of E. Let bpk be the number of

bits of pk. The respective size of br, bpk , r and pk are fixed by the security level we want to reach. We

give them in the Table 4. The number of positive integers smaller than k and prime with k is ϕ(k), the

Euler totent function evaluated at k. The number ϕ(k) is also the number of primitive k-roots of unity,

then it is the degree of the polynomial φk(p). The exponent of the second part of the exponentiation is

( ϕ(k)
k bpk −br) bits.

The number of squares and multiplications involved for the computation of the exponentiation depends

on
ϕ(k)

k bpk −br = (τkγ −1)br, where

γ =
bpk

br
,

τk =
ϕ(k)

k
=

{

1/2 si k = 2i, i > 1

1/3 si k = 2i3 j, i, j > 1 .

The number γ is related to the security levels given in the Table 4 and its is a good appreciation of the

total complexity of the exponentiation.

Security level in bits 80 128 192 256

Minimal number of for r 160 256 384 512

Minimal number of for pk 1 024 3 072 7 680 15 360

γ =
b

pk

br
6,4 12 20 30

Table 4. Security level

The complexity of the Lucas sequance method is [16]

CLuc = (Mpk/2 + Spk/2 ) log2

(

φk(p)

r

)

.

The complexity of the sliding window method is [40]

Csw =

(

log2(e)

log2(p)
+ log2(p)

)

SGφk (p)
+

(

log2(e)

log2(p)

(

2n−1
−1

)

+
log2(e)

n+ 2
−1

)

Mpk ,
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where e = φk(p)
r , and n is the integer giving the size of the window in bits, generally n = 4.

5. Arithmetical optimisation

As the pairings computation lays on arithmetic over finite fields, a way to improve the efficiency of

computation of pairings is to improve the arithmetic of finite fields and extension of finite fields.

The elliptic curve used in pairing based cryptography are constructed throught the complex

multiplication method. These methods of constructions do not allow to fixe p the characteristic of

the field Fp, we can only choose the number of bits in the decomposition of p. As a consequence, the

arithmetic of pairings is particular. We cannot choose p with a special structure which would provide an

efficient arithmetic, like for example a sparse decomposition or a Mersenne or Pseudo Mersenne prime.

A very nice overview of construction of elliptic curve for pairing based cryptography is available in the

work of Freeman, Scott and Teske [33].

We then begin this section with the presentation of efficient multiplications in finite fields and extensions

of finite fields. We recall the different methods for a multiplication and we will provide a comparison

of efficiency of these multiplications in Section 5.2, 5.3, 5.4. In Section 5.5, we will consider the

representation of elements in a finite field. Indeed, in Section 5.1 we describe the classical representation

of a finite field, this classical representation is used for the description of the multiplications. But it is

possible, to have original representations of finite field, which can offer opportunities for improvement

in pairing based cryptography. In Section 5.6 we will consider how the choice of coordinates can be a

way for improving the efficiency of computation of pairings and on the equation of the elliptic curve.

5.1. Setting

We consider in this Section the cost of operations over Fpk in number of operations over Fp. We give

the notations for the rest of the chapter. Let Fp be a finite field field of prime characteristic p, with p

of thousands digits. Let Fpk be the extension of degree k of Fp. The extension Fpk is defined through

an irreducible polynomial P(X) of degree k. Let A and B be two elements of Fpk . The elements of Fpk

are described in the basis B = (1,γ ,γ2, . . . ,γk−1), for γ a roots of P(X) in Fpk . An element of Fpk is a

polynomial in γ with coefficients in Fp:

Fpk = {
k−1

∑
i=0

aiγ
i,ai ∈ Fp}.

A is represented by
k−1

∑
i=1

aiγ
i and B by B =

k−1

∑
i=0

biγ
i. The product of A and B can be done in two steps. The

first one is the the product of the polynomials, to obtain the polynomial C(X) = A(X)×B(X) of degree

(2k−2). The second step is the polynomial reduction modulo P(X). The cost of this reduction depends

on the form of P(X). The more P(X) is sparse, the more the reduction is efficient. As a consequence,

P(X) should be as possible chosen of the form Xk −β , with β ∈ Fp [50]. In this case, the polynomial

reduction is reduced to multiplications by β and (k−1) additions:

C(X) =C0(X)+C1(X)Xk ≡C0(X)+βC1(X) mod(P(X)).
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with, C0(X),C1(X) of degree (k−1).

The following theorem [50, Theorem 3.75] gives us a natural construction of the extension Fpk using a

sparse representation.

Theorem 5.1. Let k be an integer and Fpk an extension of degree k of Fp, for p a prime number.

There exists β an element of Fp which is not a k-th roots in Fp and such that the polynomial Xk
−β is

irreducible over Fp.

Thus, we can consider that the complexity of a product in Fpk is highly dependent on the complexity

of the product of two polynomials, neglecting the complexity of the modular reduction. We introduce

above the possible multiplications of polynomials.

5.2. The school book method

As the name gives the hint, the school book multiplication is the one we learned at school. The school

book method of two polynomials is the following

A(γ)×B(γ) =
2k−1

∑
i=0

(

i

∑
j=0

(a jbi− j)

)

γ i.

This simple method is very expensive, indeed its complexity is quadratic in the degree of the

polynomials. The cost of this method is k2 multiplications in Fp plus k(2k − 1) addition, thus the

complexity is k(2k−1)Ap + k2Mp.

The interpolation method are an alternative to the school book method, there are efficient for k greater

than a fixed value. This value depends on the method.

5.3. Interpolation method

Let A(X) = a0 + a1X + . . .+ ak−1Xk−1 and B(X) = b0 + b1X + . . .+ bk−1Xk−1 be the polynomials

obtained by substitution (γ becomes X). The result C(X) of A(X)×B(X) is a polynomial of degree

(2k − 1). It is known that a polynomial of degree m is determined by its image in (m+ 1) distinct

values.

Theorem 5.2. Let P(X) be a polynomial of degree m, then P(X) is determined by the image of (m+1)
distinct values.

The multiplications by the interpolation method use in this theorem. The methodology is to find (2k−1)
images of the polynomial C(X) and then to reconstruct C(X) by interpolation. All multiplications by

interpolation follow this scheme

1. Find (2k−1) distinct values in Fp

denoted by α0,α1, . . . ,α2k−2.

2. Evaluate the polynomials A(X) and B(X) in these values

keep in memory A(α0), . . . ,A(α2k−2),B(α0), . . . ,B(α0).
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3. Compute the evaluation of C in these (2k−1) values,

C(αi) = A(αi)B(αi).

4. Use these evaluations of C(X) to reconstruct by interpolation the polynomial C(X).

The complexity of a multiplication by interpolation depends

1. on the evaluation of the A(αi), B(αi),

2. on the multiplications in Fp C(αi) = A(αi)×B(αi),

3. and on the reconstruction of the polynomial expression of C(X).

If we compare the interpolation method with the school book method, we substitute some

multiplications in Fp by multiplications by constants in Fp. The constants are determined by the choice

of the αi values. The drawback is that the multiplication by interpolation need more additions, but as

an addition in Fp is less expensive than a multiplication, for some degree k interpolation methods are

more efficient than the school book method.

Let Ma the cost of a multiplication by the constant a in Fp. The evaluations in (αi){i=0...(2k−1)} cost

2(2k−1)(k−1) (Ap +CMp) ,

when executed using the Horner scheme:

A(αi) = a0 +αi (a1 +αi(a2 +αi[. . .])) .

The computation of the C(αi) = A(αi)×B(αi) involves (2k− 1) multiplications in Fp, which costs

(2k−1)Mp.

Two classical method of interpolation exist, the Lagrange and the Newton interpolation methods.

5.3.1. Lagrange’s interpolation method

We suppose that we have obtained the evaluation of the polynomial A(X) and B(X) in 2k−1, denoted

(α0,α1, . . . ,α2k−2). We then have the image of C(X) = A(X)×B(X) in these 2k − 1 points. The

reconstruction of the coefficients of C(X) using the Lagrange interpolation is done through the formula:

C(X) =
2k−2

∑
i=0













C(αi)×

2k−2

∏
j=0, j 6=i

(X −α j)

2k−2

∏
j=0, j 6=i

(αi −α j)













. (8)

The complexity of Lagrange’s interpolation is

(2k−1)Mp +(2k−1)(4k−3)CMp + 2(2k−1)(3k−2)Ap. (9)
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5.3.2. Newton’s interpolation

As in the Lagrange’s interpolation, we dispose of the C(αi)s and we want to find the coefficients of

C(X). The Newton’s interpolation needs the construction of intermediates values.

The first step is the computation of the values c′i







































c′0 = C(α0)
c′1 = (C(α1)− c′0)

1
(α1−α0)

c′2 =
(

(C(α2)− c′0)
1

(α2−α0)
− c′1

)

1
(α2−α1)

... =
...

c′2k−2 =
(

(C(α2k−2)− c′0)
1

(α2k−2−α0)
− c′1

)

1
(α2k−2−α1)

− . . .

With the c′is, the expression of C(X) is

C(X) = c′0 + c′1(X −α0)+ c′2(X −α0)(X −α1)
+ . . .+ c′2k−2(X −α0)(X −α1) . . . (X −α2k−2).

The reconstruction of the coefficients of C(X) can be done using the Horner’s scheme

C(X) = c′0 +(X −α0)[c
′

1 +(X −α1)(c
′

2 +(X −α2)(. . .
. . .+(X −α2k)[c

′

2k−1 +(X −α2k−1)c
′

2k−2]))].

The efficiency of the multiplication by interpolation depends on the choice of the αis. The Newton’s

interpolation involves divisions be the differences of the αis, these elements can be precomputed

once for all as the αis are fixed. Furthermore, the divisions by (αi −α j)
−1 can be transformed in

multiplication by constants, as we work in a finite field.

The complexity of Newton’s interpolation is the sum of the complexity of the computation of the C(αi),
the c′i and the reconstruction of the coefficients of C(X).

The complexity of Newton’s interpolation is

4(2k2
−3k+ 1)Ap + 4(2k2

−3k+ 1)CMp +(2k−1)Mp.

5.3.3. Comparison between the two methods

The two methods involves the same number of multiplications in the base field Fp: (2k − 1), for

polynomials of degree (k−1).
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The Lagrange’s interpolation is very important when computations can be parallelised. Indeed, the

computation of the C(αi)×

∏
j 6=i

(X −α j)

∏
j 6=i

(αi −α j)
are independent. The Newton’s interpolation involves less

additions and multiplications by constants than the Lagrange’s one, but we cannot parallelise the

computation. The c′i must be computed one after another.

❵
❵

❵
❵

❵
❵
❵

❵
❵
❵

❵

Operation

Method
Lagrange Newton

Ap 12k2 −14k+ 4 8k2 −12k+ 4

CMp 8k2 −10k+ 3 8k2 −12k+ 4

Mp (2k−1) (2k−1)

Table 5. Complexity in number of operation over the base field

The Lagrange’s interpolation should be privileged when computations can be parallelised and Newton

when the size of the device is limited, typically for smart cards.

5.4. Karatsuba and Toom Cook methods

5.4.1. Karatsuba’s method

The Karatsuba multiplication is a straightforward application of the Newton’s method, for polynomials

of degree 1. The result of the multiplication is a polynomial of degree 2, then we need 2 + 1 = 3

points of interpolation. These values are {0,1,∞}. The Karatsuba multiplication provide the product of

two polynomials of degree 1 in 3 multiplications in the base field, instead of 4 using the school book

method. The multiplication by constants in the Newton multiplication are free, because of the choice of

the interpolation values. Let A(X) = A0 +A1X and B(X) = B0 +B1X be two polynomials of degree 1

and C(X) = A(X)×B(X).

We evaluate the polynomial C(X) in the point {0,1,∞} using equations 10.

C(0) = (A1X +A0)(B1X +B0) mod(X),
= A0 ×B0,

C(1) = (A1X +A0)(B1X +B0) mod(X −1),
= (A0 +A1)× (B0 +B1),

C(∞) = (A1X +A0)(B1X +B0) mod(X −∞),
= A1 ×B1 ×X2 mod(X −∞).

(10)

The evaluation of polynomial C(X) in the 3 values involves 2Ap +3Mp operations in the base field Fp.

Then, we use the formulas in the Newton interpolation to reconstruct the polynomial C(X).
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



c′0 = C(0),
= A0B0,

c′1 = (C(1)− c′0)
1

(1−0)
,

= (A0 +A1)(B0 +B1)−A0B0,

c′2 =
(
(C(∞)− c′0)

1
(∞−0)

− c′1

)
1

(∞−1)
,

=
(
(A1B1X2 −A0B0)

1
(X−0)

− ((A0 +A1)(B0 +B1)−A0B0)
)

1
(X−1)

mod(X −∞),

= A1B1X2

X2 − A0B0

X2 −
((A0+A1)(B0+B1)−A0B0)

X
mod(X −∞),

= A1B1.

C(X) = c′0 + c′1X + c′2X(X −1),
= A0B0 +((A0 +A1)(B0 +B1)−A0B0)X +A1B1X(X −1),
= A0B0 +((A0 +A1)(B0 +B1)−A0B0 −A1B1)X +A1B1X2.

We can resume the computation of the polynomial C(X) using Karatsuba’s multiplication by the

following equation





c0 = A0 ×B0,

c1 = (A0 +A1)× (B0 +B1),
c2 = A1 ×B1,

C(X) = c0 +(c1 − c0 − c2)X + c2X2.

(11)

For polynomials of degree 1, the complexity of Karatsuba’s multiplication is 3Mp + 4Ap.

The Karatsuba’s multiplication can be recursively applied for polynomials of degree greater than 1. Let

A(X) = A0 +A1X + . . .AmXm, we can split A(X) in two parts of degree smaller or equal to
⌊

m
2

⌋
:

A(X) = A0 +A1X + . . .A⌊ m
2 ⌋−1 +X⌊ m

2 ⌋
(

A⌊ m
2 ⌋

+A⌊ m
2 ⌋+1X + . . .AmX⌊ m

2 ⌋
)

,

= Ã0 +Y Ã1, where we denote Y = X⌊ m
2 ⌋.

Then, we apply the Karatsuba’s multiplication to the two parts. Each of the three multiplications

can also be done using the Karatsuba’s multiplication. The recursive application of Karatsuba’s

multiplication is the most efficient method for the computation of polynomials of degree a power of

2. The asymptotic complexity of Karatsuba’s multiplication is O(mlog2(3)) multiplications and O(m)
additions, with m being the degree of the polynomials we want to multiply.
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5.4.2. Toom Cook 3 multiplication

Exactly like the Karatsuba’s multiplication, Toom Cook 3 multiplication is an application of Newton’s

interpolation. The Toom Cook 3 method provide the product of polynomials of degree 2 with 5

multiplications of coefficients, instead of 9 using the school book method multiplication. The values

for the interpolation are {0,1,−1,2,∞}. Unlike the Karatsuba’s method, there are few multiplications

and divisions by constants that we cannot avoid.

Let A(X) = A0 + A1X + A2X2 and B(X) = B0 + B1X + B2X2 be polynomials of degree 2 and

C(X) = A(X)× B(X) obtained using the Toom Cook method. The evaluation part of Toom Cook

3 multiplication involves 10 additions of Ai and Bi, for i = 0,1,2. The evaluation of A(X) needs 5

additions.































A(0) = A0,

Sp1 = A0 +A2,

A(1) = Sp1 +A1,

A(−1) = Sp1 −A1,

A(2) = A0 + 2A1 + 4A2,

A(∞) = A2X2 mod(X −∞).

We begin with the evaluation of C(X) in the αi pour i = 0,1,2,3,4.























C(0) = A(0)×B(0) = A0B0,

C(1) = A(1)×B(1),
C(−1) = A(−1)×B(−1),

C(2) = A(2)×B(2),
C(∞) = A(∞)×B(∞) = A2B2X4 mod(X −∞).

We apply the Newton’s method to find the coefficients c′i























c′0 = C(0),
c′1 = C(1)− c′0,

c′2 = 1
2

(

C(−1)− c′0 + c′1

)

,

c′3 = 1
6C(2)− 1

6 c′0 −
1
3 c′1 −

1
3 c′2,

c′4 = A2B2.

The reconstruction of C(X) is then

C(X) = c′0 + c′1X + c′2X(X −1)+ c′3X(X −1)(X + 1)
c′4X(X −1)(X + 1)(−2).

This step can be resume by the formula
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C(X) = c′0 + (c′1 − c′2 − c′3 −2c′4)X +(c′2 − c′4)X
2

+ (c′3 −2c′4)X
3 + c′4X4.

Which gives































C0 = c′0,

C1 = c′1 − c′2 − c′3 −2c′4,

C2 = c′2 − c′4,

C3 = c′3 −2c′4,

C4 = c′4,

C(X) = C0 +C1X +C2X2 +C3X3 +C4X4.

For polynomials of degree 2, the complexity of Toom Cook 3 is 5Mp + 11CMp + 11Ap. As for

Karatsuba’s method, the Toom Cook 3 method can be recursively applied. The asymptotic complexity

of Toom Cook 3 multiplication is O(mlog3(5)) multiplications and O(m) additions, where m is the degree

of the polynomials we want to multiply.

5.4.3. Extensions to other extensions

The Toom Cook 3 method can be extended to Toom Cook 5, this multiplication is suited for polynomials

of degree 3. Few works deal with the multiplication of polynomials of degree greater than 3. For

polynomials of degree 4, we can use the Karatsuba’s method. As a consequence, in pairing based

cryptography, field with extension degree of the form 2i3 j are called pairing friendly because we can

use tower fields and for each stage of the tower we use the Karatsuba or Toom Cook 3 multiplication.

However in pairing based cryptography (and in cryptography in general) there are some cases where

it is more interesting to use fields with degree extensions different from 2 and 3. We can cite the

problem of compression (i.e. representing elements in a finite field subgroup with fewer bits than

classical algorithms) for extension fields in terms of algebraic tori Tn(Fq) [63] or applications based

on T30(Fq), such as El Gamal encryption, El Gamal signatures and voting schemes in [69].

Let Fp be a finite field of characteristic greater than 5. For instance for polynomials of degree 5,

we can begin with Karatsuba’s method and then use Karatsuba and Toom Cook 3 for each part. This

construction gives an efficient multiplication for polynomials of degree 5, but not the most efficient. For

degree 5 extensions, Montgomery [58] has proposed a Karatsuba-like formula for 5-terms polynomials

performed using 13 base field multiplications. This work was improved by El Mrabet et all in [30] using

Newton’s interpolation.

We recall here Montgomery’s method for an extension of degree 5. Let A = a0 + a1X + a2X2 +
a3X3 +a4X4 and B = b0 +b1X +b2X2 +b3X3 +b4X4 in Fp5 with coefficients over Fp. Montgomery

constructs the polynomial C(X) = A(X) ·B(X) using the following formula C = (a0 + a1X + a2X2 +
a3X3 + a4X4)(b0 + b1X + b2X2 + b3X3 + b4X4)
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= (a0 + a1 + a2 + a3 + a4)(b0 + b1 + b2 + b3 + b4)(X
5
−X4 +X3)

+(a0 −a2 −a3 −a4)(b0 −b2 −b3 −b4)(X
6
−2X5 + 2X4

−X3)

+(a0 + a1 + a2 −a4)(b0 + b1 + b2 −b4)(−X5 + 2X4
−2X3 +X2)

+(a0 + a1 −a3 −a4)(b0 + b1 −b3 −b4)(X
5
−2X4 +X3)

+(a0 −a2 −a3)(b0 −b2 −b3)(−X6 + 2X5
−X4)

+(a1 + a2 −a4)(b1 + b2 −b4)(−X4 + 2X3
−X2)

+(a3 + a4)(b3 + b4)(X
7
−X6 +X4

−X3)

+(a0 + a1)(b0 + b1)(−X5 +X4
−X2 +X)

+(a0 −a4)(b0 −b4)(−X6 + 3X5
−4X4 + 3X3

−X2)

+a4b4(X
8
−X7 +X6

−2X5 + 3X4
−3X3 +X2)

+a3b3(−X7 + 2X6
−2X5 +X4)

+a1b1(X
4
−2X3 + 2X2

−X)

+a0b0(X
6
−3X5 + 3X4

−2X3 +X2
−X + 1).

The cost of these computations is 13Mq + 22Aq. Note that in order to recover the final expression of

the polynomial of degree 8, we have to re-organize the 13 lines to find its coefficients. We denote the

products on each of the 13 lines by ui, 0 ≤ i ≤ 12 (i.e. u12 = (a0 + a1 + a2 + a3 + a4)(b0 + b1 + b2 +
b3 +b4), u11 = (a0 −a2 −a3 −a4)(b0 −b2 −b3 −b4) etc.) By re-arranging the formula in function of

the degree of X , we obtain the following expression for C

C = u3X8

+(−u2 −u3 + u6)X
7

+(u0 + 2u2 + u3 −u4 −u6 −u8 + u11)X
6

+(−3u0 −2u2 −2u3 + 3u4 −u5 + 2u8 + u9 −u10 −2u11 + u12)X
5

+(3u0 + u1 + u2 + 3u3 −4u4 + u5 + u6 −u7 −u8 −2u9 + 2u10 + 2u11 −u12)X
4

+(−2u0 −2u1 −3u3 + 3u4 −u6 + 2u7 + u9 −2u10 −u11 + u12)X
3

+(u0 + 2u1 + u3 −u4 −u5 −u7 + u10)X
2

+(−u0 −u1 + u5)X
+ u0.

Considering this expression, hidden additions must be taken in account. Once every simplification is

done, the total complexity of Montgomery’s method is 13Mp + 62Ap.

In [30], the Newton’s interpolation gives a better result for the multiplication of 5-terms polynomials.

The interpolation values are α0 = 0, α1 = 1, α2 = −1, α3 = 2, α4 = −2, α5 = 4, α6 = −4, α7 = 3,

α8 =∞. With these values, the evaluations of A and B are only composed of shifts and additions. Details

are provide in [30], the evaluations of A(X) and B(X) have a total complexity of 48Ap. The evaluation

of C(X) in the αis costs 9Mp. The computation of the c′is is not straightforward. Indeed, there are

few divisions by 3, 5 and 7 that appear in the formula Section 5.3.2. To avoid the computation of a

division which is an expensive operation over a finite field, using a trick on the binary decomposition of

integers, they perform very efficiently the divisions. The complexity for these divisions is smaller than
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2Ap. The global complexity for the computation of the c′is is then 64Ap. Finally, the reconstruction of

the polynomial C(X) using the Horner’s scheme has a complexity of 28Ap. And the total complexity

of the 5-terms polynomials is 9Mq + 137Aq.

The comparison with Montgomery’s result is not evident, but implementations in [30] shows that the

results are more efficient than the Montgomery’s one.

In the two articles, the authors give also results for 6-terms and 7-terms polynomials.

The fact that we can compute efficiently the multiplication for extensions greater than 2 and 3 gives the

opportunity to consider pairing computation over elliptic curve with an embedding degree k different

from 2i3 j and can improve the implementation of pairings. But this work is still to be made.

5.5. Original representation of finite fields

In the previous section we consider efficient multiplications for a classical representation of finite fields

and extension of finite fields. But they are many ways to represent a finite field. In [22], the authors use

an original representation of finite field to provide a very efficient implementation of a pairing. This

original representation is the Residue Number System (RNS) representation and it was developed in

[7, 8]. The RNS representation relays on the Chinese remainder theorem. Let B = {m1, . . . ,mn} be a

set of co-prime natural integers, M =
n

∏
i=1

mi and 0 ≤ X < M. There exists a unique representation XB of

X in the basis B, XB = {X mod m1, . . .X mod mn}= {x1,x2, . . . ,xn}. Given XB , we can reconstruct

X using the Chinese Remainder theorem:

X =

(

n

∑
i=1

(xi ×b−1
i mod mi)×bi

)

mod M, where bi =
M

mi
.

The RNS representation is obviously very interesting for parallel computations. An efficient

multiplication in RNS representation is described in [7, 8]. This multiplication is based on the

Montgomery modular multiplication. In [22], the authors present two very efficient implementation

of a pairing algorithm on an FPGA, in RNS representation. They implement the optimal Ate pairing at

several security levels over Altera and Xilinx FPGA. They compare there result with previous work and

obtaint very nice results.

5.6. The arithmetic of Pairings

The complexity of a computation of a pairing depends on the finite field and the arithmetic underlying,

but also of the model and the equation of the elliptic curve and the choice of the coordinates. Usually,

an elliptic curve is represented using the short Weierstrass equation which is on the form E : y2 =
x3 + ax+ b, with a and b elements of the finite field Fp. In [20], Brier and Joye show that the value a

can be chosen to be −3. This value contributes to improve the computation of pairings. But, even on

a short Weierstrass equation, several cases exist, we can have b = 0, a = 0 with b a square or not just

an integer. For each option, the coordinates have also an influence on the efficiency of the computation

of a pairing. The coordinates are usually chosen between affine, Projective and Jacobian. The affine

coordinates are often put aside. Indeed, the operations over the elliptic curve in affine coordinates

involves inversion over finite fields. As inversion over a finite field is an expensive operation, one try to

avoid them so far as possible. To achieve this aim, the Projective or Jacobian coordinates are suitable,
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as by construction, the Projective and Jacobian coordinates substitute inversions in affine coordinates

into multiplications. The fact that the affine coordinates involves inversions was a drawback to their use

in pairing based cryptography. In [51], the authors analyzed the use of affine coordinates for pairing

based cryptography. They adapt two known techniques for speeding up field inversion to the pairing

based cryptography case. They found out that for high security levels, an implementation in affine

coordinates of a pairing will be much faster than an implementation in projective coordinates. The

first technique to improve the inversion consists in computing inverses in extension fields by using

towers of extension field and transform inverse computation to subfield computations via the norm map.

Using this technique, the authors reduce drastically the ratio of the costs of inversions to multiplications

in extension fields. This is very interesting for the computation of pairings over a large extension

field, typically at high level security such as 256 bits. The second trick is to take advantage of the

inversion-sharing, a standard trick whenever several inversions are computed at once. This method

involves the lecture of the binary expansion from right to left, instead of left to right. This second

method is very interesting when multi-core processors are used, indeed, it can be easily parallelized. We

can find in [51] detailed performance numbers with timing for base field and extension field arithmetic.

For security level more reasonable, the Projective and Jacobian coordinates are for now more suitable.

In [24], the authors resume, compare and improve several works dealing with the optimizations of

pairings, considering all the possibilities for the Weierstrass equation. They give efficient computations

in Jacobian and Projective coordinates. We resume there work in Table 6.

Curve Doubling Prev Doubling

Curve order Addition Result Addition

Twist deg. Result of [24]

y2 = x3 + ax Ma +(2k/d + 2)Mp + 8Sp [2] Ma +(2k/d + 1)Mp + 11Sp

any (2k/d + 12)Mp + Sp (2k/d + 10)Mp + 6Sp

d = 2,4 New coord. Jacobian

y2 = x3 + c2 (2k/d + 3)Mp + 5Sp [23] (2k/d + 3)Mp + 5Sp

3|♯E Mc +(2k/d + 3)Mp + 5Sp Mc +(2k/d + 3)Mp + 5Sp

d = 2,6 Projective Projective

y2 = x3 + b Mb +(2k/d + 2)Mp + 7Sp [2] (2k/d + 3)Mp + 8Sp

3 ∤ ♯E Mb +(2k/d + 2)Mp + 7Sp (2k/d + 3)Mp + 8Sp

d = 2,6 Projective Jacobian

y2 = x3 + b Mb +(k+ 6)Mp + 7Sp [31] Mb +(2k+ 8)Mp + 9Sp

any (k+ 16)Mp + 3Sp not reported

d = 3 Projective Projective

Table 6. Comparaison of pairings considering Weierstrass models

There exists several model of elliptic curves, for instance

• Short Weierstrass: y2 = x3 + ax+ b, for a, b in K.

• Legendre coordinates: y2 = x(x−1)(x−λ ), for λ ∈ K.

• Montgomery: by2 = x3 + ax2 + x, for a, b in K.

• Edwards coordinates: x2 + y2 = c(1+ x2y2) over K.

• Huff’s coordinates: aX(Y 2 −Z2) = bY (X2 −Z2) for a2 6= b2 6= 0 over K.
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Several works study the efficiency of an implementation of pairing over some of these models of elliptic

curves. The Edwards elliptic curves were recently introduced in cryptographie. In [32], Edwards

demonstrates that every elliptic curve E defined over an algebraic number field is birationally equivalent

over some extension of that field to a curve given by the equation:

x2 + y2 = c2(1+ x2y2). (12)

Edwards curves became interesting for elliptic curve cryptography when it was proven by Bernstein

and Lange in [18] that they provide addition and doubling formulas faster than all addition formulas

known at that time. The advantage of Edwards coordinates is that the addition law can be complete (i.e.

the formulas for adding or doubling two points are the same) and thus the exponentiation in Edwards

coordinates is naturally protected against side channel attacks. Recently, the Edwards elliptic curves

were used to compute pairings [3, 44]. In [46], the authors study the Huff’s model of an elliptic curve,

they provide explicit formulae for fast doubling and addition and also for Tate pairing computation.

Another example is the work in [72], in this work the authors consider the Selmer elliptic curves,

they present formulae for doubling, addition and pairing computations. They compare there results to

various elliptic curve models such as Weierstrass, Edwards, Hessian. There is many choices for the

equation/model of the elliptic curve and of the coordinates, the website [17] regroups every new result

on this subject. It is a very nice overview of this topic of research.

6. Conclusions

We presented the various pairings available for cryptographic use. As the pairing are aimed to be

implemented in smart cards, the efficiency of a pairing implementation is a subject of several research.

We presented optimizations developed for the improvement of a pairing implementation. We introduced

the twisted elliptic curve which leads to the denominator elimination. We constructed the extension field

Fpk using tower fields and the method for an efficient multiplication over each step of the tower. We

described efficient squaring method combine with the cyclotomic subgroup. We also highlighted the

fact that the choice of the model of the elliptic curve and the choice of the coordinates is important for an

efficient implementation. We saw that the representation of an element in the base field Fp with original

definition can leads to very efficient implementation. To conclude, the optimizations of pairing are a

very interesting point of research and a lot of scientists work hardly to find new optimizations. Further

research can follow the presented optimizations and adapt to the case of pairings over hyperelliptic

curves, or find any other point of optimizations in the implementation.
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