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1. Introduction 

Like immunotherapy, chemotherapy, and surgery, radiotherapy is one of the major tools in 

fighting against cancer. As acute IR is applied, cell can trigger its self-defensive mechanisms 

in response to genome stresses [1]. As one of the pivotal anticancer genes within the cell, P53 

can control the transcription and translation of series genes, and trigger cell cycle arrest and 

apoptosis through interaction with downstream genes and their complicated signal 

pathways [2]. Under radiotherapy, the outcomes of cellular response depend on the 

presence of functional P53 proteins to induce tumor regression through apoptotic pathways 

[3]. Conversely, the P53 tumor suppressor is the most commonly known specific target of 

mutation in tumorigenesis [4]. Abnormalities in the P53 have been identified in over 60% of 

human cancers and the status of P53 within tumor cells has been proposed to be one of the 

determinant response to anticancer therapies [3,4]. Controlled radiotherapy studies show 

the existence of a strong biologic basis for considering P53 status as a radiation predictor 

[3,5]. Therefore, the status of P53 in tumor cell can be considered as a predictor for long-term 

biochemical control during and after radiotherapy [6-8].  

Recently, several models have been proposed to explain the damped oscillations of P53 in 

cell populations [9-12]. However, the dynamic mechanism of the single-cell responses is not 

completely clear yet, and the complicated regulations among genes and their signal 

pathways need to be further addressed, particularly under the condition of acute IR.  

Many studies have indicated that introducing novel mathematical and computational 

approaches can stimulate in-depth investigation into various complicated biological systems 

(see, e.g., [13-23]). These methods have provided useful tools for both basic research and 
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drug development [24-33], helping understanding many marvelous action mechanisms in 

various biomacromolecular systems (see, e.g., [21,34-39]).  

Based on the existing models [9-12] and inspired by the aforementioned mathematical and 

computational approaches in studying biological systems, here a new model is proposed for 

studying the P53 stress response networks under radiotherapy at the cellular level, along 

with the kinetics of DNA double-strand breaks (DSBs) generation and repair, ATM and ARF 

activation, as well as the regulating oscillations of P53-MDM2 feedback loop (MDM2 is an 

important negative regulator of the p53 tumor suppressor). Furthermore, the kinetics of the 

oncogenes degradation, as well as the eliminations of the mutation of P53 (mP53) and the 

toxins were presented. Also, the plausible outcomes of cellular response were analyzed 

under different IR dose domains.  

It is instructive to mention that using differential equations and graphic approaches to study 

various dynamical and kinetic processes of biological systems can provide useful insights, 

as indicated by many previous studies on a series of important biological topics, such as 

enzyme-catalyzed reactions [18,40], low-frequency internal motions of biomacromolecules 

[41-46], protein folding kinetics [47,48], analysis of codon usage [49,50], base distribution in 

the anti-sense strands [51], hepatitis B viral infections [52], HBV virus gene missense 

mutation [53], GPCR type prediction [54], protein subcellular location prediction [55], and 

visual analysis of SARS-CoV [56,57].  

In the present study, we are to use differential equations and directed graphic approaches to 

investigate the dynamic and kinetic processes of the cellular responding radiotherapy.  

2. Method 

2.1. Model review 

Under the genome stresses, many efforts have been made to enhance P53-mediated 

transcription through some models [58,59] [9-12]. However, the interactions in a real system 

would make these models [60] extremely complicated. Therefore, a new feasible model is 

needed in order to incorporate more biochemical information. To realize this, let us take the 

following criteria or assumptions for the new model: (1) only the vital components and 

interactions are taken into account; (2) all the localization issues are ignored; (3) the simple 

linear relations are used to describe the interactions among the components concerned; and 

(4) there are enough substances to keep the system ‘‘workable’’ [58].  

The new integrated model thus established for the P53 stress response networks under 

radiotherapy is illustrated in Fig.1. Compared with the previous models [9-12], the current 

model contains more vital components, such as oncogenes, ARF and mP53, as well as their 

related regulating pathways. In the DSBs generation and repair module, the acute IR 

induces DSBs stochastically and forms DSB-protein complexes (DSBCs) at each of the 

damage sites after interacting with the DNA repair proteins [2,3]. As a sensor of genome 

stress, ATM is activated by the DSBCs signal transferred from DSBs. Meanwhile, the over-

expression of oncogenes prompted by acute IR can trigger the activation of ARF, further 
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prompting the ATM activation [2] [7]. The cooperating effects of active ATM (ATM*) and 

active ARF (ARF*) switch on or off the P53-MDM2 feedback loop [2] [7,9], further regulating 

the downstream genes to control the cell cycle arrest and the cell apoptosis in response to 

genome stresses [8]. Here, we use the superscript * to represent the activate state as done in 

[61]. 

 

Figure 1. Illustration showing the integrated model of P53 stress response networks under 

radiotherapy. It is composed of three modules, including DNA damage generation and repair, ATM 

and ARF activation, as well as P53-MDM2 feedback loop. As acute IR is applied, ARF is activated by the 

over-expression of oncogenes, and ATM is activated with the cooperation of DSBCs and ARF*. ATM* 

and ARF* corporately trigger the responding mechanism of P53-MDM2 feedback loop. 

2.2. DSBs generation and repair 

Under the continuous effect of acute IR dose, DSBs occur and trigger two major repair 

mechanisms in eukaryotic cells: homologous recombination (HR) and nonhomologous end 

joining (NHEJ) [62,63]. About 60-80% of DSBs are rejoined quickly, whereas the remaining 

20-40% of DSBs are rejoined more slowly [64,65]. As shown in Fig.2, the module of DSBs 

generation and repair process contains both the fast and slow kinetics, with each being 

composed of a reversible binding of repair proteins and DSB lesions into DSBCs, and an 

irreversible process from the DSBCs to the fixed DSBs [62,65]. DSBCs are synthesized by 

binding the resulting DSBs with repair proteins (RP), which is the main signal source to 

transfer the DNA damage to P53-MDM2 feedback loop by ATM activation [2].  

Due to the misrepair part of DSBs (Fw) having the profound consequences on the subsequent 

cellular viability and the cellular response in fighting against genome stresses [1,3], we 

obviously distinguish between correct repair part of DSBs (Fr) and Fw [9,10,12]. Moreover, 

we further deal the total Fw in both repair processes as a part of toxins within the cell 

[2,4,11], which can be eliminated by the regulatory functions of P53 during and after 

radiotherapy, and treated as an indicator of outcomes in cellular response to genome 

stresses [2]. 

Some experimental data suggest that the quantity of the resulting DSBs within different IR 

dose domains obey a Poisson distribution [11]. In accordance with the experiments, we 
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Figure 2. Illustration showing the module of DNA repair process. It includes both a fast repair pathway 

and a slow one. DSB can be in one of four states: intact DSB (DSB), DBSC, Fr and Fw. Subscripts ‘1’ and 

‘2’ refer to the fast kinetics and slow one. 

assume that the stochastic number of the resulting DSBs per time scale is proportional to the 

number generated by a Poisson random function during the period of acute radiation [11]. 

The DSBs generation process is formulated as follows: 

 
[DT]

Poissrnd( IR)
t ir

d
k a

dt
    (1) 

where [DT] is the concentration of total resulting DSBs induced by IR in both fast and slow 

repair processes. kt is the parameter to set the number of DSBs per time scale, and air is the 

parameter to set the number of DSBs per IR dose.  

Moreover, we assume that the limited repair proteins are available around DSBs sites, and 

70% of the initial DSBs are fixed by the fast repair process. Each DSB can be in one of the 

four states: intact DSB, DSBC, Fr and Fw  [9,10,12]. Thus, we have the following differential 

equations: 

 1
1 1 1

[D ]
[D ] [C ]

t cd

d
a k

dt
  dc1 1 cross 1 2

[RP]( [D ] ([D ] [D ]))k k     (2) 

 2
2 t cd2 2

[D ]
[D ] [C ]

d
a k

dt
  dc2 2 cross 1 2

[RP]( [D ] ([D ] [D ])k k     (3) 

 1
dc1 1 cd1 1 cf1 1

[C ]
[D ] [C ] [C ]

d
k k k

dt
    (4) 

 2
dc2 2 cd2 2 cf2 2

[ ]
[D ] [C ] [C ]

d C
k k k

dt
      (5) 

 
p cd1 1 cd2 2

[RP]
[C ] [C ]

r

d
S k k

dt
  

dc1 1 dc2 2 cross 1 2
[RP]( [D ] [D ] ([D ] [D ]))k k k      (6) 

D1 

kdc1

kdc2 

kcf2

kfw1

 

kfw2 

kcd1

 

kcd2 

DSB Fixed DSB 

D2 

C1 

C2

Fr 

Fw

DSBCs 

kcf1



 
Gene Regulatory Networks Under Radiotherapy 17 

 w
w1 1 fw2 2

[F ]
[C ] [C ]

f

d
k k

dt
    (7) 

where [D], [C], and [Fw] represent the concentrations of DSBs, DSBCs, and Fw in the fast and 

the slow repair kinetics respectively, kdc, kcd, kcf, and kfw are the transition rates among the 

above three states; kdc, and kcross represent the first-order and second-order rate constants in 

both the fast and the slow repair kinetics respectively [65]. Srp is the basal induction rate of 

repair mRNA, and subscripts ‘1’ and ‘2’ refer to the fast and the slow kinetics.  

2.3. ATM and ARF activation 

As a DNA damage detector, ATM exists as a dimer in unstressed cells. After IR is applied, 

intermolecular autophosphorylation occurs, causing the dimer to dissociate rapidly into the 

active monomers. The active ATM monomer (ATM*) can prompt the P53 expression further 

[64]. Meanwhile, ARF, another tumor suppressor, is activated by hyperproliferative signals 

emanating from oncogenes, such as Ras, c-myc etc., further prompting the ATM activation 

[2,7,10]. Based on the existing model of ATM switch [11], we present an ATM and ARF 

activation module under IR. Shown in Fig.3 is the module scheme of ATM and ARF 

activation, which includes five components: ATM dimer, inactive ATM monomer, ATM*, 

ARF, and ARF*. Compared with the previous studies in [9-12], ARF, oncogenes, and the 

related signal pathways are involved in this module [2,7. Here, let us assume that DSBCs is 

the main signal transduction from DSBs to P53-MDM2 feedback loop through ATM 

activation, and the rate of ATM activation is a function of the amount of DSBCs, ARF* and 

the self-feedback of ATM*. Furthermore, the total concentration of ATM is a constant, 

including ATM dimer, ATM monomer and ATM, as treated in {Ma, 2005 #1194]. 

 

Figure 3. Illustration showing the module scheme of ATM and ARF activation under constant IR. ARF 

is activated by the over-expression of oncogenes induced by acute IR, and ATM is activated from ATM 

monomers under the cooperating effects of DSBCs, ARF*, and self-feedback of ATM*. 
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As a detector of DNA damage, ATM activation plays an important role in triggering the 

regulatory mechanisms of P53 stress response networks [2,65]. After the acute IR is applied, 

phosphorylation of inactive ATM monomers is promoted first by DSBCs and then rapidly 

by means of the positive feedback from ATM*, accounting for the intermolecular 

autophosphorylation [11]. Meanwhile, under the circumstance of continuous IR dose, ARF, 

a detector of over-expression of oncogenes is activated by hyperproliferative signals 

emanating from oncogenes, further prompting the ATM activation [2,7,10], as can be 

formulated as follows: 

 2d
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    (8)  

 2m
undim d dim m

[ATM ]
2 [ATM ] [ATM ]

d
k k

dt
 

af m ar
[ATM ] [ATM*]k f k   (9) 

 
af m

[ATM*]
[ATM ] [ATM*]

ar

d
k f k

dt
       (10)  

 
arf ad onf

[ARF]
[ARF] [Onco][ARF]

d
S k k

dt
       (11) 

 
onf pad

[ARF*]
[Onco][ARF] [ARF*]

d
k k

dt
    (12) 

 
1 2 3

( ,[ATM*]) [ATM*] [ATM*]f C a C a a C  
4
[ *]a ARF    (13) 

where [ATMd], [ATM] and [ATM*] represent the concentrations of ATM dimer, ATM 

monomer, and active ATM monomer respectively; [Onco], [ARF] and [ARF*] represent the 

concentrations of oncogenes, ARF, and active ARF respectively; kundim,  kdim,  kar, and kaf  are 

the rates of ATM undimerization, ATM dimerization, ATM monomer inactivation, and 

ATM monomer activation, respectively. Sarf, konf, kad and kpad are the rates of ARF basal 

induction, ARF activation triggered by Oncogenes, ARF degradation, and ARF* 

degradation, respetively. In addition, f is the function of ATM activation, the term a1C 

implies the fact that DSBs somehow activate ATM molecules at a distance, a2[ATM*] 

indicates the mechanism of autophosphorylation of ATM, a3C[ATM*] represents the 

interaction between the DSBCs and ATM* [9-12,66], and a4[ARF*] represents the regulating 

function of ARF* to ATM activation [1,3,7].  

2.4. Regulation of P53-MDM2 feedback loop  

As shown in Fig.4, P53 and its principal antagonist, MDM2 transactivated by P53, form a 

P53-MDM2 feedback loop, which is the core part in the integrated networks [9-12]. ATM* 

elevates the transcriptional activity of P53 by prompting phosphorylation of P53 and 

degradation of MDM2 protein [67]. Also, ARF* can indirectly prompt the transcriptional 
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activity of P53 by inhibiting the expression of MDM2 and preventing P53 degradation 

[2,7,9]. With the cooperating regulations of ATM* and ARF*, this negative feedback loop can 

produce oscillations in response to the sufficiently strong IR dose [11].  

 

Figure 4. The directed graph of P53-MDM2 feedback loop under radiotherapy. P53 is translated from 

P53mRNA and phosphorylated by ATM* and ARF*. MDM2 protein promotes a fast degradation of P53 

protein and a slow degradation of P53*. In addition, ATM*and ARF* stimulate the degradation of 

MDM2, and then indirectly increase the regulatory activation of P53* further. Especially, oncogenes, 

toxins and mP53 are decreased directly by the regulatory functions of P53*. 

Especially, the mutation of P53 (mP53) triggered by oncogenes is added in this module, and 

mP53 is further dealt as another detector of outcomes in cellular response to acute IR. To 

account for a decreased binding affinity between inactive P53 and P53*, we assume that 

MDM2-induced degradation of inactive P53 is faster than that of P53*, and only P53* can 

induce target genes to depress the over-expression of oncogenes and further eliminate the 

toxins within the cell [3,4,9-12]. The main differential equations used in this module are as 

follows: 
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where [P53R], [P53P], [P53*], [MDM2R], and [MDM2P] represent the concentrations of P53 

mRNA, P53 protein, active P53, MDM2 mRNA, and MDM2 protein, respectively; [Onco], 

[Toxins], and [mP53] represent the concentrations of oncogenes, Fw  and mP53, respectively. 

SP53, and SMDM2 represent the basal induction rates of P53 mRNA and MDM2 mRNA, 

respectively; k, and d represent the regulation and degradation rates among genes and 

proteins, respectively. The other parameters are presented in Tables 1-3. 

 

Parameters Description Constant 

kt Rate of DSBs generation per time scale 0.01 

air Number of DSBs generation per IR dose 35 

a1 Percentage of DSs processed by fast repair 0.70 

a2 Percentage of DSs processed by slow repair 0.30 

kdc1 Rate of DSBs transition to DSBCs in fast repair process 2 

kdc2 Rate of DSBs transition to DSBCs in slow repair process 0.2 

kdc1 Rate of DSBCs transition to DSBs in fast repair process 0.5 

kdc2 Rate of DSBCs transition to DSBs in slow repair process 0.05 

kfd1 Rate of DSCs transition to Fd in fast repair process 0.001 

kfd2 Rate of DSCs transition to Fd in slow repair process 0.0001 

kcross Rate of DSB binary mismatch in second order repair process 0.001 

Table 1. The parameters used in the DSBs generation and repair processes 
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Parameters Description Constant 

kdim ATM dimerization rate 8 

kundim ATM undimerization rate 1 

kaf ATM phosphorylation rate 1 

kar ATM dephosphorylation rate 3 

Sarf Basal induction rate of ARF mRNA 0.001 

konf ARF activation rate triggered by Oncogenes 0.06 

kad ARF  degradation rate 0.015 

kpad ARF* degradation rate 0.01 

a1 Scale of the activation function of ATM phosphorylation 1 

a2 Scale of the activation function of ATM phosphorylation 0.08 

a3 Scale of the activation function of ATM phosphorylation 0.8 

Table 2. The parameters used in the process of ATM and ARF activation 

 

Parameters Description Constant 

SP53 Basal induction rate of P53 mRNA  0.001 

drp Degradation rate of P53 mRNA 0.02 

krp Translation rate of P53 mRNA 0.12 

kp*p Dephosphorylation rate of P53* 0.2 

kapp* ATM*-dependent phosphorylation rate of P53 0.6 

kmp MDM2-dependent degradation rate of P53 0.1 

kmp* MDM2-dependent degradation rate of P53* 0.02 

dpp Basal degradation rate of P53 0.02 

dpp* Basal degradation rate of P53* 0.008 

SMDM2 Basal induction rate of MDM2 mRNA 0.002 

kp*m P53-dependent MDM2 transcription rate 0.03 

kmrp Translation rate of MDM2 mRNA 0.02 

dmr Degradation rate of MDM2 mRNA 0.01 

dmp Basal degradation rate of MDM2 0.003 

kmat ATM*-dependent degradation rate of MDM2 0.01 

kmar ARF*-dependent degradation rate of MDM2 0.02 

kp Michaelis constant of ATM*-dependent P53 phosphorylation 1.0 

k Michaelis constant of P53-dependent MDM2 transcription 1.0 

kd Threshold concentration for MDM2-dependent P53 degradation 0.03 

n Hill coefficient of MDM2 transcription rate 4 

kat Threshold concentration for ATM*-dependent MDM2 degradation 1.60 

kar Threshold concentration for ARF*-dependent MDM2 degradation 1.10 

kd* Threshold concentration for MDM2-dependent P53* degradation 0.32 

konIR Activation rate of oncogenes induced by IR 0.002 

konp Degredation rate of oncogenes induced by P53* 0.006 
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Parameters Description Constant 

ktfw Toxins accumulation rate triggered by IR 0.6 

kpt Toxins elimination rate triggered by P53* 0.1 

kmpo Induction rate of mP53 induced by oncogenes over-expression 0.03 

kmpd Elimination rate of mP53 triggered by P53* 0.015 

Table 3. The parameters used in the process of P53-MDM2 loop and toxins degradation 

3. Results and discussion 

To ensure the accuracy of the simulation results, we consider that the valid parameter sets 

should obey the following rules [2,11,67]. (1) The model must contain oscillations because 

there has been experimental evidence that oscillations occur between P53 and MDM2 after 

cell stress. (2) The mechanism used to mathematically describe the degradation of P53 by 

MDM2 is accurate only for low concentrations of P53. (3) The concentration of P53* is much 

higher than that of inactive P53 after the system reaching an equilibrium.  

Based on the above three rules and the existing parameter sets used in [11], we obtained the 

kinetics of P53 stress response networks and cellular response under acute IR dose through 

simulation platform in MATLAB7.0. The detailed parameters used for the current model are 

given in Tables 1-3. 

3.1. Kinetics of DSBCs synthesizing  

During the simulation process, the continuous 2, 5, and 7Gy IR are applied into a cell 

respectively. As shown in Fig.5a, owing to the condition that many DSBs occur and the 

limited RP are available around damage sites, the concentration of RP begins to decrease as 

IR dose overtakes 5Gy, and trends to zero versus radiation time. Meanwhile, the kinetics of 

DSBCs synthesizing is shown in Fig.5b. We can see that the rates of DSBCs synthesis keep 

increasing under 2, and 5Gy IR, whereas, it begins to decrease and trend to constant after 

about 120min under 7Gy IR dose.  

3.2. Kinetics of ARF and ATM activation  

The ARF activation is used to describe the mechanisms in cellular response to the over-

expression of oncogenes induced by acute IR [2,7]. The kinetics of ARF activation is shown 

in Fig.6a. Owing to the over-expression of oncogenes without depressing functions of P53*, 

ARF is activated fast and ARF* keeps increasing followed by trending to dynamic 

equilibrium versus radiation time. 

Meanwhile, the ATM activation module was established to describe the switch-like 

dynamics of the ATM activation in response to DSBCs increasing, and the regulation 

mechanisms during the process of the ATM transferring DNA damage signals to the P53-

MDM2 feedback loop. Under the cooperative function of DSBCs, ARF*, and the positive 

self-feedback of ATM*, the ATM would reach the equilibrium state within minutes due to  
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Figure 5. The kinetics of DSBs repairing and transferring under continuous effect of 2, 5, 7Gy IR.  

(a) The dynamics of RP available around the resulting DSBs under different IR dose domains.  

(b) The kinetics of DSBCs synthesized by DSBs and RP versus continuous radiation time under different 

IR dose domains.   
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Figure 6. The kinetics of ARF and ATM activation under 2, 5, 7Gy IR. (a) The kinetics of ARF activation 

in response to over-expression of oncogenes induced by different IR dose. (b) The switch-like kinetics of 

ATM activation, ATM* reach saturation and trend to constant state in response to continuous radiation 

time of different IR dose domains. 
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the fast phosphorylation [2,11,67]. Kinetics of ATM activation is shown in Fig.6b. ATM is 

activated rapidly and switches to “on” state with respective rates, and then trends to the 

saturation state. The step-like traces suggest that the ATM module can produce an on-off 

switching signal, and transfer the damage signal to the P53-MDM2 feedback loop [3]. 

Furthermore, under the cooperation effects of ATM* and ARF*, DNA damage signals can be 

further transferred to the downstream genes and their signal pathways more efficiently 

[2,7]. 

3.3. Outcomes of cellular responding radiotherapy 

The P53-MDM2 feedback loop is a vital part in controlling the downstream genes and 

regulation pathways to fight against the genome stresses [6,67,68]. In response to the input 

signal of ATM* and ARF*, the P53-MDM2 module generates one or more oscillations. The 

response traces of P53 and MDM2 protein under continuous application of 2, 5, and 7Gy IR 

from time 0 are shown in Fig. 7a. Upon the activation by ATM*, ARF* and decreased 

degradation by MDM2, the total amount of P53 proteins increases quickly. Due to the P53-

dependent induction of MDM2 transcription, the increase of MDM2 proteins is sufficiently 

large to lower the P53 level, which in turn reduces the amount of the MDM2 proteins.  

The oscillation pulses shown in Fig.7a have a period of 400 min, and the phase difference 

between P53 and MDM2 is about 100 min. Moreover, the first pulse is slightly higher than 

the second, quite consistent with the experimental observations [2,7,11] as well as the 

previous simulation results [9,10,12,69].  

Also, by comparing these simulation results, we can see that the strength and swing of these 

oscillations begin to decrease as IR overtakes 7Gy, suggesting that the ability of cellular 

responding genome stresses begin to decrease as IR dose exceeds a certain threshold. 

Furthermore, because in the current model the toxins, mP53 and oncogenes can be degraded 

directly by P53* in this module, we can plot the predictable outcomes of cellular response in 

fighting against genome stresses under different IR dose domains. As shown in Fig.7b, Fw 

remaining within the cell keeps decreasing with respective rate, and trends to zero versus 

continuous radiation time under 2 and 5Gy IR. Whereas, when IR exceeds 7Gy, Fw  begins to 

increase slightly with some oscillations. Also, the kinetics of oncogenes degrading is plotted 

in Fig.7c. As we can see, owing to the negative regulations of P53*, the expression level of 

oncogenes keeps decreasing after the first climate under 2 and 5Gy IR dose, and then begins 

to increase slowly under 7Gy IR dose. Meanwhile, as shown in Fig.7d, quite similar to the 

results in Fig.7b and Fig.7c, mP53 keeps decrease after reaching the first maximum under 2 

and 5Gy IR dose, and then begins to increase slowly under 7Gy IR dose. All these results 

obtained by the above simulations based on the new model indicate that that P53* indeed 

acts an important role in regulating downstream genes and their signal pathways, whereas 

its capabilities in cellular responding DNA damage under radiotherapy begin to decrease as 

the strength of IR exceeds a certain maximal threshold. 
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Figure 7. The outcomes of cellular responding 2, 5, 7Gy IR under radiotherapy. (a) The oscillating 

kinetics of P53* and MDM2 in response to the cooperative effect of ATM* and ARF* under different IR 

dose domains. (b) The kinetics of toxins elimination triggered by the functions of P53*. (c) The 

depressing dynamics of oncogenes over-expression with the regulations of P53*. (d) The kinetics of 

mP53 elimination triggered by the effect of P53*. 
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4. Conclusion 

A new model was proposed to simulate the P53 stress response network under 

radiotherapy. It is demonstrated according to our model that ATM and ARF exhibits a 

strong sensitivity and switch-like behavior in response to the number of DSBs, fully 

consistent with the experimental observations. Interestingly, it is shown in this study that 

after the DNA damage signals transferring, P53-MDM2 feedback loop will produce 

oscillations, then triggering the cellular self-defense mechanisms to degrade the toxins 

remaining within the cell, such as Fw, oncogenes, and mP53. Particularly, under different IR 

dose domains, the new model can reasonably predict outcomes of cellular response in 

fighting against genome stresses, and hence providing a framework for analyzing the 

complicated regulations of P53 stress response networks, as well as the mechanisms of the 

cellular self-defense under radiotherapy.  
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