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1. Introduction

The interest on quantum entanglement has dramatically increased during the last 2
decades due to the emerging field of quantum information theory. It turns out that
quantum entanglement may be used as basic resources in quantum information processing
and communication. The prominent examples are quantum cryptography, quantum
teleportation, quantum error correction codes, and quantum computation. Since the
quantum entanglement is the basic resource for the new quantum information technologies,
it is therefore clear that there is a considerable interest in efficient theoretical and
experimental methods of entanglement detection.

One of the most important problems of quantum information theory [1–3] is the
characterization of mixed states of composed quantum systems. In particular it is of primary
importance to test whether a given quantum state exhibits quantum correlation, i.e. whether
it is separable or entangled. For low-dimensional systems there exists simple necessary
and sufficient condition for separability. The celebrated Peres-Horodecki criterion states
that a state of a bipartite system living in C2 ⊗C2 or C2 ⊗C3 is separable iff its partial
transpose is positive. Unfortunately, for higher-dimensional systems there is no single
universal separability condition.

It turns out that the above problem may be reformulated in terms of positive linear maps in
operator algebras [4]: a state ρ in H1 ⊗H2 is separable iff (id⊗ ϕ)ρ is positive for any positive
map ϕ which sends positive operators on H2 into positive operators on H1. Therefore,
a classification of positive linear maps between operator algebras B(H1) and B(H2) is of
primary importance. Unfortunately, in spite of the considerable effort, the structure of
positive maps is still poorly understood (see "classical" papers on positive maps [5]–[17]
and some recent papers [18]–[63]).
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In this paper we provide characterization of important classes of positive maps in finite
dimensional matrix algebras. Equivalently, due to the Choi-Jamiołkowski isomorphism,
we characterized the corresponding classes of entanglement witnesses. Concerning the
application in quantum entanglement theory the key role is played by indecomposable
witnesses which can detect PPT entangled states, that is, a PPT state ρAB is entangled iff there
exists an indecomposable entanglement witness W such that Tr(Wρ) < 0. We illustrate the
general presentation with several examples of indecomposable positive maps/entanglement
witnesses: the Choi-like maps in M3(C), its generalizations in Md(C), and the Robertson map
in M4(C) together with its generalizations in M2k(C). These examples enables one to discuss
several properties like optimality and/or exposedness which are crucial in entanglement
theory.

2. Positive maps and entanglement witnesses

In this paper we restrict our analysis to linear maps

Λ : Md(C) → Md(C) , (1)

where Md(C) denotes a set of d × d complex matrices. Let Md(C)+ be a convex set of
semi-positive elements in Md(C).

Definition 1. One calls Λ a positive map if Λa ∈ Md(C)+ for any a ∈ Md(C)+. Similarly, Λ is
k-positive if

Λ(k) := idk ⊗Λ : Mk(C)⊗ Md(C) −→ Mk(C)⊗ Md(C) , (2)

is positive. Finally, Λ is completely positive (CP) if it is k-positive for all k.

Let Pk denotes a convex set of k-positive maps in Md(C). One has Pk ⊂ Pl for k > l.
Actually, due to the Choi theorem any d-positive map in Md(C) is CP, and hence PCP = Pd.
Therefore, one has the following chain of proper inclusions

PCP ⊂ Pd−1 ⊂ . . . ⊂ P1 , (3)

where P1 denotes a set of all positive maps in Md(C). Let {e1, . . . , ed} denotes an
orthonormal basis in Cd, and let “T" denotes a transposition map with respect to this basis,
i.e. for any a = ∑ij aijeij one has T(a) = ∑ij aijeji, where eij := |ei〉〈ej|.

Definition 2. One calls a linear map Λ k-copositive if the map Λ ◦ T is k-positive.

Let P k denotes a convex set of k-copositive maps. One has

PCP ⊂ Pd−1 ⊂ . . . ⊂ P1 , (4)

where P1 denotes a set of all copositive maps in Md(C), and PCP stands for a set of
completely copositive maps (CcP). Let P k

l denotes a set of maps which are l-positive and
k-copositive. One has the following relations

PCP
CP ⊂ Pd−1

d−1 ⊂ . . . ⊂ P1
1 . (5)
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Definition 3. A positive map Λ ∈ P1 is called decomposable if

Λ = Λ1 + Λ2 , (6)

where Λ1 ∈ PCP and Λ2 ∈ PCP. A map which is not decomposable is called indecomposable. A
positive map Λ ∈ P1 is called atomic if it cannot be written as in (6), where Λ1 ∈ P2 and Λ2 ∈ P2.

It is clear that each atomic map is indecomposable but the converse is not true. Since P1 is
a convex set it is fully characterized by its extreme elements. Clearly a positive map Λ is
extremal if for any Ψ ∈ P1, a map Λ − Ψ is not positive. Finally, a positive map Λ is optimal if
for any Ψ ∈ PCP, a map Λ − Ψ is not positive. It is evident that each extremal map is optimal
but the converse is not true.

The vectors spaces of linear maps in Md(C) and linear operators in Md(C)⊗ Md(C) have the
same dimensions d2, and hence they are isomorphic. Fixing an orthonormal basis {e1, . . . , ed}
in Cd one may establish the following isomorphism known in the quantum information
community as the Choi-Jamiołkowski isomorphism.

Theorem 1. A space of linear maps in Md(C) is isomorphic to the space of linear operators in
Md(C)⊗ Md(C). The corresponding isomorphism is provided by the following formula: for a linear
map Λ one defines a linear operator WΛ ∈ Md(C)⊗ Md(C):

WΛ = (id⊗Λ)P+
d , (7)

where P+
d denotes a canonical maximally entangled state in Cd ⊗Cd

P+
d =

1

d

d

∑
i,j=1

eij ⊗ eij . (8)

The inverse formula reads

ΛW(a) = d Tr2(W · [Id ⊗ T(a)]) . (9)

Actually, it is inner product isomorphism, that is,

〈〈ΛA|ΛB〉〉 = 〈A|B〉 , (10)

where 〈A|B〉 = Tr(A†B) , and

〈〈ΛA|ΛB〉〉 =
d2

∑
α=1

〈ΛA( fα)|ΛB( fα)〉 , (11)

with fα being an orthonormal basis in Md(C), i.e. 〈 fα| fβ〉 = δαβ.
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Now, if Λ is a linear map preserving hermicity, that is, Λ(X†) = [Λ(X)]†, then WΛ is
hermitian [8]. If Λ is a positive map, then WΛ satisfies [9]

〈ψ⊗ φ|W|ψ⊗ φ〉 ≥ 0 , (12)

for all ψ, φ ∈ Cd. Moreover, if Λ is CP, then WΛ ≥ 0 [10], that is,

〈Ψ|W|Ψ〉 ≥ 0 , (13)

for all Ψ ∈ Cd ⊗Cd. It is clear that (13) implies (12) but not vice versa. An operator satisfying
(12) is called block-positive.

Definition 4. A block-positive but not positive operator W is called an entanglement witness.

It is clear that due to the Choi-Jamiołkowski isomorphism one can translate all properties of
linear maps into the corresponding properties of linear operators W ∈ Md(C)⊗ Md(C). In
particular one has

Definition 5. An entanglement witness W is decomposable iff

W = W1 + WΓ

2 , (14)

where W1, W2 ≥ 0 and AΓ = (id⊗ T)A denotes partial transposition.

Let D be a subset of density operators of a composite quantum system living in Cn ⊗Cn

detected by a given EW W, that is, D = {ρ | Tr(Wρ) < 0}. Given two EWs W1 and W2 one
says that W2 is finer than W1 if D1 ⊂ D2, that is, all states detected by W1 are also detected by
W2. A witness W is optimal if there is no other EW which is finer than W. It means that W
detects quantum entanglement in the ‘optimal way’. It is clear that the knowledge of optimal
EWS is crucial to classify quantum states of composite systems. One proves the following

Proposition 1. W is an optimal EW if and only if W − Q is no longer EW for arbitrary positive
operator Q.

Authors of Ref. [32] formulated the following criterion for the optimality of W.

Proposition 2. If the set of product vectors x ⊗ y ∈ Cn ⊗Cn satisfying

〈x ⊗ y|W|x ⊗ y〉 = 0 , (15)

span the total Hilbert space Cn ⊗Cn, then W is optimal.

The further classification of entanglement witnesses would be provided in the next section.
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3. States of composite quantum systems

Let Ψ ∈ Cd ⊗Cd such that 〈Ψ|Ψ〉 = 1, and consider the corresponding Schmidt
decomposition

Ψ =
r

∑
k=1

µk ek ⊗ fk , (16)

where µk > 0 and ∑
r
k=1 µ2

k = 1. In the above formula {ei} and { f j} are two mutually

orthogonal normalized vectors in Cd. One calls the number r the Schmidt rank of Ψ –
SR(Ψ). It is clear that 1 ≤ r ≤ d. Consider now a density operator ρ ∈ Md(C)⊗ Md(C).

Definition 6. A Schmidt number [31] of ρ – SN(ρ) – is defined by

SN(ρ) = min
pk ,ψk

{

max
k

SR(Ψk)

}

, (17)

where the minimum is taken over all possible pure states decompositions

ρ = ∑
k

pk |Ψk〉〈Ψk| , (18)

with pk ≥ 0, ∑k pk = 1 and Ψk are normalized vectors in Cd ⊗Cd.

Let us introduce the following family of positive cones:

Vr = { ρ ∈ (Md ⊗ Md)
+ | SN(ρ) ≤ r } . (19)

One has the following chain of inclusions

V1 ⊂ . . . ⊂ Vd ≡ (Md ⊗ Md)
+ . (20)

Clearly, V1 is a cone of separable (unnormalized) states and Vd r V1 stands for a set of
entangled states. Note, that a partial transposition (id⊗T) gives rise to another family of
cones:

Vl = (id⊗T)Vl , (21)

such that V1 ⊂ . . . ⊂ Vd. One has V1 = V1, together with the following hierarchy of
inclusions:

V1 = V1 ∩ V1 ⊂ V2 ∩ V2 ⊂ . . . ⊂ Vd ∩ Vd . (22)

Note, that Vd ∩ Vd is a convex set of PPT (unnormalized) states. Finally, Vr ∩ Vs is a convex
subset of PPT states ρ such that SN(ρ) ≤ r and SN(ρΓ) ≤ s.
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Proposition 3. Let Λ : Md(C) → Md(C) be a linear map. Λ ∈ Pk if and only if

(id⊗Λ)Vk ⊂ Vd . (23)

Λ ∈ P k if and only if

(id⊗Λ)Vk ⊂ Vd . (24)

Finally, Λ ∈ P k
l if and only if

(id⊗Λ)Vk ∩ Vl ⊂ Vd . (25)

Let us denote by W a space of entanglement witnesses, i.e. a space of non-positive Hermitian
operators W ∈ Md ⊗ Md such that Tr(Wρ) ≥ 0 for all ρ ∈ V1. Define a family of subsets
Wr ⊂ Md ⊗ Md:

Wr = {W ∈ Md ⊗ Md | Tr(Wρ) ≥ 0 , ρ ∈ Vr } . (26)

One has

(Md ⊗ Md)
+ ≡ Wd ⊂ . . . ⊂ W1 . (27)

Clearly, W = W1 r Wd. Moreover, for any k > l, entanglement witnesses from Wl r Wk can
detect entangled states from Vk r Vl , i.e. states ρ with Schmidt number l < SN(ρ) ≤ k. In
particular W ∈ Wk r Wk+1 can detect state ρ with SN(ρ) = k.

Consider now the following class of witnesses

Ws
r := Wr + (id⊗T)Ws , (28)

that is, W ∈ Ws
r iff

W = P + QΓ , (29)

with P ∈ Wr and Q ∈ Ws. Note, that Tr(Wρ) ≥ 0 for all ρ ∈ Vr ∩ Vs. Hence such W can
detect PPT states ρ such that SN(ρ) ≥ r or SN(ρΓ) ≥ s.

Proposition 4. Elements from Wd
d are decomposable entanglement witnesses.

It is clear that decomposable entanglement witnesses cannot detect PPT states. One has the
following chain of inclusions:

Wd
d ⊂ . . . ⊂ W2

2 ⊂ W1
1 ≡ W . (30)

The ‘weakest’ entanglement can be detected by elements from W1
1 r W2

2. We shall call them
atomic entanglement witnesses.
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Let P◦
1 denote a dual cone [23, 64] to the convex cone P1 of positive maps

P◦ = conv{ Px ⊗ Py ; 〈y|Φ(Px)|y〉 ≥ 0 , Φ ∈ P1 } , (31)

where Px = |x〉〈x| and Py = |y〉〈y|. It is clear that P◦◦
1 = P1, that is, one may consider

P1 as a dual cone to the convex cone of separable operators in H⊗H. Recall that a face of
P1 is a convex subset F ⊂ P1 such that if the convex combination Φ = λΦ1 + (1 − λ)Φ2 of
Φ1, Φ2 ∈ P1 belongs to F, then both Φ1, Φ2 ∈ F. If a ray {λΦ : λ > 0} is a face of P1 then it
is called an extreme ray, and we say that Φ generates an extreme ray. For simplicity we call
such Φ an extremal positive map. A face F is exposed if there exists a supporting hyperplane
H for a convex cone P such that F = H ∩ P1 .

A positive map Φ ∈ P1 is exposed if it generates 1-dimensional exposed face. Let us denote
by Ext(P1) the set of extremal points and Exp(P1) the set of exposed points of P1. Due to
Straszewicz theorem [64] Exp(P1) is a dense subset of Ext(P1). Thus every extreme map
is the limit of some sequence of exposed maps meaning that each entangled state may be
detected by some exposed positive map. Hence, a knowledge of exposed maps is crucial for
the full characterization of separable/entangled states of bi-partite quantum systems.

4. Choi-like maps in M3(C)

It is well known that all positive maps Λ : M2(C) → M2(C) , Λ : M2(C) → M3(C) and
Λ : M3(C) → M2(C) are decomposable [5, 12]. The first example of an indecomposable
positive linear map in M3(C) was found by Choi [10]. The (normalized) Choi map reads as
follows

ΦC(eii) =
3

∑
i,j=1

AC
ij ejj ,

ΦC(eij) = −
1

2
eij , i 6= j , (32)

where ||AC
ij || is the following doubly stochastic matrix:

AC
ij =

1

2





1 1 0
0 1 1
1 0 1



 . (33)

Let us consider a class of positive maps in M4(C) defined as follows [20]

Φ[a, b, c] = Nabc(D[a, b, c]− id) , (34)
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where D[a, b, c] is a completely positive linear map defined by

D[a, b, c](X) =





y1 0 0
0 y2 0
0 0 y3



 , (35)

and

y1 = (a + 1)x11 + bx22 + cx33 ,

y2 = cx11 + (a + 1)x22 + bx33 ,

y3 = bx11 + cx22 + (a + 1)x33 ,

with xij being the matrix elements of X ∈ M3(C). The normalization factor Nabc = (a + b +

c)−1 guarantees that Φ[a, b, c] is unital, i.e. Φ[a, b, c](I3) = I3. Note, that Φ[a, b, c] gives rise
to the following doubly stochastic circulant matrix

D = Nabc





a b c
c a b
b c a



 . (36)

This family contains well known examples of positive maps: note that Φ[0, 1, 1](X) =
1
2 (TrX I3 − X) which reproduces the reduction map. Moreover, Φ[1, 1, 0] and Φ[1, 0, 1]
reproduce Choi map and its dual, respectively. One proves the following result [20]

Theorem 2. A map Φ[a, b, c] is positive but not completely positive if and only if

1. 0 ≤ a < 2 ,

2. a + b + c ≥ 2 ,

3. if a ≤ 1 , then bc ≥ (1 − a)2.

Moreover, being positive it is indecomposable if and only if 4bc < (2 − a)2.

Actually, Φ[a, b, c] is indecomposable if and only if it is atomic, i.e. it cannot be decomposed
into the sum of 2-positive and 2-copositive maps. The corresponding entanglement witness
reads as follows

W[a, b, c] = Nabc

3

∑
i,j=1

eij ⊗Wij , (37)

with

W11 = ae11 + be22 + ce33 ,

W22 = ce11 + ae22 + be33 ,

W33 = be11 + ce22 + ae33 ,

Wij = −eij , i 6= j .
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In a recent paper [54] we analyzed a special case corresponding to a + b + c = 2. It turns out
[54] that Φ[a, b, c] is parameterized by the ellipse on the bc-plane. Moreover, one proves the
following

Theorem 3 ([56, 57]). A map Φ[a, b, c] with a + b + c = 2 is optimal iff a ≤ 1. It is indecomposable
iff a > 0.

Interestingly

Theorem 4 ([58]). A map Φ[a, b, c] with a + b + c = 2 is exposed iff 0 < a < 1.

Interestingly, indecomposability of these maps may be proved by using the following family
of PPT states in C3 ⊗C3:

ρǫ = Nǫ





3

∑
i,j=1

eij ⊗ eij + ǫ

3

∑
i=1

eii ⊗ ei+1,i+1 + ǫ
−1

3

∑
i=1

eii ⊗ ei+2,i+2



 , (38)

with ǫ > 0 and Nǫ = [3(1 + ǫ + ǫ−1)]−1. It is well known that ρǫ is entangled iff ǫ 6= 1.

5. Indecomposable maps in Md(C) — generalized Choi maps

In this section we provide several examples of positive maps in Md(C) which generalize Choi
map in M3(C).

Example 1. The Choi map in M3(C) may be generalized to a positive map in Md(C) as
follows [24]: let S be a unitary shift defined by:

S ei = ei+1 , i = 1, . . . , d ,

where the indices are understood mod d. One defines

τd,k(X) = (d − k) ǫ(X) +
k

∑
i=1

ǫ(Si X S∗i)− X , k = 0, 1, 2, . . . , d − 1 , (39)

where ǫ(X) denotes the following projector

ǫ(X) =
d

∑
k=1

ekkXekk .

The map τd,0 defined is completely positive and the map τd,d−1 reproduces the reduction
map in Md(C) (and hence it is completely copositive). Note that τd,k(Id) = (d − 1)Id, and
Tr τd,k(X) = (d − 1)Tr X, hence the normalized maps

Φd,k(X) =
1

d − 1
τd,k(X) , (40)

are doubly stochastic. In particular Φ[1, 0, 1] = Φ3,1.
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Example 2. A class of maps ϕp parameterized by d + 1 parameters p = (p0, p1, . . . , pd):

Φ[p](e11) = p0e11 + pdedd ,

Φ[p](e22) = p0e22 + p1e11 ,

... (41)

Φ[p](edd) = p0edd + pd−1ed−1,d−1 ,

Φ[p](eij) = −eij , i 6= j .

One proves

Theorem 5 ([19, 25]). If p = (p0, p1, . . . , pd) satisfy

a) p1, . . . , pd > 0 ,

b) d − 1 > p0 ≥ d − 2 ,

c) p1 · . . . · pd ≥ (d − 1 − p0)
d ,

then Φ[p] is a positive indecomposable map.

Actually, Φ[p] is atomic, i.e. it cannot be decomposed into the sum of a 2-positive and
2-copositive maps. In particular the corresponding EW for d = 3 reads as follows

W[p] = N[p]
3

∑
i,j=1

eij ⊗Wij , (42)

with

W11 = p0e11 + p3e33 ,

W22 = p0e22 + p1e11 ,

W33 = p0e33 + p2e22 ,

Wij = −eij , i 6= j ,

and the normalization factor reads N[p] = (3p0 + p1 + p2 + p3)
−1. In particular if p1 = p2 =

p3 = c, then W[p] = W[p0, 0, c].

6. Entanglement witnesses based on spectral conditions

Any entanglement witness W can be represented as a difference W = W+ −W−, where both
W+ and W− are semi-positive operators in Cd ⊗Cd. However, there is no general method
to recognize that W defined by W+ − W− is indeed an EW. One particular method based on
spectral properties of W was presented in [42]. Let ψα (α = 1, . . . , D = d2) be an orthonormal
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basis in Cd ⊗Cd and denote by Pα the corresponding projector Pα = |ψα〉〈ψα|. It leads
therefore to the following spectral resolution of identity

Id ⊗ Id =
D

∑
α=1

Pα . (43)

Having defined eigenvectors of W one needs the corresponding eigenvalues: let λ−
α ≤ 0, for

α = 1, . . . , L < D, and λ+
α > 0 for α = L + 1, . . . , D, that is,

W− = −
L

∑
α=1

λ−
α Pα , W+ =

D

∑
α=L+1

λ+
α Pα .

Let us analyze the condition for the spectrum {λ−
α , λ+

α } which guarantees that W is block
positive. Consider a normalized vector ψ ∈ Cd ⊗Cd and let s1(ψ) ≥ . . . ≥ sd(ψ) denote its
Schmidt coefficients. For any 1 ≤ k ≤ d one defines k-norm of ψ by the following formula

||ψ||2k =
k

∑
j=1

s2
j (ψ) . (44)

It is clear that ||ψ||1 ≤ ||ψ||2 ≤ . . . ≤ ||ψ||d. Note that ||ψ||1 gives the maximal Schmidt
coefficient of ψ, whereas due to the normalization, ||ψ||2d = 〈ψ|ψ〉 = 1. In particular, if ψ is
maximally entangled then

||ψ||2k =
k

d
. (45)

Equivalently one may define k-norm of ψ by

||ψ||2k = max
φ

|〈ψ|φ〉|2 , (46)

where the maximum runs over all normalized vectors φ such that SR(ψ) ≤ k (such φ is
usually called k-separable). Recall that a Schmidt rank of ψ – SR(ψ) – is the number
of non-vanishing Schmidt coefficients of ψ. One calls entanglement witness W a k-EW if
〈ψ|W|ψ〉 ≥ 0 for all ψ such that SR(ψ) ≤ k. One has the the following

Theorem 6 ([42]). Let ∑
L
α=1 ||ψα||2k < 1. If the following spectral conditions are satisfied

λ+
α ≥ µk , α = L + 1, . . . , D , (47)

where

µℓ :=
∑

L
α=1 |λ

−
α |||ψα||2ℓ

1 − ∑
L
α=1 ||ψα||2ℓ

, (48)
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then W is an k-EW. If moreover ∑
L
α=1 ||ψα||2k+1 < 1 and

µk+1 > λ+
α , α = L + 1, . . . , D , (49)

then W being k-EW is not (k + 1)-EW.

Interestingly, one has the following

Theorem 7. W = W+ − W− is a decomposable EW.

The proof is easy [43]: note that W = A + B , where

A =
D

∑
α=L+1

(λ+
α − µ1)Pα , (50)

and

B = µ1Id ⊗ Id −
L

∑
α=1

(|λ−
α |+ µ1)Pα . (51)

Now, since λ+
α ≥ µ1, for α = L + 1, . . . , D, it is clear that A ≥ 0. The partial transposition of

B reads as follows

BΓ = µ1Id ⊗ Id −
L

∑
α=1

(|λ−
α |+ µ1)PΓ

α . (52)

Let us recall that the spectrum of the partial transposition of rank-1 projector |ψ〉〈ψ| is well
know: the nonvanishing eigenvalues of |ψ〉〈ψ|Γ are given by s2

α(ψ) and ±sα(ψ)sβ(ψ), where

s1(ψ) ≥ . . . ≥ sd(ψ) are Schmidt coefficients of ψ. Therefore, the smallest eigenvalue of BΓ

(call it bmin) satisfies

bmin ≥ µ1 −
L

∑
α=1

(|λ−
α |+ µ1)||ψα||

2
1 , (53)

and using the definition of µ1 (cf. Eq. (48)) one gets bmin ≥ 0 which implies BΓ ≥ 0. Hence,
the entanglement witness W is decomposable.

Remark 1. Interestingly, saturating the bound (47), i.e. taking

λ+
α = µ1 , α = L + 1, . . . , D , (54)

one has A = 0 and hence W = QΓ with Q = BΓ ≥ 0 which shows that the corresponding
positive map Λ : Md(C) → Md(C) defined by

Λ(X) = Tr1(W · XT ⊗ Id) , (55)
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is completely co-positive. Note that

Λ(X) = µ1IdTr X −
L

∑
α=1

(µ1 + |λα|)FαXF
†
α , (56)

where Fα is a linear operator Fα : Cd → Cd defined by

ψα =
d

∑
i=1

ei ⊗ Fαei , (57)

and {e1, . . . , ed} denotes an orthonormal basis in Cd. In particular, if L = 1, i.e. there is only
one negative eigenvalue, then formula (56) (up to trivial rescaling) gives

Λ(X) = κ IdTr X − F1XF
†
1 , (58)

with

κ =
µ1

µ1 + |λ1|
= ||ψ1||21 . (59)

It reproduces a positive map (or equivalently an EW W = κ Id ⊗ Id − P1) which is known to

be completely co-positive [3, 39, 43]. If ψ1 is maximally entangled, that is, F1 = U/
√

d for
some unitary U ∈ U(d), then one finds for κ = 1/d and the map (58) is unitary equivalent
to the reduction map Λ(X) = UR(X)U†, where Rd(X) = IdTrX − X.

Example 3. Consider an EW corresponding to the flip operator in d = 2:

W = e11 ⊗ e11 + e22 ⊗ e22 + e12 ⊗ e21 + e21 ⊗ e12 . (60)

Its spectral decomposition has the following form

ψ1 =
1√
2
(|12〉 − |21〉) , ψ2 =

1√
2
(|12〉+ |21〉) , ψ3 = |11〉 , ψ4 = |22〉 .

together with the corresponding eigenvalues

−λ−
1 = λ+

2 = λ+
3 = λ+

4 = 1 ,

One finds µ1 = 1 and hence condition (47) is trivially satisfied λ+
α ≥ µ1 for α = 2, 3, 4. We

stress that our construction does not recover flip operator in d > 2. It has d(d− 1)/2 negative
eigenvalues. Our construction leads to at most d − 1 negative eigenvalues.
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7. Bell-diagonal entanglement witnesses

Let us define a generalized Bell states [65] in Cd ⊗Cd

ψmn = (Id ⊗Umn)ψ
+
d , (61)

where Umn are unitary matrices defined as follows

Umnek = λmkek+n , (62)

with λ = e2πi/d. The matrices Umn define an orthonormal basis in the space Md(C) of
complex d × d matrices. One easily shows

Tr(UmnU†
rs) = d δmrδns . (63)

Some authors [66] call Umn generalized spin matrices since for d = 2 they reproduce standard
Pauli matrices:

U00 = I2 , U01 = σ1 , U10 = iσ2 , U11 = σ3 . (64)

One calls a Hermitian operator W in Md(C)⊗ Md(C) Bell diagonal if

W =
d−1

∑
m,n=0

pmnPmn , (65)

with pmn ∈ R , and

Pmn = |ψmn〉〈ψmn| . (66)

Example 4. Consider the flip operator in d = 2. One has

F = P00 + P10 + P01 − P11 , (67)

which proves that F is Bell diagonal and possesses single negative eigenvalue.

Example 5. Consider a family W[a, b, c]. One finds the following spectral representation

W[a, b, c] = (a − 2)P00 + (a + 1)(P10 + P20) + bΠ1 + cΠ2 , (68)

where

Πm = P0m + P1m + P2m , (69)

which shows that W[a, b, c] is Bell diagonal with a single negative eigenvalue ‘a − 2’.
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Example 6. Entanglement witness corresponding to the reduction map Λ(X) = ITrX − X in
Md(C). One has

W =
1

d
Id ⊗ Id − P+

d =
1

d

d−1

∑
k,l=0

Pkl − P00 , (70)

which shows that W is Bell diagonal with a single negative eigenvalue (1 − d)/d.

Corollary 1. If L < d and

λ+
α ≥ µ1 , α = L, . . . , d2 − 1 , (71)

with µ1 = 1
d−L ∑

L−1
α=0 |λ

−
α | , then W = W+ − W− defines Bell diagonal entanglement witness.

8. Optimal maps in M2k(C)

In this section we provide several examples of optimal indecomposable maps in M2k(C).
Interestingly, some of them turn out to be extremal and even exposed [60, 61]. Consider
X ∈ M2k(C) = M2(C)⊗ Mk(C) represented as follows

X =
2

∑
k,l=1

ekl ⊗ Xkl , (72)

where Xkl ∈ Mk(C). In what follows we shall use the following notation

X =

(

X11 X12

X21 X22

)

, (73)

to display the block structure of X. Robertson map [13] in M4(C) is defined as follows:

Φ4

(

X11 X12

X21 X22

)

=
1

2

(

I2 TrX22 −[X12 + R2(X21)]
−[X21 + R2(X12)] I2 TrX11

)

, (74)

where R2 is a reduction map in M2(C)

R2(X) = I2TrX − X . (75)

Theorem 8. Φ4 defines positive indecomposable map. Moreover, it is extremal in the convex set of
positive maps in M4(C).

Interestingly

Theorem 9 ([61]). Φ4 is an exposed map.
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Following [35] and [34] one defines

Φ
U
2k(X) =

1

2(k − 1)

[

Rn(X)− UXTU†
]

, (76)

where U is an antisymmetric unitary matrix in M2k(C). The above normalization guaranties
that Φ

U
2k

is unital. The characteristic feature of these maps is that for any rank-1 projector P

its image under Φ
U
2k

reads as follows:

Φ
U
2k(P) =

1

2(k − 1)

[

I2k − P − Q
]

, (77)

where Q = UPTU† is a rank-1 projector orthogonal to P. Hence Φ
U
2k
(P) is a projector which

proves positivity of Φ
U
2k

. Denote by U0 the following “canonical" antisymmetric unitary
matrix in M2k(C)

U0 = Ik ⊗ J , (78)

where J is a symplectic matrix in M2(R), that is,

J =

(

0 1
−1 0

)

. (79)

Note, that if V ∈ M2k(R) is orthogonal then

U = VU0VT , (80)

is antisymmetric and unitary. Interestingly, the map Φ
0
2k

corresponding to U = U0 has the
following block structure

Φ
0
2k











X11 X12 · · · X1k

X21 X22 · · · X2k

...
...

. . .
...

Xk1 Xk2 · · · Xkk











=
1

2(k − 1)











A1 −B12 · · · −B1k

−B21 A2 · · · −B2k

...
...

. . .
...

−Bk1 −Bk2 · · · Ak











, (81)

where

Ak = I2(TrX − TrXkk) , (82)

and

Bkl = Xkl − R2(Xlk) , (83)

and hence it reduces for k = 2 to the Robertson map (74).
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In the recent paper [44] we proposed another construction of maps in M2k(C). Now, instead
of treating a 2k × 2k matrix X as a k × k matrix with 2 × 2 blocks Xij we consider alternative
possibility, i.e. we consider X as a 2 × 2 with k × k blocks and define

Ψ2k

(

X11 X12

X21 X22

)

=
1

k

(

Ik TrX22 −[X12 + Rk(X21)]
−[X21 + Rk(X12)] Ik TrX11

)

. (84)

Again, normalization factor guaranties that the map is unital, i.e. Ψ2k(I2 ⊗ Ik) = I2 ⊗ Ik. It
is clear that for k = 2 one has Ψ4 = Φ

0
4.

Theorem 10 ([44]). Ψ2k defines a linear positive map in M2k(C). Moreover, it is an atomic and
optimal map.

In Ref. [51] we proposed the following generalization of the Robertson map Φ2k: for any
collection of k(k − 1)/2 complex numbers zij, with i < j, satisfying |zij| ≤ 1 we define

Φ
(z)
2k : M2k(C) −→ M2k(C) by

Φ
(z)
2k











X11 X12 · · · X1k

X21 X22 · · · X2k
...

...
. . .

...

Xk1 Xk2 · · · Xkk











=
1

2(k − 1)











A1 −z12B12 · · · −z1kB1k

−z21B21 A2 · · · −z2k B2k
...

...
. . .

...

−zk1 Bk1 −zk2 Bk2 · · · Ak











. (85)

It is clear that form zij = 1 the map Φ
(z)
2k reduces to Φ2k. One proves

Theorem 11 ([51]). Φ
(z)
2k defines a positive map. Moreover, Φ

(z)
2k is optimal and indecomposable iff

|zij| = 1.

9. Conclusions

We provide characterization of several classes of positive maps in Md(C). Equivalently,
due to the Choi-Jamiołkowski isomorphism, we characterized the corresponding classes
of entanglement witnesses. Concerning the application in quantum entanglement theory
the key role is played by indecomposable maps which can detect PPT entangled
states. The presentation was illustrated with several examples of indecomposable positive
maps/entanglement witnesses: the Choi-like maps in M3(C) and its generalizations in
Md(C). It was shown that several maps from these families are optimal and even exposed.
Similarly, the Robertson map in M4(C) and its generalizations in M2k(C) turn out to be
optimal maps [original Robertson map is even exposed]. It should be stressed that there is
no general method enabling one to construct all indecomposable positive maps and hence
this subject deserves further studies.
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References

[1] M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information,
Cambridge University Press, Cambridge, 2000.

[2] R. Horodecki, P. Horodecki, M. Horodecki and K. Horodecki, Rev. Mod. Phys. 81, 865
(2009).

[3] O. Gühne and G. Tóth, Phys. Rep. 474, 1 (2009).

[4] V. Paulsen, Completely Bounded Maps and Operator Algebras, Cambridge University Press,
2003.

[5] E. Størmer, Acta Math. 110, 233 (1963); Trans. Amer. Math. Soc. 120, 438 (1965); Proc.
Am. Math. Soc. 86, 402 (1982).

[6] E. Størmer, in Lecture Notes in Physics 29, Springer Verlag, Berlin, 1974, pp. 85-106.

[7] W. Arverson, Acta Math. 123, 141 (1969).

[8] J. de Pillis, Pacific J. Math. 23, 129 (1967).

[9] A. Jamiołkowski, Rep. Math. Phys. 3, 275 (1972).

[10] M.-D. Choi, Lin. Alg. Appl. 10, 285 (1975); ibid 12, 95 (1975).

[11] M.-D. Choi, J. Operator Theory, 4, 271 (1980).

[12] S.L. Woronowicz, Rep. Math. Phys. 10, 165 (1976); Comm. Math. Phys. 51, 243 (1976).

[13] A.G. Robertson, J. London Math. Soc. (2) 32, 133 (1985); Quart. J. Math. Oxford (2), 34,
87 (1983); Proc. Roy. Soc. Edinburh Sect. A, 94, 71 (1983); Math. Proc. Camb. Phil. Soc.,
94, 71 (1983).

[14] T. Takasaki and J. Tomiyama, Math. Japonica, 1, 129 (1982).

[15] J. Tomiyama, Contemporary Math. 62, 357 (1987).

[16] K. Tanahashi and J. Tomiyama, Canad. Math. Bull. 31, 308 (1988).

[17] W.-S. Tang, Lin. Alg. Appl. 79, 33 (1986).

[18] H. Osaka, Lin. Alg. Appl. 153, 73 (1991); ibid 186, 45 (1993).

Open Systems, Entanglement and Quantum Optics38



[19] H. Osaka, Publ. RIMS Kyoto Univ. 28, 747 (1992).

[20] S. J. Cho, S.-H. Kye, and S.G. Lee, Lin. Alg. Appl. 171, 213 (1992).

[21] H.-J. Kim and S.-H. Kye, Bull. London Math. Soc. 26, 575 (1994).

[22] S.-H. Kye, Math. Proc. Cambridge Philos. Soc. 122, 45 (1997); Linear Alg. Appl. 362, 57
(2003).

[23] M.-H. Eom and S.-H. Kye, Math. Scand. 86, 130 (2000).

[24] K.-C. Ha, Publ. RIMS, Kyoto Univ., 34, 591 (1998);

[25] K.-C. Ha, Lin. Alg. Appl. 348, 105 (2002); ibid 359, 277 (2003).

[26] K.-C. Ha, S.-H. Kye and Y. S. Park, Phys. Lett. A 313, 163 (2003); Phys. Lett. A 325, 315
(2004); J. Phys. A: Math. Gen. 38, 9039 (2005).

[27] B. M. Terhal, Lin. Alg. Appl. 323, 61 (2001).

[28] W.A. Majewski and M. Marcinek, J. Phys. A: Math. Gen. 34, 5836 (2001).

[29] A. Kossakowski, Open Sys. Information Dyn. 10, 1 (2003).

[30] K. Takasaki and J. Tomiyama, Mathematische Zeitschrift 184, 101 (1983).

[31] B. Terhal and P. Horodecki, Phys. Rev. A 61, 040301 (2000); A. Sanpera, D. Bruss and
M. Lewenstein, Phys. Rev. A 63, 050301(R) (2001).

[32] M. Lewenstein, B. Kraus, J. I. Cirac and P. Horodecki, Phys. Rev. A 62, 052310 (2000).

[33] A. Sanpera, D. Bruss and M. Lewenstein, Phys. Rev. A 63, 050301 (2001).

[34] W. Hall, J. Phys. A: Math. Gen. 39, (2006) 14119.

[35] H.-P. Breuer, Phys. Rev. Lett. 97, 0805001 (2006).
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