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Role of Bacterial Biofilms in Catheter-Associated Urinary
Tract Infections (CAUTI) and Strategies for Their Control
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1. Introduction

Urinary tract infections (UTI’s) can be defined as bacteriuria (>105 CFU/mL in adults; >104 CFU/
mL in children) of an uropathogen with associated clinical signs that include dysuria and
urgency [18]. According to the United States Centers for Disease Control and Prevention
(CDC), a symptomatic urinary tract infection must meet at least one of the following criteria:

• Patients had/did not have an indwelling catheter in place at the time of specimen collection
or onset of signs or symptoms

• Patient has at least one of the following signs or symptoms with no other recognized cause:
fever (>38oC), urgency, frequency, dysuria, suprapubic tenderness or costovetebral angle
pain or tenderness

• Patient has a positive urine culture of ≥105 with no more than 2 species of microorganisms
[20].

UTI is considered to be the most common bacterial infection [107]. It is the second most
common infection of any organ and is one of the most common infections in humans [157].
UTIs account for nearly 8 million physician visits and 1.5 million visits to emergency rooms
annually in the United States [44, 87, 144]. Although every individual is susceptible to UTIs,
certain specific subpopulations are more predisposed to the risk of UTIs. This includes infants,
pregnant women, elderly, patients with spinal cord injuries and/or catheters, patients with
diabetes, multiple sclerosis, or acquired immunodeficiency virus, and patients with underly‐
ing urologic abnormalities [13, 31, 43, 127, 130]. UTIs are usually localized to the bladder,
kidneys or prostate. The etiology of UTIs has been regarded as well-established and consistent.
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Escherichia coli is the predominant uropathogen responsible for almost 80% of all cases,
followed by Staphylococcus, Klebsiella, Enterobacter, Proteus and Enterococci species [128]. The
financial implications of UTIs are enormous due to high incidence. UTIs account for a total
annual cost of more than $ 3.5 billion in the United States [87].

2. Catheter associated urinary tract infection

In addition to being the most common bacterial infection, UTIs are also the most common type
of hospital acquired infections (HAI). HAIs can be defined as a localized or systemic condition
resulting from an adverse reaction to the presence of an infectious agent or toxin, which occurs
in a patient in a health care setting and was not present or incubating at the time of admission
[64, 66]. UTIs account for 30% of all HAI [77]. Of these 30% infections, 80% of them are estimated
to be catheter-associated [89]. According to the CDC, CAUTIs are defined as an UTI in a patient
who had an indwelling urinary catheter in place at the time of or within 48 hours prior to
infection onset. CAUTI can lead to complications such as cystitis, pyelonephritis, gram-
negative bacteremia, prostatitis, epididymitis, endocarditis, vertebral osteomyelitis, septic
arthritis, endophthalmitis and meningitis [20]. Additionally CAUTIs also result in prolonged
hospital stay, increased cost and mortality [77]. An estimated 15-25% of hospitalized patients
will have a urinary catheter at some point during their hospital stay [175]. Obstruction of
indwelling catheters can lead to sepsis, even resulting in mortality [174]. Each year around
13,000 deaths are attributed to UTIs in the United States [77]. The cost associated with CAUTI
episodes is about $750-$1000 per infection, and the estimated total cost in the United States
ranges from $340-$450 million annually [132].

Millions of transurethral, suprapubic and nephrostomy catheters or urethral stents are used
in patients every year. These devices overcome several host defenses and enable bacterial entry
at a rate of 3 to 10% (cumulative rate) per day, which leads to bacteriuria in patients after a
month [8]. In intubated patients, bacteria frequently ascend from the urethral meatus into the
bladder between the mucosal and catheter surfaces. In certain cases, bacteria may ascend
through the drainage system due to contamination of the drainage bag or disruption of the
tubing junction. The presence of a device enables the persistence of the etiologic organism in
the urinary tract. Several studies have demonstrated that bacteria exist as biofilms on these
devices [53]. Formation of a biofilm and incrustation with calcium and magnesium struvites
has a significant role in the pathogenesis and treatment of catheter-associated infections.

3. Biofilm

Biofilms have been around for billions of years. They have been identified in 3.2 – 3.4 billion
year old South African Kornberg formation, and in deep-sea hydrothermal rocks [55]. Similar
biofilms can be found in modern hot springs and deep-sea vents [124, 160]. The presence of
biofilms in both ancient fossils and in similar modern environments indicates that biofilm
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formation is an ancient and integral characteristic of prokaryotes. It is likely that biofilms
provided homeostasis during the harsh and fluctuating conditions of the primitive earth such
as extreme temperatures, pH and exposure to UV light, thus enabling complex interactions
between individual cells. It is, however, generally accepted that planktonic cells existed before
the development of biofilm communities. The concomitant development of both planktonic
and sessile bacteria in biofilm communities could be attributed to the conditions offered by
life on surfaces [151]. The ability of bacteria to adhere to surfaces and form biofilms in different
environments is due to the selective advantage that surface association offers the bacteria.

3.1. Definition

The definition of biofilm has evolved over the years. Marshal in 1976 [94] observed the presence
of fine extracellular polymer fibrils that anchored bacteria to the surface. Costerton and
coworkers [1978; 28] defined biofilms as communities of attached bacteria that were found to
be encased in a glycocalyx matrix of polysaccharide that mediates adhesion [28]. They also
stated that biofilms consist of single cells and microcolonies which are embedded in the matrix
[26]. This definition was later modified to include the ability of biofilms to adhere to surfaces
and to each other forming microbial aggregates and floccules [29]. The adhesion to a surface
also triggers the expression of genes controlling production of bacterial components required
for biofilm formation, thus including the role of gene modulation in the definition [29].
Consequently, a definition of biofilm must include the ability of cells to attach to a surface,
extrapolymeric encasing, presence of noncellular and abiotic components in the matrix,
physiological attributes of these organisms and the differential gene expression in biofilm cells
versus planktonic cells. Taking all this into account, biofilms can be defined as a microbially
derived sessile community consisting of cells that are attached to an interface or to each other,
are embedded in an extracellular polymeric matrix that they have produced and demonstrate
altered phenotype associated with differential gene expression [38]. This definition also applies
to biofilm cells that have broken off from a biofilm on a colonized medical device and circulate
in the body fluids with the ability to establish itself in another niche.

3.2. Biofilm formation and structure

Biofilms can form on abiotic surfaces such as minerals, air-water interfaces, and biotic surfaces
such as plants, other microbes and animals. In the human body, bacteria reside as biofilms on
skin, oropharynx and nose, intestine and indwelling medical devices. To form a biofilm,
bacteria are attracted to the surface by environmental signals. On reaching the surface, the
bacteria attach to it as single cells or as clusters. When single cells attach to a surface they form
a monolayer biofilm. A monolayer biofilm can be defined as one in which the bacteria attach
only to the surface [75]. When bacteria attach to a surface as a cluster, they form a multilayer
biofilm. Multilayer biofilms can be defined as a microbial community, where the bacteria are
attached both to the surface and the neighboring bacterial cells [75]. The type of biofilm formed
depends on the environmental conditions and surfaces that favor their development, the genes
that are activated, the architecture of the biofilm and the matrix composition [75].
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Monolayer biofilms are composed of a single layer of cells attached to a surface. These biofilms
are favored when cell-surface interactions predominate. Since monolayer biofilms offer
bacteria more proximity to surfaces, they commonly occur during the interaction of the
bacterial pathogen with the host. In flagellate motile bacteria, monolayer formation occurs in
two steps, where bacteria first become attached to a surface when they come in close proximity
to it. After attachment, the bacteria break the forces tethering them to the surface, resulting in
transient attachment. However, a few bacteria that have transitioned from transient to
permanent attachment remain attached to the surface. Multilayer biofilms form when bacteria
adhere to the surface as well as to each other. Several adhesion factors are known to mediate
this transition, including preformed adhesins, conditionally synthesized adhesins and specific
adhesins.

Preformed adhesins include flagellum and pili. Motility is believed to increase the initial
interaction between bacteria and the surface. Several studies have also demonstrated that
flagellar motility promoted surface adhesion in bacteria [76, 85, 167]. However, under certain
conditions, flagellar mutants that are defective in the synthesis of flagellar components have
shown an increased synthesis of adhesive matrix that promotes bacterial attachment and
multilayer biofilm formation [83, 176]. These observations indicate that flagellar impedence
may be important in priming the bacteria for the formation of a multilayer biofilm. Neverthe‐
less, mutants lacking the flagellum or the flagellar motor are completely defective in monolayer
and multilayer biofilm formation [83], implying that flagellar motor plays a vital role in biofilm
formation independent of flagellar motility. Retractable pili are critical for gram-negative
bacteria to attach to surfaces [75]. It is hypothesized that these structures pull bacteria along
surfaces by attaching to the surface and retracting, thus helping the bacteria approach the
surface more closely [75].

Bacteria can also conditionally synthesize adhesins to promote surface attachment. In
Pseudomonas fluorescens, the transition from transient to permanent attachment is mediated by
LapA (Large adhesion ProteinA) that associates with the bacterial surface [62]. In E. coli, a
similar function has been attributed to the exopolysaccharide adhesin, PGA (poly-β-1,6-N-
acetyl-d-glucosamine) which mediates the transition from temporary to permanent attach‐
ment [2]. Following the transient attachment which is accomplished through the array of
adhesins such as flagella and pili, bacteria form stable and specific binding through interactions
with eukaryotic cell receptors [59]. These interactions are mediated by specific adhesins which
aid in internalization.

3.3. Biofilm matrix

Bacterial cells in the biofilm are surrounded by a variety of molecules that make up the matrix
of the biofilm. The matrix is highly hydrated and can contain up to 97% water [154]. In addition,
the matrix is composed of polysaccharides, proteins, DNA, surfactants, lipids, glycolipids,
membrane vesicles and ions like calcium. This composition varies with different conditions or
stages during biofilm maturation. The biofilm matrix is dynamic and interactive, and is
essential to the integrity and function of the biofilm.
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3.3.1. Matrix components

Exopolysaccharides are a major component of the biofilm matrix. The absence of polysacchar‐
ide synthesis and export leads to an inability to form multilayer biofilms in most bacteria.
Bacteria capable of forming biofilms possess distinct genetic loci that encode for the synthesis
of polysaccharides. One of the most common exopolysaccharides in the biofilm matrix is a
polymer of β-1, 6-N-acteyl-D-glucosamine called PGA or PNAG. Several bacterial species,
including E. coli, S. aureus, Actinobacillus spp., and Bordetella spp. make use of PGA to construct
their matrix [30, 70, 71, 114, 173]. The synthesis and export of PGA is carried out by the icaADBC
locus in Staphylococcal species and the pgaABCS locus in E. coli. PGA is required for bacterial
attachment and biofilm formation in E. coli. Mutations in this locus prevent attachment even
after prolonged incubation [173]. In S. aureus, the icaADBC locus is important for attachment
and biofilm formation on indwelling medical devices [42]. In S. epidermidis, this locus is also
shown to be required for virulence and immune evasion, thus emphasizing the role of biofilms
in disease [172]. Another commonly found polysaccharide in the biofilm matrix is cellulose
which has been identified as a major component of the matrix in E. coli, Salmonella, Citrobact‐
er, Enterobacter and Pseudomonas [140, 142, 181, 182]. In E. coli and Salmonella Typhimurium,
cellulose synthesis is made possible by the bcsABZC-bcsEFG locus [140, 182]. In addition to
PGA and cellulose, some E. coli strains also make colanic acid, which is a branched chain
polymer synthesized by the wca locus [146]. Mutants that are defective in colonic acid forma‐
tion can attach to surfaces, but are incapable of forming multilayer biofilms [32].

The biofilm matrix is also composed of proteins exported to the matrix by cells within the
biofilm. Proteinaceous appendages such as fimbriae and pili confer adhesive properties in
bacteria. In E. coli and Salmonella, curli fimbriae produced by the csgBAC and csgDEFG operons
are part of the biofilm matrix [57]. Transcriptional profiling studies have demonstrated that
fimbria and pili gene expression is upregulated in biofilms compared to planktonic cells [12].
Another group of proteins associated with the matrix are the Bap or Biofilm-associated
proteins. These proteins hold bacterial cells together in the biofilm by interacting with similar
proteins on the surface of neighboring cells. Bap proteins have been shown to be critical for
biofilm production in S. aureus [82]. Besides proteins that bind other proteins on neighboring
cells, the biofilm matrix also contains lectins and sugar binding proteins. These proteins
recognize sugar moieties on the surface of eukaryotic cells and bind to them, thereby facili‐
tating cell-cell interactions [163]. Besides the above mentioned proteins, autotransporter
proteins have been identified to be part of the biofilm matrix. The proteins can transport
themselves to the cell surface without the need for other transport systems [48]. In E. coli
autotransporters proteins such as ag43, AIDA and TibA have been shown to promote biofilm
formation [135]. These proteins serve to maintain close-range interactions between cells in the
biofilm.

Another major component of the biofilm matrix is eDNA (extracellular DNA). In P. aerugino‐
sa, the biofilm matrix has significant amounts of DNA that is essential for biofilm integrity [95].
Addition of DNase to the culture media resulted in an inhibition of biofilm formation and
dissolution of preformed biofilms [177]. It is hypothesized that DNA could serve as a grid that
enables bacteria to move using type IV pili. The ability of type IV pili to bind DNA has been
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demonstrated in P. aeruginosa [171]. The eDNA is similar in composition to the genomic DNA,
and is hypothesized to be released from whole cell lysis or secretion from outer membrane
vesicles containing DNA [6].

An important characteristic of bacterial cells within the biofilm is the chemical mediated cell-
cell crosstalk known as quorum sensing. Quorum sensing allows bacteria to coordinate their
gene expression in a density-dependent manner [75]. These circuits involve chemical media‐
tors or autoinducers that are secreted by the bacteria and accrue in the extracellular environ‐
ment. When the autoinducer concentration exceeds a certain threshold, quorum sensing is
activated. In most gram negative bacteria, the prototype quorum sensing system is the LuxI/
LuxR system [61]. LuxI proteins synthesize the autoinducer such as acylated homoserine
lactone (AHL), which modulates the activity of LuxR to activate gene expression upon binding.
In case of gram positive bacteria, oligopeptides serve as autoinducers which then activate gene
expression in a two component system [61]. Activation of quorum sensing has been shown to
stimulate biofilm formation in P. aeruginosa. Quorum sensing mutants of Pseudomonas make
biofilms that are sensitive to detergents such as sodium dodecyl sulfate indicating that the
matrix synthesis is defective [34]. In light of the role that quorum sensing plays in the formation
and regulation of biofilms, it is proposed that use of quorum-sensing inhibitors may be a
potential approach for the treatment of biofilm associated infections.

Existence as a biofilm is advantageous to the bacterium since it enables its survival under a
variety of conditions. However when the environmental conditions change or their microen‐
vironment becomes unfavorable, bacteria can return to their planktonic state. This is referred
to as dispersion of biofilms. Dispersion of biofilms can be brought about by degradation of the
biofilm matrix, which will lead to disruption in cell to cell adhesion and escape from the
biofilm. Several bacteria have been shown to produce enzymes that can degrade matrix
components and result in biofilm dispersion [15, 69]. Another mechanism of dispersion is
through the induction of motility. Onset of dispersal has been shown to coincide with a return
in motility of the biofilm associated cells [72]. Certain bacterial biofilms also produce surfac‐
tants such as rhamnolipids. Biofilms formed by strains of P. aeruginosa with increased rham‐
nolipid production dispersed after 2 days, whereas wild type biofilms under the same
conditions did not disperse until day 10 [14]. Biofilm dispersal is of medical significance as the
bacterial cells released from the biofilm can enter the body fluids and can establish themselves
in another niche, thereby resulting in secondary infections.

3.4. Medical device associated biofilms

The biofilms on medical devices can be composed of gram-positive and gram-negative
bacteria, or yeast. Commonly isolated bacteria include gram-positive organisms such as E.
fecalis, S. aureus, S. epidermidis, Streptococcus viridians and gram- negative organisms like E.
coli, Klebsiella pneumonia, P. mirabilis and P. aeruginosa. These organisms can reside on the skin
of healthy patients or health-care workers, in the water to which entry ports are exposed or in
the environment, from where they eventually contaminate the medical device. Indwelling
devices can be colonized by single or multispecies biofilms. In the case of urinary catheters,
initially the biofilms are composed of a single species and continued further exposures lead to
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multispecies biofilms [148]. There are several factors that influence the rate and extant of
biofilm formation on devices. First the bacteria must attach to the surface of the device long
enough to result in permanent attachment. This initial rate of attachment depends on the
number and type of bacterial cells in the fluid in which the device is exposed to, the flow rate
through the device and the physicochemical characteristics of the exposed surface [37]. On
indwelling devices, the components in the fluid milieu to which the device is exposed to can
change the surface properties and influence bacterial attachment. Following permanent
attachment to the surface, the bacteria produce exopolysaccharides to form the biofilm. The
rate of growth and establishment of a biofilm depends on flow rate, nutrient availability,
antimicrobial concentration and temperature.

4. Urinary catheter biofilms

CAUTIs account for around 80% of all nosocomial UTIs [89]. The risk of developing an UTI
significantly increases with the use of indwelling devices. It has been reported that the risk of
developing CAUTI increases 5% with each day of catheterization, and virtually all patients are
colonized by day 30 [91]. Several studies also support the role of biofilm in the establishment
of CAUTIs [161, 167]. The predominant pathogens associated with UTIs include E. coli (25%),
Enterococci (16%), P. aeruginosa (11%), Klebsiella pneumonia (8%), Candida albicans (8%), Entero‐
bacter (5%), P. mirabilis (5%) and coagulase-negative Staphylococci (4%) [40]. These pathogens
are normally found in the lower intestinal tract of humans, and can be introduced into the
urinary tract via indwelling devices.

4.1. Biofilm formation on indwelling urinary tract devices

Prior to the initial attachment of bacteria to the device surface, it is critical that the surfaces are
conditioned, where the attachment of proteins and polysaccharides from the fluid environ‐
ment form a film on the exposed surface of the device [161, 167]. This conditioning film
facilitates the initial bacterial attachment, which normally adhere poorly on uncoated surfaces
[58]. Indwelling devices used in the urological settings include open and closed catheters,
urethral stents and sphincters and penile prostheses. Biofilm formation has been documented
from infection sites associated with all of these device types [24, 161]. Among all these devices,
urinary catheters serve as the common substrate for the development of UTIs [166]. Numerous
studies have demonstrated the presence of adherent biofilms on catheters removed from
patients [104]. Additionally, scanning electron microscopy studies have documented extensive
biofilm formation on urinary catheters [111]. Such catheters recovered from patients that failed
antibiotic therapy were shown to contain P. aeruginosa, E. fecalis, E. coli and P. mirabilis [103].

4.1.1. Crystalline biofilms

Foley catheters are commonly used to manage urinary incontinence in elderly patients and
those with bladder dysfunction. These devices besides helping the patient also put them under
high risk for the development of UTIs. Uropathogens such as P. mirabilis, Providencia stuartii,
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Morganella morganii and K. pneumoniae produce urease and form a unique type of crystalline
biofilms on catheters. Urease production by these organisms enables them to break down the
urea in urine [86] and releases ammonia, which raises the urine pH resulting in calcium and
magnesium phosphate crystal formation within the biofilm matrix [149]. Studies have also
demonstrated that biofilm formation is a prerequisite for crystal formation since the matrix
may act as a nucleation site for crystal development [106]. Stickler and others have shown that
P. mirabilis biofilm formation on catheter surface starts near the eye-hole in the form of
microcolonies [150]. Following this, due to production of urease by these colonies, calcium and
magnesium phosphate crystals begin to form and the biofilm extends down the luminal
surface. The crystal formation is medically significant because of the blockage of catheters due
to crystallization and encrustation, which can lead to bladder distention, urine leakage and
pyelonephritis when urine from the distended bladder refluxes into the kidney. Additionally,
crystalline biofilms that form on the outside of the catheter can lead to irritation and trauma
of the urethral mucosa [58].

4.2. Uropathogen specific factors that contribute to biofilm formation

Uropathogenic E. coli (UPEC) are the most common etiology of UTIs [65]. Consequentially,
UPEC biofilms are responsible for many CAUTIs [108]. Therefore this section will focus on the
specific factors associated with UPEC that aid its biofilm formation. UPEC has several
virulence factors such as α-hemolysin, cytotoxic necrotizing factor I, lipopolysaccharide
capsule, siderphore aerobactin and enterobactin, proteases and adhesive organelles [109]. The
presence of a different repertoire of virulence factors with each UPEC strain could be the reason
for the high number of cases associated with UPEC [93]. The single most important virulence
factor of UPEC significant to biofilm formation and the associated illness could be type I pili.
Type I pili have been shown to play an important role in bacterial adhesion to biotic and abiotic
surfaces, and invasion and persistence in the bladder.

Type I pili are pertrichously present on the cell surface of many members of the Enterobac‐
teriaceae, which includes both pathogenic and commensal strains of E. coli [179]. Type I pili in
E. coli is encoded by nine genes of the fim gene cluster which have structural and regulatory
roles. The fimAFGH genes are structural genes that encode the protein components of the pilus
rod and tip [58], whereas FimB and fimE encode the regulatory proteins that control phase
variation of type I pili [46]. Phase variation helps E. coli to reversibly switch on/off the expres‐
sion of type I pili, and a stringent regulation of phase variation is critical for successful UPEC
infection [138]. The FimH adhesion confers mannose-specific binding property to the type I
pili. FimH can recognize the terminal mannose residues on various cell types and secreted
glycoproteins such as superficial bladder umbrella cells [39] and CD48 on macrophages and
mast cells [136]. Langermann and others reported that FimH is essential for colonization of the
murine bladder and immunization with FimH protected the animals from UPEC colonization
and infection [80, 81]. Scanning electron microscopy (SEM) revealed that type I pili are in close
contact with uroplakin-coated superficial bladder membrane [99]. Uroplakins are proteins that
cover the apical surface of superficial umbrella cells and give strength to the bladder epithe‐
lium to create a permeability barrier [152]. In vitro studies using mouse uroepithelial plaques
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and recombinant FimH have shown that uroplakin UP1a is the unique bacterial receptor for
FimH adhesion [180]. It has been shown that commensal and pathogenic E. coli contain type I
pili and bind to trimannose receptors via FimH adhesion [139]. However, type I pili in UPEC
strains also have a high affinity for binding monomannose units [180], which potentially
provides a selective advantage during pathogenesis by increasing specific binding on the
uroepithelium.

In addition to their role in adherence, type I pili are also essential for the invasion of bladder
epithelial cells by UPEC. TEM and SEM imaging have revealed that bladder cells internalize
UPEC through interactions between FimH and UP1a [99]. Other studies have also demon‐
strated that type I pili carrying bacteria interact with plasma membrane micro domains knows
as lipid rafts [39]. More specifically, caveolae, a subtype of the lipid rafts with a cave-like
appearance have been shown to associate with intracellular bacteria during UPEC invasion.
Besides the bladder cells, UPEC can also bind and invade macrophages [10] and mast cells
[136], thereby serving as a source of chronic UTIs. The ability of UPEC to invade macrophages
allows the bacteria to survive within them and evade phagocytosis. Besides tiding over
phagocytosis, ability to survive inside bladder cells also helps to avoid host defenses, including
urine flow, secretion of adhesion-binding competitors such as Tamm-Horsfall protein, IgA,
chemokines, and exfoliation of superficial bladder cells [113, 155]. UPEC sequestered within
the bladder cells are also protected from antibiotic treatments that sterilize the urine, and are
provided a rich environment in which the bacteria replicate [100]. UPEC has the ability to form
biofilms on abiotic surfaces such as polypropylene, polyvinylchloride, polycarbonate and
borosilicate glass when grown statically [120]. Using transposon mutagenesis, Pratt and Kolter
demonstrated that Fim mutants were defective in initial attachment and biofilm formation was
severely impacted. This indicates that type I pili are essential for the initial attachment of UPEC
to abiotic surfaces. Besides type I pili, motility also plays an important in biofilm formation.
Non motile strains were severely defective in the initial attachment and consequently in biofilm
formation [120].

4.3. Biofilm formation in urinary tissues

UPEC are capable of attaching and invading uroepithelial cells, persisting and forming
intracellular reservoirs that help them escape host defenses [100]. Anderson and coworkers
[2003; 7] hypothesized that UPEC reservoirs are established by the formation of biofilm-like
pods or intracellular bacterial communities (IBC) within the bladder cells. Replication of UPEC
in the superficial bladder cells leads to the formation of tightly packed biofilm-like pods that
protrude into the lumen. Bacteria inside these pods undergo continuous development leading
to the maturation of the IBCs. The development of IBC can be divided into four phases. The
first phase begins 1-3 h after infection. The type I pili bind and invade the superficial bladder
epithelial cells [74]. At this stage the bacteria are non-motile and divide rapidly and by 8 h post
infection, they form loosely organized colonies that resemble microcolonies of abiotic biofilms,
known as early IBC. The next phase leads to the formation of middle IBCs, which is charac‐
terized by a reduction in cell proliferation and cell size. Each pod corresponds to a single
epithelial cell tightly packed with bacteria forming an intracellular biofilm. Within the pods,
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a polysaccharide matrix surrounds the bacteria [7, 74]. At around 12 h post infection, late IBCs
are formed, when UPEC regain their rod shape and motility and flux out of the bladder cells.
Fluxing aids UPEC in infecting neighboring cells [74]. The last phase of IBC formation results
in UPEC filamentation which occurs 24 to 48 h post infection, where filamentation helps UPEC
evade host immune responses. The filamentous bacteria can also separate to form rod-shaped
daughter cells. The appearance of filamentous cells also coincides with the appearance of small
groups of UPEC on newly infected healthy cells [74].

4.3.1. Pathogenesis of catheter-associated biofilm

The pathogenesis of CAUTI depends on the physicochemical properties of the catheter
material and its susceptibility to bacterial colonization. Bacterial binding to the bladder mucosa
triggers an inflammatory response that leads to neutrophil influx and sloughing of the infected
epithelial cells [78]. This helps to clear the bacteria from the mucosal surface. In the case of a
catheter, besides the absence of inherent defense mechanisms, they also provide a survival
advantage to the bacteria which become difficult to eradicate. The advantages include
resistance from being swept away by the urine flow, resistance to phagocytosis and antimi‐
crobials [167]. In addition to the catheter providing an environment for biofilm formation, the
presence of a catheter helps to weaken many normal defenses of the bladder. The catheter
helps to connect the heavily colonized perineum with the sterile bladder, thus providing a
route for bacterial entry into the bladder. Urine pools in the bladder or in the catheter and the
resulting urinary stasis promote bacterial growth. Additionally, the catheter also damages the
bladder mucosa by triggering inflammatory response and mechanical erosion [175]. Once
bacteria gain entry into the urinary tract, low level bacteriuria progresses within 24 to 48 h in
the absence of an antimicrobial therapy [145].

4.4. Biofilm related UTIs

Chronic bacterial prostatitis: The prostatic ducts and acini provide a safe environment for
bacteria to multiply and induce host response. If the bacteria are not eradicated by the immune
response, it leads to their persistence and formation of bacterial microcolonies. The presence
of microcolonies induces persistent immunological stimulation and chronic inflammation
[105].

Recurrent cystitis: UPEC binds to superficial bladder epithelial cells resulting in neutrophil
recruitment and influx into the bladder lumen. Neutrophil recruitment occurs due to the
recognition of bacterial LPS by the toll-like receptors. Additionally, interaction between type
I pili and the uroepithelium results in exfoliation of the superficial epithelial cells causing
pathogen shedding into the urine [129]. When IBCs form in the epithelial cells, they persist as
a chronic reservoir, which leads to recurrent cystitis.

Pyelonephritis: Once the bacteria reach the kidney, they adhere to the uroepithelium and form
thin biofilms before invading the renal tissue [106]. Additionally encrustation and obstruction
to the catheter flow due to formation of crystalline biofilms leads to bladder distention, urine

Recent Advances in the Field of Urinary Tract Infections10



leakage and pyelonephritis when urine from the distended bladder refluxes in to the kidney
[162].

Infected urinary caliculi: In case of urease positive bacteria, biofilm formation is accompanied
by the deposition of calcium and magnesium crystals. This crystallization occurs only after the
biofilm is formed, since the biofilm serves as a nucleation site [106].

5. Control strategies to prevent CAUTI

CAUTI is the most common hospital acquired infection and accounts for up to 40% of all health
care associated infections in the United States [102, 156]. About 15-25% of hospitalized patients
have an urethral catheter in place during some point of their stay. It is estimated that around
30 million bladder catheters are placed annually in the United States, resulting in several
hundred thousand cases of CAUTI [156]. A systemic review of the proportion of health care
associated infections that can be prevented revealed that CAUTI was the most preventable
nosocomial infection [170]. An estimate of the number of avoidable cases ranged from 95,483
to 387,550 per year and associated lives saved ranged from 2225 to 9031 annually. This
prevention could also avoid the annual cost of these illnesses which is estimated at $1.8 million
to $115 million [170]. This underscores the need for control strategies to prevent CAUTI.
Prevention of CAUTI is primarily based on reviewing the criteria for appropriate placement
and early removal of catheters. The advances in our understanding of the pathogenesis and
key factors that influence the onset of infection are also critical in the development of adequate
and effective control strategies [137]. Several protective strategies have been suggested for
CAUTI, some of which are already in place for patient care, whereas others are still in
development. The control strategies include:

5.1. Need for and duration of catheterization

It is estimated that about 21-50% of catheters are placed without justified need and catheters
are inappropriately retained for 33-50% of total device days [73, 101]. The most effective ways
for the preventing CAUTI are by reducing the duration of catheterization and its early removal
[51]. Use of interventions such as nurse prompted removal suggestions and computer based
reminders to the patients have resulted in a decline in catheter retention and a concomitant
reduction in bacteriuria [164]. Thus, it is important to refrain from using an indwelling catheter
without an appropriate indication. A study conducted in an emergency department indicated
that use of pre-insertion checklists have led to an improved adherence to indications for
placement resulting in the increase in the number of appropriately placed catheters from 37%
to 51% [50].

5.2. Catheter placement and management

Since the catheter provides a connection between the highly colonized perineum and the sterile
bladder, sterility during catheter handling and placement is of greatest importance. In this
regard, hand hygiene plays a vital role in the prevention of CAUTI [16]. Insertion of a catheter
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in the emergency room rather than an operating room has been shown to be associated with
higher rates of catheter associated bacteriuria (CAB; 158). Use of an aseptic insertion technique
reduces the risk of acquiring resistant organisms in the hospital [63]. A randomized study
conducted by Platt and others [1983; 118] demonstrated that hospitalized patients intubated
with a catheter without a pre-sealed junction were 2.7 times more likely to develop CAB than
patients with pre-connected catheter drainage bags and sealed junctions. Therefore, the use of
closed catheter drainage systems universally is recommended [63]. Similarly, any breach in
the closed drainage system would also increase the risk for CAB. Any manipulation of the
indwelling catheter should be avoided so that breaches in the closed drainage and shear trauma
can be minimized [25].

5.3. Catheter design

Catheter design has not changed significantly since the inception of the Foley catheter in the
1930s [97]. In addition to the catheter design, biocompatibility of the material is crucial.
Catheter material can also impact the rate of biofilm formation. Scanning electron microscopy
imaging of latex catheters revealed that presence of more uneven surfaces on it than other
silicone counterparts which can promote bacterial adhesion [150]. Additionally latex has been
associated with toxic effects in vitro and proinflammatory reactions in vivo leading to polypoid
cystitis on chronic exposure [49]. Moreover, silicone catheters are more popular to avoid
allergic reactions associated with latex use. Besides being hypoallergenic, silicone catheters
have a larger lumen and are minimally prone to encrustation by crystalline biofilms [36]. A
newly engineered silicone catheter with a trefoil cross-section was shown to reduce CAB and
inflammation when compared to a standard urinary catheter [153]. The trefoil conformation
helps to minimize the surface area of contact between the catheter and the urethra, thereby
decreasing friction and trauma and increasing drainage of urethral secretions [137].

5.4. Hydrogel coated catheters

Cross linked insoluble polymers that are hydrophilic and trap water are known as hydrogels.
Use of hydrophilic coating on catheters has been shown to improve patient comfort, reduce
bacterial adherence and encrustation. The presence of hydrogels also increases lubrication and
decreases bacterial adhesion to the interface of the tissue and the catheter [11]. However,
conflicting data exist on the ability of hydrogel coated catheters to reduce CAUTI, which could
be attributed to the type of hydrogel incorporated. Tunney and Gorman [2002; 169] used in
vitro models to demonstrate that Poly(vinyl pyrollidone)-coated polyurethane catheters had a
lower rate of encrustation when compared to uncoated polyurethane and silicone catheters.
Another study showed that the use of poly(ethylene oxide)-based multiblock copolymer and
segmented polyurethane increased the time to encrustation and catheter blockage from 7.8 h
to 20.1 h [116]. These findings collectively suggest that the type of hydrogel coating can affect
the rate of encrustation and the resulting catheter blockage.
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5.5. Antimicrobial coating

Antimicrobial modification of catheters is achieved by coating, matrix loading and immersion
in an antimicrobial solution. The primary objective behind the incorporation of antimicrobial
on a catheter is to reduce bacterial attachment and biofilm formation. Additionally, release of
antimicrobials from the catheters into the milieu is also another potential approach to control
planktonic cells of uropathogens [56].

5.5.1. Nanoparticles and iontophoresis

Nanoparticles by virtue of their small size have the ability to penetrate bacterial cells, disrupt
cell membranes and bind to the chromosomal DNA. Lelouche and others [2009; 84] demon‐
strated that glass surfaces coated with magnesium fluoride nanoparticles inhibited biofilm
formation by S. aureus and E. coli, whereas magnesium fluoride solutions did not affect biofilm
formation. This highlights the size dependent effect of nanoparticles.

The application of low intensity direct current (Ionotophoresis) in vitro has been shown to
increase the antimicrobial activity of antibiotics on bacteria embedded in biofilms [27].
Chakravarti and others [2005; 21] used a urinary flow model to test the in vitro antibiofilm
efficacy of iontophoretic silver wire containing silicone catheters. These catheters were
challenged with P. mirabilis and then exposed to a steady current of 150 µA. It was observed
that application of the electric field increased the time to blockage from 22 h to 156 h, and
reduced the viable count from 109 CFU/ml to 104 CFU/ml. Similar in vivo study in sheep
intubated with catheters containing platinum electrodes showed a decline in pathogen count
from 107 CFU/ml to 103 CFU/ml on application of a direct current of 400 µA [33].

5.5.2. Antimicrobials

A variety of antimicrobials applied on urinary catheters have been investigated for their
efficacy in controlling UTIs using in vitro and in vivo models.Nitrous oxide is known to exhibit
bactericidal activity [123]. Urinary catheters impregnated with gaseous nitrous oxide, a known
antimicrobial, and challenged with E. coli resulted in the slow release of nitrous oxide into the
urine for over 14 days, and decreased biofilm formation by E. coli. Chlorhexidine is a common
antimicrobial used against oral plaques. In vivo studies in rabbits intubated with genidine
(combination of chlorhexidine and gentian violet) coated silicone catheters showed a reduction
in biofilm formation by E. coli, E. faecium, P. aeruginosa, K. pneumoniae and Candida in compar‐
ison to silver coated and uncoated catheters [54]. Catheter associated bacteriuria was noticed
in 60% and 71% of the rabbits with uncoated catheters and silver hydrogel coated catheters,
respectively, whereas CAB did not occur in any of the rabbits with genidine coated catheters.
Similar to chlorhexidine, triclosan is another antibacterial ingredient in toothpastes and
cleaners used in health care settings. Triclosan exerts its antibacterial effect by inhibiting
bacterial fatty acid synthesis [147]. Incorporation of triclosan in the balloon of catheters resulted
in its release and diffusion through latex and silicon catheter balloons. The balloon served as
a reservoir and the membrane helped in controlled release of triclosan. This in turn slowed
encrustation and maintained the lumen patent for 7 days as compared to 24 h in saline-filled
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catheters [150]. Another antibacterial shown to possess antibiofilm effect is nitrofurazone,
which interferes with bacterial ribosomes, DNA and cell wall. When nitrofurazone coated
catheters were compared with standard catheters, it was observed that nitrofurazone signifi‐
cantly reduced CAB [133]. Besides nitrofurazone, norfloxacin coated catheters were also shown
to inhibit the growth of E. coli, K. pneumoniae and P. vulgaris for up to 10 days [115]. Similarly,
gentamicin coated catheters were also effective in reducing CAB in rabbits [23]. Another study
demonstrated that sparfloxacin coated and heparin coated catheters reduced colonization by
S. aureus, E. coli and S. epidermidis for greater than 26 days compared to control catheters [79].
However, the use of antibiotics on catheters to control bacterial biofilms could potentially lead
to the emergence of antibiotic resistant bacteria [126]. Repeated use of antibiotics for treating
UTIs has been linked to the emergence of antibiotic resistant UPEC [41, 126]. Therefore, there
is an increasing interest in the use of natural antimicrobials for controlling microbial infections,
including UTIs.

5.5.3. Plant molecules

Plants are capable of synthesizing a large number of molecules [47], most of which are
produced as a defense mechanism against predation by microorganisms and insects. A variety
of plant-derived polyphenols are active components in traditional medicines [178]. A signifi‐
cant body of literature exists on the positive effects of dietary intake of berry fruits on human
health, performance and disease [134]. Cranberry products such as its juice and tablets have
been used as an alternative medicine to prevent UTIs in humans for decades. Clinical and
epidemiological studies support the use of cranberry in maintaining a healthy urinary tract
[117]. Although several studies have tested the antimicrobial effect of cranberries against
multiple uropathogens, it was found to be most effective against UPEC.

Cranberries exert anti-adhesive effects on certain uropathogens [112] and this effect is specific
to certain components of cranberry [110]. Cranberries contain three different flavonoids
(flavonols, anthocyanins and PAC), catechins, hydroxycinnamic and other phenolic acids and
triterpenoids. The anthocyanins are absorbed in the human circulatory system and transported
without any chemical change to the urine [117]. Cranberry products do not inhibit bacterial
growth, but reduced bacterial adherence to uroepithelial cells, thereby decreasing the devel‐
opment of UTI. The anti-adhesive effects of p-fimbriated UPEC to uroepithelial cells are related
with A-linked PAC as compared with lack of anti-adhesion activities of B-linked PAC from
grape, apple juice, green tea and chocolate [67]. The A-type PAC in cranberries enhances the
anti-adhesive effects in vitro and in urine. PAC binds to lipopolysaccharide in gram-negative
bacteria. When E. coli was grown in the presence of cranberry components, the bacterial
morphology changed to a more spherical cell-like form. These changes cause them to be
repelled by the human cells [88]. Similar study by Tao and others [2011; 159] have also
demonstrated that consumption of cranberry juice cocktail reduced the adhesion of UPEC to
a silicon nitride probe.

Cranberry has undergone extensive evaluation in the management of UTIs. However,
currently there is no evidence that cranberry can be used to treat UTIs. Hence, the focus has
been on its use as a prophylactic agent in the prevention of UTIs [52]. The consumption of
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cranberry juice can help to prevent the adhesion of UPEC to the uroepithelium and thereby
help reduce the incidence of UTIs. With rising concerns of antibiotic resistance among UPEC,
cranberry could serve as an effective alternative in controlling UTIs.

Trans-cinnamaldehyde (TC) is a major component of the bark extract of cinnamon [1]. It is a
generally recognized as safe (GRAS) molecule approved for use in foods by the Food and Drug
Administration (FDA). The U. S. Flavoring Extract Manufacturers’ Association reported that
TC has a wide margin of safety between conservative estimates of intake and no observed
adverse effect levels, from sub-chronic and chronic studies [1]. The report also indicated no
genotoxic or mutagenic effects due to TC. Although, cinnamon or cinnamon oil has been used
for ages in the treatment of UTIs, no scientific study was undertaken to investigate its antimi‐
crobial efficacy against uropathogens. Amalaradjou and group [2010; 4] investigated the
efficacy of TC for controlling UPEC biofilm formation. They observed that TC as a catheter
lock solution or as a coating significantly inactivated UPEC and prevented biofilm formation
when compared to untreated catheters. In a follow up study, these researchers reported that
TC decreased the attachment and invasion of UPEC in cultured urinary tract epithelial cells
by down-regulating several virulence genes in the pathogen [5].

Besides the use of cranberry and TC, other plant derived natural antimicrobials have also been
shown to be effective against uropathogens. Sosa and Zunino [2009; 141] demonstrated that
Ibicella lutea (Devils claw or Rams horn) extracts had an effect on bacterial growth rate and
morphology of P.mirabilis by affecting its swarming differentiation, hemagglutination and
biofilm formation on glass and polystyrene. Similarly, the use of Coccinia grandis (Ivy gourd)
plant extracts have been reported to inhibit growth of UPEC in vitro [119]. Several other herbs
that are used for the treatment of UTIs, but lacking scientific basis include Agrimonia eupato‐
ria (agrimony), Althea officinalis (marshmallow), Apium graveolens (celery seed), Arctium lappa
(burdock), Elymus repens (couchgrass), Hydrangea aborescens (hydrangea), Juniperus communis
(juniper), Mentha piperita (peppermint), Taraxacum officinalis leaf (dandelion), Ulmus fulva
(slippery elm) and Zea mays (corn silk; 3).

5.5.4. Silver coated catheters

Silver is a well-known antimicrobial exerting its bactericidal action by inactivating bacterial
enzymes and causing cell wall damage [96]. Silver alloy and silver oxide coatings on catheters
were investigated for reducing CAB, where silver alloy coating was found to be more effective
[131]. In addition to reducing CAB, other studies also demonstrated the ability of silver alloy
to decrease CAUTI compared to silver oxide or latex catheters [143]. However other researchers
have observed conflicting results with no difference in antibiofilm effect of silver alloy and
silver oxide [122, 143].

5.6. Enzyme inhibitors

Urease producing bacteria are known to produce crystalline biofilms and encrustation on
catheters. Use of urease inhibitors such as acetohydroxamic acid and fluorofamide have been
reported to reduce encrustation and thereby prevent CAB [98]. These urease inhibitors have
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been also shown to prevent urea break down and pH increase in vitro by P. mirabilis besides
decreasing the associated encrustation. Another enzyme target is N-acetyl-D-glucosamine-1-
phosphate acetyltransferase, which is essential for peptidoglycan, lipopolysaccharide and
adhesion synthesis. Inhibitors of the enzyme belonging to the N-substituted maleimide family
have produced antibiofilm activity against P. aeruginosa and S. epidermidis compared to silver
hydrogel coated catheters [17].

5.6.1. Bacterial interference

Use of nonpathogenic microorganisms to counteract pathogenic bacteria is known as bacterial
interference [137]. Colonization of catheter surfaces with nonpathogenic bacteria can prevent
adhesion and colonization by pathogens. The nonpathogenic E. coli 83972 has been extensively
investigated both in vitro and in vivo in bacterial interference protocols [68]. Initially, studies
with this nonpathogenic strain were done by instilling the bacteria into the bladder of patients.
Colonization by E. coli 83972 protected these patients from symptomatic UTI. To reduce the
need for instillation of bacteria into the bladder of patients, experiments were later conducted
with catheters coated with the nonpathogenic strain [168]. This study also revealed that E.
coli 83972 was effective in reducing symptomatic UTI similar to previous experiments with
direct infusion of the bacteria.

5.6.2. Bacteriophages

Another potential approach investigated for controlling CAUTI is the use of bacteriophages.
Catheters coated with T4 bacteriophage against E. coli and coli-proteus bacteriophage active
against Proteus were exposed to E. coli ATCC 11303, P. mirabilis or saline. It was observed that
phage treatment of catheters led to approximately 90% reduction in biofilm formation
compared to control catheters [19]. It was also observed that the application of phage cocktail
on catheters was more effective against bacteria than the use of a single phage [19]. When
hydrogel coated catheters were pretreated with a five-phage cocktail, P. aeruginosa biofilm
formation was reduced by 99% after 48 h [45].

5.6.3. Liposomes

Liposomes are carrier or delivery vehicles that can carry both hydrophilic and hydrophobic
molecules to their target site for delivery. This helps to increase the half life of the drugs besides
protecting them from the environment. Liposomes containing ciprofloxacin embedded in a
hydrogel coated catheter were evaluated in a rabbit model to investigate its antibiofilm effect
against E. coli induced CAUTI [121]. The results from this study revealed that liposomal
ciprofloxacin treated group had a delayed onset of positive urine cultures compared to the
control group.

5.6.4. Quorum sensing inhibitors

Quorum sensing between bacterial cells in a biofilm have been shown to be essential for biofilm
formation and maintenance. Inhibition of quorum sensing could therefore provide a potential
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route for the control of biofilms. Delisea pulchra, an algal species has been shown to produce
furanones that interfere with autoinducer signaling and biofilm formation [92]. In vitro and in
vivo sheep experiments using furanone containing catheters have been evaluated against S.
epidermidis [35]. Similarly, use of azithromycin has been shown to inhibit the production of
quorum sensing signals, swimming, swarming and twitching motilities, and biofilm formation
in vitro [9].

5.6.5. Surface vibroacoustic stimulation

Catheters containing peizo elements can generate low energy acoustic waves that can lead to
the formation of a vibrating coat along the catheter and prevent bacterial attachment and
biofilm formation [60]. Scanning electron microscopy studies demonstrated that application
of surface acoustic waves led to reduced biofilm formation by E. coli, E. faecalis, Candida
albicans and P. mirabilis. An in vivo study in rabbits demonstrated that peizo element containing
catheters with acoustic vibration led to a delayed positive urine culture compared to control
animals [60]. The acoustic waves generated resulted in bacterial vibration at the same fre‐
quency, thereby preventing bacterial attachment and eventual biofilm formation.

6. Conclusion

Catheter  associated  urinary  tract  infections  are  the  most  common nosocomial  infections
and a vast  majority of  them are caused by biofilms formed on catheters.  The complica‐
tions  caused  by  biofilms  can  undermine  the  patient’s  quality  of  life  and  threaten  their
health. The high incidence of CAUTI and the consequent complications warrants the de‐
velopment  and  application  of  effective  control  strategies.  Prevention  is  predominantly
based  on  enforcing  guidelines  for  appropriate  catheter  placement  and  early  removal.
However,  a  comprehensive  understanding  of  bacterial  biofilm  formation,  pathogenesis
and other key factors essential for development of UTIs would help in the development
of novel and effective control strategies.

Author details

Mary Anne Roshni Amalaradjou1 and Kumar Venkitanarayanan2

*Address all correspondence to: kumar.venkitanarayanan@uconn.edu

1 Department of Food Science, Purdue University, West Lafayette, IN, USA

2 Department of Animal Science, University of Connecticut, Storrs, CT, USA

Role of Bacterial Biofilms in Catheter-Associated Urinary Tract Infections… 17



References

[1] Adams TB, Cohen SM, Doull J, Feron VJ, Goodman JI, Marnett LJ, Munro IC, Por‐
toghese PS, Smith RL, Waddell WJ, Wagner BM. The FEMA GRAS assessment of cin‐
namyl derivatives used as flavor ingredients. Food Chem Toxicol 2004: 42:157-185.

[2] Agladze K, Wang X, Romeo T. Spatial periodicity of Escherichia coli K-12 biofilm mi‐
crostructure initiates during a reversible, polar attachment phase of development
and requires the polysaccharide adhesin PGA. J Bacteriol 2005;187:8237-46.

[3] Amalaradjou MAR, Venkitanarayanan K. (2011). Natural Approaches for Controlling
Urinary Tract Infections, Urinary Tract Infections, Peter Tenke (Ed.), ISBN:
978-953-307-757-4, InTech, Available from: http://www.intechopen.com/books/urina‐
ry-tract-infections/natural-approaches-for-controlling-urinary-tract-infections

[4] Amalaradjou MA, Narayanan A, Baskaran SA, Venkitanarayanan K. Antibiofilm ef‐
fect of trans-cinnamaldehyde on uropathogenic Escherichia coli. J Urol, 2010:
184:358-363.

[5] Amalaradjou MA, Narayanan A, Venkitanarayanan K. Trans-cinnamaldehyde de‐
creases attachment and invasion of uropathogenic Escherichia coli in urinary tract epi‐
thelial cells by modulating virulence gene expression. J Urol 2011;185:1526-1531.

[6] Allesen-Holm M, Barken KB, Yang L, Klausen M, Webb JS, Kjelleberg S, et al. A char‐
acterization of DNA release in Pseudomonas aeruginosa cultures and biofilms. Mol
Microbiol 2006;59:1114-28.

[7] Anderson GG, Palermo JJ, Schilling JD, Roth R, Heuser J, Hultgren SJ. Intracellular
bacterial biofilm-like pods in urinary tract infections. Science 2003;301:105-7.

[8] Bagshaw SM, Laupland KB. Epidemiology of intensive care unit-acquired urinary
tract infections. Curr Opin Infect Dis 2006;19:67-71.

[9] Bala A, Kumar R, Harjai K. Inhibition of quorum sensing in Pseudomonas aeruginosa
by azithromycin and its effectiveness in urinary tract infections. J Med Microbiol.
2011;60:300-6.

[10] Baorto DM, Gao Z, Malaviya R, Dustin ML, van der Merwe A, Lublin DM, et al. Sur‐
vival of FimH-expressing enterobacteria in macrophages relies on glycolipid traffic.
Nature 1997;389:636-9.

[11] Beiko DT, Knudsen BE, Watterson JD, Cadieux PA, Reid G, Denstedt JD. Urinary
tract biomaterials. J Urol 2004;171:2438-44.

[12] Beloin C, Valle J, Latour-Lambert P, Faure P, Kzreminski M, Balestrino D, et al. Glob‐
al impact of mature biofilm lifestyle on Escherichia coli K-12 gene expression. Mol
Microbiol 2004;51:659-74.

Recent Advances in the Field of Urinary Tract Infections18



[13] Biering-Sørensen F, Bagi P, Høiby N. Urinary tract infections in patients with spinal
cord lesions: treatment and prevention. Drugs 2001;61:1275-87.

[14] Boles BR, Thoendel M, Singh PK. Rhamnolipids mediate detachment of Pseudomo‐
nas aeruginosa from biofilms. Mol Microbiol 2005;57:1210-23.

[15] Boles BR, Horswill AR. Agr-mediated dispersal of Staphylococcus aureus biofilms.
PLoS Pathog 2008;4(4):e1000052.

[16] Boyce JM, Pittet D. Guideline for Hand Hygiene in Health-Care Settings. Recommen‐
dations of the Healthcare Infection Control Practices Advisory Committee and the
HICPAC/SHEA/APIC/IDSA Hand Hygiene Task Force. Society for Healthcare Epi‐
demiology of America/Association for Professionals in Infection Control/Infectious
Diseases Society of America.; Healthcare Infection Control Practices Advisory Com‐
mittee; HICPAC/SHEA/APIC/IDSA Hand Hygiene Task Force. MMWR Recomm
Rep 2002;51(RR-16):1-45.

[17] Burton E, Gawande PV, Yakandawala N, LoVetri K, Zhanel GG, Romeo T, et al. An‐
tibiofilm activity of GlmU enzyme inhibitors against catheter-associated uropatho‐
gens. Antimicrob Agents Chemother 2006;50:1835-40.

[18] Burckhardt I, Zimmermann S. Streptococcus pneumoniae in urinary tracts of children
with chronic kidney disease. Emerg Infect Dis 2011;17(1):120-2.

[19] Carson L, Gorman SP, Gilmore BF. The use of lytic bacteriophages in the prevention
and eradication of biofilms of Proteus mirabilis and Escherichia coli. FEMS Immunol
Med Microbiol 2010;59:447-55.

[20] Centers for Disease Control. 2012. Device- associated module: Catheter associated
urinary tract infection event. http://www.cdc.gov/nhsn/pdfs/pscmanual/7psccauti‐
current.pdf

[21] Chakravarti A, Gangodawila S, Long MJ, Morris NS, Blacklock AR, Stickler DJ. An
electrified catheter to resist encrustation by Proteus mirabilis biofilm. J Urol
2005;174:1129-32.

[22] Chenworth CE, Saint S. Urinary tract infections. Infect Dis Clin North Am 2011;
25(1):103-115.

[23] Cho YW, Park JH, Kim SH, Cho YH, Choi JM, Shin HJ, et al. Gentamicin-releasing
urethral catheter for short-term catheterization. J Biomater Sci Polym Ed
2003;14:963-72.

[24] Choong S, Whitfield H. Biofilms and their role in infections in urology. BJU Int
2000;86:935-41.

[25] Classen DC, Larsen RA, Burke JP, Stevens LE. Prevention of catheter-associated bac‐
teriuria: clinical trial of methods to block three known pathways of infection. Am J
Infect Control 1991;19(3):136-42.

Role of Bacterial Biofilms in Catheter-Associated Urinary Tract Infections… 19



[26] Costerton JW, Cheng KJ, Geesey GG, Ladd TI, Nickel JC, Dasgupta M, et al. Bacterial
biofilms in nature and disease. Annu Rev Microbiol 1987;41:435-64.

[27] Costerton JW, Ellis B, Lam K, Johnson F, Khoury AE. Mechanism of electrical en‐
hancement of efficacy of antibiotics in killing biofilm bacteria. Antimicrob Agents
Chemother 1994;38:2803-9.

[28] Costerton JW, Geesey GG, Cheng KJ. How bacteria stick. Sci Am 1978;238:86-95.

[29] Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM. Microbi‐
al biofilms. Annu Rev Microbiol 1995;49:711-45.

[30] Cramton SE, Gerke C, Schnell NF, Nichols WW, Götz F. The intercellular adhesion
(ica) locus is present in Staphylococcus aureus and is required for biofilm formation.
Infect Immun 1999;67:5427-33.

[31] Cunningham FG, Lucas MJ. Urinary tract infections complicating pregnancy. Bail‐
lieres Clin Obstet Gynaecol 1994;8:353-73.

[32] Danese PN, Pratt LA, Kolter R. Exopolysaccharide production is required for devel‐
opment of Escherichia coli K-12 biofilm architecture. J Bacteriol 2000;182:3593-6.

[33] Davis CP, Shirtliff ME, Scimeca JM, Hoskins SL, Warren MM. In vivo reduction of
bacterial populations in the urinary tract of catheterized sheep by iontophoresis. J Ur‐
ol 1995;154:1948-53.

[34] Davies DG, Parsek MR, Pearson JP, Iglewski BH, Costerton JW, Greenberg EP. The
involvement of cell-to-cell signals in the development of a bacterial biofilm. Science.
1998;280(5361):295-8.

[35] de Nys R, Givskov M, Kumar N, Kjelleberg S, Steinberg PD. Furanones. Prog Mol
Subcell Biol 2006;42:55-86.

[36] Denstedt JD, Wollin TA, Reid G. Biomaterials used in urology: current issues of bio‐
compatibility, infection, and encrustation. J Endourol 1998;12:493-500.

[37] Donlan RM. Biofilms and device-associated infections. Emerg Infect Dis
2001;7:277-81.

[38] Donlan RM, Costerton JW. Biofilms: survival mechanisms of clinically relevant mi‐
croorganisms. Clin Microbiol Rev 2002;15:167-93.

[39] Duncan MJ, Li G, Shin JS, Carson JL, Abraham SN. Bacterial penetration of bladder
epithelium through lipid rafts. J Biol Chem 2004;279:18944-51.

[40] Emori TG, Gaynes RP. An overview of nosocomial infections, including the role of
the microbiology laboratory. Clin Microbiol Rev 1993;6(4):428-42.

[41] Farshad S, Japoni A, Hosseini M. Low distribution of integrons among multidrug re‐
sistant E. coli strains isolated from children with community-acquired urinary tract
infections in Shiraz, Iran. Pol J Microbiol 2008;57(3):193-8.

Recent Advances in the Field of Urinary Tract Infections20



[42] Fluckiger U, Ulrich M, Steinhuber A, Döring G, Mack D, Landmann R, et al. Biofilm
formation, icaADBC transcription, and polysaccharide intercellular adhesin synthesis
by staphylococci in a device-related infection model. Infect Immun 2005;73:1811-9.

[43] Foxman B. Epidemiology of urinary tract infections: incidence, morbidity, and eco‐
nomic costs. Am J Med 2002;113 Suppl 1A:5S-13S.

[44] Foxman B. Epidemiology of urinary tract infections: incidence, morbidity, and eco‐
nomic costs. Dis. Mon 2003; 49: 53-70.

[45] Fu W, Forster T, Mayer O, Curtin JJ, Lehman SM, Donlan RM. Bacteriophage cocktail
for the prevention of biofilm formation by Pseudomonas aeruginosa on catheters in
an in vitro model system. Antimicrob Agents Chemother 2010;54:397-404.

[46] Gally DL, Leathart J, Blomfield IC. Interaction of FimB and FimE with the fim switch
that controls the phase variation of type 1 fimbriae in Escherichia coli K-12. Mol Mi‐
crobiol 1996;21:725-38.

[47] Geissman TA. (1963) Flavonoid compounds, tannins, lignins and related compounds.
in Pyrrole pigments, isoprenoid compounds and phenolic plant constituents, eds Florkin M.,
Stotz E. H. (Elsevier, New York, N.Y), 9:265.

[48] Girard V, Mourez M. Adhesion mediated by autotransporters of Gram-negative bac‐
teria: structural and functional features. Res Microbiol 2006;157:407-16.

[49] Goble NM, Clarke T, Hammonds JC. Histological changes in the urinary bladder sec‐
ondary to urethral catheterisation. Br J Urol 1989;63:354-7.

[50] Gokula RM, Smith MA, Hickner J. Emergency room staff education and use of a uri‐
nary catheter indication sheet improves appropriate use of Foley catheters. Am J In‐
fect Control 2007;35:589-93.

[51] Griffiths R, Fernandez R. Strategies for the removal of short-term indwelling urethral
catheters in adults. Cochrane Database Syst Rev 2007:CD004011.

[52] Guay DRP. Cranberry and urinary tract infections. Drugs 2009;69: 775-807.

[53] Guggenbichler JP, Assadian O, Boeswald M, Kramer A. Incidence and clinical impli‐
cation of nosocomial infections associated with implantable biomaterials - catheters,
ventilator-associated pneumonia, urinary tract infections. GMS Krankenhhyg Inter‐
diszip 2011;6:Doc18.

[54] Hachem R, Reitzel R, Borne A, Jiang Y, Tinkey P, Uthamanthil R, et al. Novel antisep‐
tic urinary catheters for prevention of urinary tract infections: correlation of in vivo
and in vitro test results. Antimicrob Agents Chemother 2009;53:5145-9.

[55] Hall-Stoodley L, Costerton JW, Stoodley P. Bacterial biofilms: from the natural envi‐
ronment to infectious diseases. Nat Rev Microbiol 2004;2:95-108.

Role of Bacterial Biofilms in Catheter-Associated Urinary Tract Infections… 21



[56] Hamill TM, Gilmore BF, Jones DS, Gorman SP. Strategies for the development of the
urinary catheter. Expert Rev Med Devices 2007;4:215-25.

[57] Hammar M, Arnqvist A, Bian Z, Olsén A, Normark S. Expression of two csg operons
is required for production of fibronectin- and congo red-binding curli polymers in
Escherichia coli K-12. Mol Microbiol 1995;18:661-70.

[58] Hatt JK, Rather PN. Role of bacterial biofilms in urinary tract infections. Curr Top
Microbiol Immunol 2008;322:163-92.

[59] Hauck CR. Cell adhesion receptors - signaling capacity and exploitation by bacterial
pathogens. Med Microbiol Immunol 2002;191:55-62.

[60] Hazan Z, Zumeris J, Jacob H, Raskin H, Kratysh G, Vishnia M, et al. Effective preven‐
tion of microbial biofilm formation on medical devices by low-energy surface acous‐
tic waves. Antimicrob Agents Chemother 2006;50:4144-52.

[61] Henke JM, Bassler BL. Bacterial social engagements. Trends Cell Biol 2004;14:648-56.

[62] Hinsa SM, Espinosa-Urgel M, Ramos JL, O'Toole GA. Transition from reversible to
irreversible attachment during biofilm formation by Pseudomonas fluorescens
WCS365 requires an ABC transporter and a large secreted protein. Mol Microbiol
2003;49:905-18.

[63] Hooton TM, Bradley SF, Cardenas DD, Colgan R, Geerlings SE, Rice JC, et al. Diag‐
nosis, prevention, and treatment of catheter-associated urinary tract infection in
adults: 2009 International Clinical Practice Guidelines from the Infectious Diseases
Society of America. Clin Infect Dis 2010;50:625-63.

[64] Hooton TM, Carlet JM, Duse AG, Krieger JN, Steele L, Sunakawa K. (2001) Defini‐
tions and epidemiology. In: Naber KG, Pechere JC, Kumazawa J, Khoury S, Gerberd‐
ing JL, Schaeffer AJ (eds) Nosocomial and Health Care Associated Infections in
Urology. Health Publication, Plymouth

[65] Hooton TM, Stamm WE. Diagnosis and treatment of uncomplicated urinary tract in‐
fection. Infect Dis Clin North Am 1997;11:551-81.

[66] Horan TC, Andrus M, Dudeck MA. CDC/NHSN surveillance definition of health
care-associated infection and criteria for specific types of infections in the acute care
setting. Am J Infect Control 2008;36:309-32.

[67] Howell AB, Reed JD, Krueger CG, Winterbottom R, Cunningham DG, Leahy M. A-
type cranberry proanthocyanidins and uropathogenic bacterial anti-adhesion activi‐
ty. Phytochemistry 2005;66: 2281-2291.

[68] Hull RA, Rudy DC, Donovan WH, Wieser IE, Stewart C, Darouiche RO. Virulence
properties of Escherichia coli 83972, a prototype strain associated with asymptomatic
bacteriuria. Infect Immun 1999;67:429-32.

Recent Advances in the Field of Urinary Tract Infections22



[69] Itoh Y, Wang X, Hinnebusch BJ, Preston JF, Romeo T. Depolymerization of beta-1,6-
N-acetyl-D-glucosamine disrupts the integrity of diverse bacterial biofilms. J Bacter‐
iol 2005;187:382-7.

[70] Izano EA, Sadovskaya I, Vinogradov E, Mulks MH, Velliyagounder K, Ragunath C,
et al. Poly-N-acetylglucosamine mediates biofilm formation and antibiotic resistance
in Actinobacillus pleuropneumoniae. Microb Pathog 2007;43:1-9.

[71] Izano EA, Amarante MA, Kher WB, Kaplan JB. Differential roles of poly-N-acetylglu‐
cosamine surface polysaccharide and extracellular DNA in Staphylococcus aureus and
Staphylococcus epidermidis biofilms. Appl Environ Microbiol 2008;74(2):470-6.

[72] Jackson DW, Suzuki K, Oakford L, Simecka JW, Hart ME, Romeo T. Biofilm forma‐
tion and dispersal under the influence of the global regulator CsrA of Escherichia
coli. J Bacteriol 2002;184:290-301.

[73] Jain P, Parada JP, David A, Smith LG. Overuse of the indwelling urinary tract cathe‐
ter in hospitalized medical patients. Arch Intern Med 1995;155:1425-9.

[74] Justice SS, Hung C, Theriot JA, Fletcher DA, Anderson GG, Footer MJ, et al. Differen‐
tiation and developmental pathways of uropathogenic Escherichia coli in urinary
tract pathogenesis. Proc Natl Acad Sci U S A 2004;101:1333-8.

[75] Karatan E, Watnick P. Signals, regulatory networks, and materials that build and
break bacterial biofilms. Microbiol Mol Biol Rev 2009;73:310-47.

[76] Kirov SM, Castrisios M, Shaw JG. Aeromonas flagella (polar and lateral) are entero‐
cyte adhesins that contribute to biofilm formation on surfaces. Infect Immun
2004;72:1939-45.

[77] Klevens RM, Edwards JR, Richards CL, Horan TC, Gaynes RP, Pollock DA, et al. Es‐
timating health care-associated infections and deaths in U.S. hospitals, 2002. Public
Health Rep 2007;122:160-6.

[78] Klumpp DJ, Weiser AC, Sengupta S, Forrestal SG, Batler RA, Schaeffer AJ. Uropatho‐
genic Escherichia coli potentiates type 1 pilus-induced apoptosis by suppressing NF-
kappaB. Infect Immun 2001;69:6689-95.

[79] Kowalczuk D, Ginalska G, Golus J. Characterization of the developed antimicrobial
urological catheters. Int J Pharm 2010;402:175-83.

[80] Langermann S, Möllby R, Burlein JE, Palaszynski SR, Auguste CG, DeFusco A, et al.
Vaccination with FimH adhesin protects cynomolgus monkeys from colonization
and infection by uropathogenic Escherichia coli. J Infect Dis 2000;181:774-8.

[81] Langermann S, Palaszynski S, Barnhart M, Auguste G, Pinkner JS, Burlein J, et al.
Prevention of mucosal Escherichia coli infection by FimH-adhesin-based systemic
vaccination. Science 1997;276:607-11.

Role of Bacterial Biofilms in Catheter-Associated Urinary Tract Infections… 23



[82] Lasa I, Penadés JR. Bap: a family of surface proteins involved in biofilm formation.
Res Microbiol 2006;157:99-107.

[83] Lauriano CM, Ghosh C, Correa NE, Klose KE. The sodium-driven flagellar motor
controls exopolysaccharide expression in Vibrio cholerae. J Bacteriol
2004;186:4864-74.

[84] Lellouche J, Kahana E, Elias S, Gedanken A, Banin E. Antibiofilm activity of nano‐
sized magnesium fluoride. Biomaterials 2009;30:5969-78.

[85] Lemon KP, Higgins DE, Kolter R. Flagellar motility is critical for Listeria monocyto‐
genes biofilm formation. J Bacteriol 2007;189:4418-24.

[86] Li X, Zhao H, Lockatell CV, Drachenberg CB, Johnson DE, Mobley HL. Visualization
of Proteus mirabilis within the matrix of urease-induced bladder stones during experi‐
mental urinary tract infection. Infect Immun 2002;70:389-94.

[87] Litwin MS, Saigal CS, Yano EM, Avila C, Geschwind SA, Hanley JM. Urologic dis‐
eases in America project: analytical methods and principal findings. J. Urol
2005;173:933-937.

[88] Liu Y, Black MA, Caron L, Camesano TA. Role of cranberry juice on molecular-scale
surface characteristics and adhesion behavior of Escherichia coli. Biotechnol Bioeng
2006;93:297-305.

[89] Lo E, Nicolle L, Classen D, Arias KM, Podgorny K, Anderson DJ, et al. Strategies to
prevent catheter-associated urinary tract infections in acute care hospitals. Infect
Control Hosp Epidemiol 2008;29 Suppl 1:S41-50.

[90] Lyte M, Freestone PP, Neal CP, Olson BA, Haigh RD, Bayston R, et al. Stimulation of
Staphylococcus epidermidis growth and biofilm formation by catecholamine ino‐
tropes. Lancet 2003;361:130-5.

[91] Maki DG, Tambyah PA. Engineering out the risk for infection with urinary catheters.
Emerg Infect Dis 2001;7:342-7.

[92] Manefield M, de Nys R, Kumar N, Read R, Givskov M, Steinberg P, et al. Evidence
that halogenated furanones from Delisea pulchra inhibit acylated homoserine lactone
(AHL)-mediated gene expression by displacing the AHL signal from its receptor pro‐
tein. Microbiology 1999;145 ( Pt 2):283-91.

[93] Marrs CF, Zhang L, Foxman B. Escherichia coli mediated urinary tract infections: are
there distinct uropathogenic E. coli (UPEC) pathotypes? FEMS Microbiol Lett
2005;252:183-90.

[94] Marshall KC. Interfaces in microbial ecology. Cambridge, MA: Harvard University
Press, 1976. 156 p.

[95] Matsukawa M, Greenberg EP. Putative exopolysaccharide synthesis genes influence
Pseudomonas aeruginosa biofilm development. J Bacteriol 2004;186:4449-56.

Recent Advances in the Field of Urinary Tract Infections24



[96] Matsumura Y, Yoshikata K, Kunisaki S, Tsuchido T. Mode of bactericidal action of
silver zeolite and its comparison with that of silver nitrate. Appl Environ Microbiol
2003;69:4278-81.

[97] Mattelaer JJ, Billiet I. Catheters and sounds: the history of bladder catheterisation.
Paraplegia 1995;33:429-33.

[98] Morris NS, Stickler DJ. The effect of urease inhibitors on the encrustation of urethral
catheters. Urol Res 1998;26:275-9.

[99] Mulvey MA, Lopez-Boado YS, Wilson CL, Roth R, Parks WC, Heuser J, et al. Induc‐
tion and evasion of host defenses by type 1-piliated uropathogenic Escherichia coli.
Science 1998;282:1494-7.

[100] Mulvey MA, Schilling JD, Hultgren SJ. Establishment of a persistent Escherichia coli
reservoir during the acute phase of a bladder infection. Infect Immun 2001;69:4572-9.

[101] Munasinghe RL, Yazdani H, Siddique M, Hafeez W. Appropriateness of use of in‐
dwelling urinary catheters in patients admitted to the medical service. Infect Control
Hosp Epidemiol 2001;22:647-9.

[102] National Nosocomial Infections Surveillance (NNIS) System Report, data summary
from January 1992 through June 2004, issued October 2004. Am J Infect Control
2004;32:470-85.

[103] Nickel JC, Downey JA, Costerton JW. Ultrastructural study of microbiologic coloni‐
zation of urinary catheters. Urology 1989;34:284-91.

[104] Nickel JC, Gristina AG, Costerton JW. Electron microscopic study of an infected Fo‐
ley catheter. Can J Surg 1985;28:50-1, 4.

[105] Nickel JC, Olson ME, Barabas A, Benediktsson H, Dasgupta MK, Costerton JW.
Pathogenesis of chronic bacterial prostatitis in an animal model. Br J Urol
1990;66:47-54.

[106] Nickel JC, Olson M, McLean RJ, Grant SK, Costerton JW. An ecological study of in‐
fected urinary stone genesis in an animal model. Br J Urol 1987;59:21-30.

[107] Nicolle LE. Infection control in acute care facilities: Evidence-based patient safety.
Can J Infect Dis. 2001;12(3):131-2.

[108] Nicolle LE. Catheter-related urinary tract infection. Drugs Aging 2005;22:627-39.

[109] Oelschlaeger TA, Dobrindt U, Hacker J. Virulence factors of uropathogens. Curr
Opin Urol 2002;12:33-8.

[110] Ofek I, Godhar J, Zafriri D, Lis H, Adar R, Sharon N. Anti-Escherichia coli adhesion
activity of cranberry and blueberry juices. N Engl J Med 1991; 324:1599.

Role of Bacterial Biofilms in Catheter-Associated Urinary Tract Infections… 25



[111] Ohkawa M, Sugata T, Sawaki M, Nakashima T, Fuse H, Hisazumi H. Bacterial and
crystal adherence to the surfaces of indwelling urethral catheters. J Urol
1990;143:717-21.

[112] Ohnishi R, Ito H, Kasajima N, Kaneda M, Kariyama R, Kumon H, Hatano T, Yoshida
T. Urinary excretion of anthocyanins in humans after cranberry juice ingestion. Biosci
Biotechnol Biochem 2006; 70:1681-1687.

[113] Pak J, Pu Y, Zhang ZT, Hasty DL, Wu XR. Tamm-Horsfall protein binds to type 1
fimbriated Escherichia coli and prevents E. coli from binding to uroplakin Ia and Ib
receptors. J Biol Chem 2001;276:9924-30.

[114] Parise G, Mishra M, Itoh Y, Romeo T, Deora R. Role of a putative polysaccharide lo‐
cus in Bordetella biofilm development. J Bacteriol 2007;189:750-60.

[115] Park JH, Cho YW, Cho YH, Choi JM, Shin HJ, Bae YH, et al. Norfloxacin-releasing
urethral catheter for long-term catheterization. J Biomater Sci Polym Ed
2003;14:951-62.

[116] Park JH, Cho YW, Kwon IC, Jeong SY, Bae YH. Assessment of PEO/PTMO multi‐
block copolymer/segmented polyurethane blends as coating materials for urinary
catheters: in vitro bacterial adhesion and encrustation behavior. Biomaterials
2002;23:3991-4000.

[117] Pérez-López FR, Haya J, Chedraui P. Vaccinium macrocarpon: an interesting option for
women with recurrent urinary tract infections and other health benefits. J Obstet Gy‐
naecol Res 2009;35:630-639.

[118] Platt R, Polk BF, Murdock B, Rosner B. Reduction of mortality associated with noso‐
comial urinary tract infection. Lancet 1983;1:893-7.

[119] Poovendran P, Vidhya N, Murugan S. Antimicrobial Activity of Coccinia grandis
Against Biofilm and ESBL Producing Uropathogenic E. coli. Global J Pharmacol 2011;
5 (1): 23-26.

[120] Pratt LA, Kolter R. Genetic analysis of Escherichia coli biofilm formation: roles of
flagella, motility, chemotaxis and type I pili. Mol Microbiol 1998;30:285-93.

[121] Pugach JL, DiTizio V, Mittelman MW, Bruce AW, DiCosmo F, Khoury AE. Antibiotic
hydrogel coated Foley catheters for prevention of urinary tract infection in a rabbit
model. J Urol 1999;162:883-7.

[122] Regev-Shoshani G, Ko M, Crowe A, Av-Gay Y. Comparative efficacy of commercial‐
ly available and emerging antimicrobial urinary catheters against bacteriuria caused
by E. coli in vitro. Urology 2011;78:334-9.

[123] Regev-Shoshani G, Ko M, Miller C, Av-Gay Y. Slow release of nitric oxide from
charged catheters and its effect on biofilm formation by Escherichia coli. Antimicrob
Agents Chemother 2010;54:273-9.

Recent Advances in the Field of Urinary Tract Infections26



[124] Reysenbach AL, Cady SL. Microbiology of ancient and modern hydrothermal sys‐
tems. Trends Microbiol 2001;9:79-86.

[125] Richards MJ, Edwards JR, Culver DH, Gaynes RP. Nosocomial infections in medical
intensive care units in the United States. National Nosocomial Infections Surveillance
System. Crit Care Med 1999;27:887-92.

[126] Rijavec M, Starcic Erjavec M, Ambrozic Avgustin J, Reissbrodt R, Fruth A, Krizan-
Hergouth V, Zgur-Bertok D. High prevalence of multidrug resistance and random
distribution of mobile genetic elements among uropathogenic Escherichia coli (UPEC)
of the four major phylogenetic groups. Curr Microbiol 2006;53(2):158-62.

[127] Ronald A, Ludwig E. Urinary tract infections in adults with diabetes. Int J Antimi‐
crob Agents 2001;17:287-92.

[128] Ronald A. The etiology of urinary tract infection: traditional and emerging patho‐
gens. Am J Med. 2002;113 Suppl 1A:14S-19S.

[129] Rosen DA, Hooton TM, Stamm WE, Humphrey PA, Hultgren SJ. Detection of intra‐
cellular bacterial communities in human urinary tract infection. PLoS Med
2007;4:e329.

[130] Ruben FL, Dearwater SR, Norden CW, Kuller LH, Gartner K, Shalley A, et al. Clinical
infections in the noninstitutionalized geriatric age group: methods utilized and inci‐
dence of infections. The Pittsburgh Good Health Study. Am J Epidemiol
1995;141:145-57.

[131] Saint S, Elmore JG, Sullivan SD, Emerson SS, Koepsell TD. The efficacy of silver al‐
loy-coated urinary catheters in preventing urinary tract infection: a meta-analysis.
Am J Med 1998;105:236-41.

[132] Scott II RD. 2009. The direct medical costs of healthcare associated infections in US
hospitals and the benefits of their prevention. http://www.cdc.gov/HAI/pdfs/hai/
Scott_CostPaper.pdf

[133] Schumm K, Lam TB. Types of urethral catheters for management of short-term void‐
ing problems in hospitalized adults: a short version Cochrane review. Neurourol Ur‐
odyn 2008;27:738-46.

[134] Seeram NP. Berry fruits for cancer prevention: current status and future prospects. J
Agric Food Chem 2008; 56:630-635.

[135] Sherlock O, Schembri MA, Reisner A, Klemm P. Novel roles for the AIDA adhesin
from diarrheagenic Escherichia coli: cell aggregation and biofilm formation. J Bacter‐
iol 2004;186:8058-65.

[136] Shin JS, Gao Z, Abraham SN. Involvement of cellular caveolae in bacterial entry into
mast cells. Science 2000;289:785-8.

Role of Bacterial Biofilms in Catheter-Associated Urinary Tract Infections… 27



[137] Siddiq DM, Darouiche RO. New strategies to prevent catheter-associated urinary
tract infections. Nat Rev Urol 2012;9:305-14.

[138] Snyder JA, Lloyd AL, Lockatell CV, Johnson DE, Mobley HL. Role of phase variation
of type 1 fimbriae in a uropathogenic Escherichia coli cystitis isolate during urinary
tract infection. Infect Immun 2006;74:1387-93.

[139] Sokurenko EV, Chesnokova V, Doyle RJ, Hasty DL. Diversity of the Escherichia coli
type 1 fimbrial lectin. Differential binding to mannosides and uroepithelial cells. J Bi‐
ol Chem 1997;272:17880-6.

[140] Solano C, García B, Valle J, Berasain C, Ghigo JM, Gamazo C, et al. Genetic analysis
of Salmonella enteritidis biofilm formation: critical role of cellulose. Mol Microbiol
2002;43:793-808.

[141] Sosa V, Zunino PJ. Effect of Ibicella lutea on uropathogenic Proteus mirabilis growth,
virulence, and biofilm formation. Infect Dev Ctries 2009; 3(10):762-70.

[142] Spiers AJ, Bohannon J, Gehrig SM, Rainey PB. Biofilm formation at the air-liquid in‐
terface by the Pseudomonas fluorescens SBW25 wrinkly spreader requires an acety‐
lated form of cellulose. Mol Microbiol 2003;50:15-27.

[143] Srinivasan A, Karchmer T, Richards A, Song X, Perl TM. A prospective trial of a nov‐
el, silicone-based, silver-coated Foley catheter for the prevention of nosocomial uri‐
nary tract infections. Infect Control Hosp Epidemiol 2006;27:38-43.

[144] Stamm WE, Hooton TM. Management of urinary tract infections in adults. N Engl J
Med 1993; 329:1328-1334.

[145] Stark RP, Maki DG. Bacteriuria in the catheterized patient. What quantitative level of
bacteriuria is relevant? N Engl J Med 1984;311:560-4.

[146] Stevenson G, Andrianopoulos K, Hobbs M, Reeves PR. Organization of the Escheri‐
chia coli K-12 gene cluster responsible for production of the extracellular polysac‐
charide colanic acid. J Bacteriol 1996;178:4885-93.

[147] Stewart MJ, Parikh S, Xiao G, Tonge PJ, Kisker C. Structural basis and mechanism of
enoyl reductase inhibition by triclosan. J Mol Biol 1999;290:859-65.

[148] Stickler DJ. Bacterial biofilms and the encrustation of urethral catheters. Biofouling
1996;9:293–305.

[149] Stickler D, Morris N, Moreno MC, Sabbuba N. Studies on the formation of crystalline
bacterial biofilms on urethral catheters. Eur J Clin Microbiol Infect Dis 1998;17:649-52.

[150] Stickler D, Young R, Jones G, Sabbuba N, Morris N. Why are Foley catheters so vul‐
nerable to encrustation and blockage by crystalline bacterial biofilm? Urol Res
2003;31:306-11.

Recent Advances in the Field of Urinary Tract Infections28



[151] Stoodley P, Sauer K, Davies DG, Costerton JW. Biofilms as complex differentiated
communities. Annu Rev Microbiol 2002;56:187-209.

[152] Sun TT, Zhao H, Provet J, Aebi U, Wu XR. Formation of asymmetric unit membrane
during urothelial differentiation. Mol Biol Rep 1996;23:3-11.

[153] Sun Y, Zeng Q, Zhang Z, Xu C, Wang Y, He J. Decreased urethral mucosal damage
and delayed bacterial colonization during short-term urethral catheterization using a
novel trefoil urethral catheter profile in rabbits. J Urol 2011;186:1497-501.

[154] Sutherland IW. The biofilm matrix--an immobilized but dynamic microbial environ‐
ment.. Trends Microbiol 2001;9(5):222-7.

[155] Svanborg C, Bergsten G, Fischer H, Frendéus B, Godaly G, Gustafsson E, et al. The
'innate' host response protects and damages the infected urinary tract. Ann Med
2001;33:563-70.

[156] Tambyah PA. Catheter-associated urinary tract infections: diagnosis and prophylax‐
is. Int J Antimicrob Agents 2004;24 Suppl 1:S44-8.

[157] Tabibian JH, Gornbein J, Heidari A, Dien SL, Lau VH, Chahal P, Churchill BM,
Haake DA. Uropathogens and host characteristics. J Clin Microbiol 2008;
46:3980-3986.

[158] Tambyah PA, Halvorson KT, Maki DG. A prospective study of pathogenesis of cath‐
eter-associated urinary tract infections. Mayo Clin Proc 1999;74:131-6.

[159] Tao Y, Pinzón-Arango PA, Howell AB, Camesano TA. Oral consumption of cranber‐
ry juice cocktail inhibits molecular-scale adhesion of clinical uropathogenic Escheri‐
chia coli. J Med Food 2011;14(7-8):739-45.

[160] Taylor CD, Wirsen CO, Gaill F. Rapid microbial production of filamentous sulfur
mats at hydrothermal vents. Appl Environ Microbiol 1999;65:2253-5.

[161] Tenke P, Kovacs B, Jäckel M, Nagy E. The role of biofilm infection in urology. World
J Urol 2006;24:13-20.

[162] Tenke P, Köves B, Nagy K, Hultgren SJ, Mendling W, Wullt B, et al. Update on bio‐
film infections in the urinary tract. World J Urol 2012;30:51-7.

[163] Tielker D, Hacker S, Loris R, Strathmann M, Wingender J, Wilhelm S, et al. Pseudo‐
monas aeruginosa lectin LecB is located in the outer membrane and is involved in bi‐
ofilm formation. Microbiology 2005;151:1313-23.

[164] Topal J, Conklin S, Camp K, Morris V, Balcezak T, Herbert P. Prevention of nosoco‐
mial catheter-associated urinary tract infections through computerized feedback to
physicians and a nurse-directed protocol. Am J Med Qual 2005;20:121-6.

[165] Toutain CM, Caizza NC, Zegans ME, O'Toole GA. Roles for flagellar stators in bio‐
film formation by Pseudomonas aeruginosa. Res Microbiol 2007;158:471-7.

Role of Bacterial Biofilms in Catheter-Associated Urinary Tract Infections… 29



[166] Trautner BW, Darouiche RO. Catheter-associated infections: pathogenesis affects pre‐
vention. Arch Intern Med 2004a;164:842-50.

[167] Trautner BW, Darouiche RO. Role of biofilm in catheter-associated urinary tract in‐
fection. Am J Infect Control 2004b;32:177-83.

[168] Trautner BW, Hull RA, Thornby JI, Darouiche RO. Coating urinary catheters with an
avirulent strain of Escherichia coli as a means to establish asymptomatic coloniza‐
tion. Infect Control Hosp Epidemiol 2007;28:92-4.

[169] Tunney MM, Gorman SP. Evaluation of a poly(vinyl pyrollidone)-coated biomaterial
for urological use. Biomaterials 2002;23:4601-8.

[170] Umscheid CA, Mitchell MD, Doshi JA, Agarwal R, Williams K, Brennan PJ. Estimat‐
ing the proportion of healthcare-associated infections that are reasonably preventable
and the related mortality and costs. Infect Control Hosp Epidemiol 2011;32:101-14.

[171] van Schaik EJ, Giltner CL, Audette GF, Keizer DW, Bautista DL, Slupsky CM, et al.
DNA binding: a novel function of Pseudomonas aeruginosa type IV pili. J Bacteriol
2005;187:1455-64.

[172] Vuong C, Kocianova S, Voyich JM, Yao Y, Fischer ER, DeLeo FR, et al. A crucial role
for exopolysaccharide modification in bacterial biofilm formation, immune evasion,
and virulence. J Biol Chem 2004;279:54881-6.

[173] Wang X, Preston JF, Romeo T. The pgaABCD locus of Escherichia coli promotes the
synthesis of a polysaccharide adhesin required for biofilm formation. J Bacteriol
2004;186:2724-34.

[174] Warren JW. Catheter-associated urinary tract infections. Infect Dis Clin North Am
1997;11:609-22.

[175] Warren JW. Catheter-associated urinary tract infections. Int J Antimicrob Agents
2001;17:299-303.

[176] Watnick PI, Lauriano CM, Klose KE, Croal L, Kolter R. The absence of a flagellum
leads to altered colony morphology, biofilm development and virulence in Vibrio
cholerae O139. Mol Microbiol 2001;39:223-35.

[177] Whitchurch CB, Tolker-Nielsen T, Ragas PC, Mattick JS. Extracellular DNA required
for bacterial biofilm formation. Science 2002; 295(5559):1487.

[178] Wollenweber E. Occurrence of flavonoid aglycones in medicinal plants. Prog Clin Bi‐
ol Res 1988; 280: 45-55.

[179] Yamamoto S, Tsukamoto T, Terai A, Kurazono H, Takeda Y, Yoshida O. Distribution
of virulence factors in Escherichia coli isolated from urine of cystitis patients. Micro‐
biol Immunol 1995;39:401-4.

Recent Advances in the Field of Urinary Tract Infections30



[180] Zhou G, Mo WJ, Sebbel P, Min G, Neubert TA, Glockshuber R, et al. Uroplakin Ia is
the urothelial receptor for uropathogenic Escherichia coli: evidence from in vitro FimH
binding. J Cell Sci 2001;114:4095-103.

[181] Zogaj X, Bokranz W, Nimtz M, Römling U. Production of cellulose and curli fimbriae
by members of the family Enterobacteriaceae isolated from the human gastrointestinal
tract. Infect Immun 2003;71:4151-8.

[182] Zogaj X, Nimtz M, Rohde M, Bokranz W, Römling U. The multicellular morphotypes
of Salmonella typhimurium and Escherichia coli produce cellulose as the second com‐
ponent of the extracellular matrix. Mol Microbiol 2001;39:1452-63.

Role of Bacterial Biofilms in Catheter-Associated Urinary Tract Infections… 31




