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1. Introduction

The complex systems and their dynamics are treated various way. Ohya looked for synthe‐
sizing method to treat complex systems. He established Information Dynamics [36] which is
a new concept unifying the dynamics of a state and the complexity of the system itself. By
applying Information Dynamics, one can discuss in a unified frame the problems such as in
mathematics, physics, biology, information science. Information Dynamics is growing as one
of the research fields, for instance, the international journal named "Open Systems and
Information Dynamics" in 1992 has appeared. In ID, there are two types of complexity, that is,
(a) a complexity of state describing system itself and (b) a transmitted complexity between two
systems. Entropies of classical and quantum information theory are the example of the
complexities of (a) and (b).

Shannon [52] found that the entropy, introduced in physical systems by Clausius and Boltz‐
mann, can be used to express the amount of information by means of communication proc‐
esses, and he proposed the so-called information communication theory at the middle part of
the 20th century. In his information theory, the entropy and the mutual entropy (information)
are most important concepts. The entropy relates to the complexity of ID measuring the
amount of information of the state of system. The mutual entropy (information) corresponds
to the transmitted complexity of ID representing the amount of information correctly trans‐
mitted from the initial system to the final system through a channel, and it was extended to
the mutual entropy on the continuous probability space by Gelfand– Kolmogorov - Yaglom
[17,23], which was defined by using the relative entropy of two states by Kullback-Leibler [26].

Laser is often used in the current communication. A formulation of information theory being
able to treat quantum effects is necessary, which is the so-called quantum information theory.
The quantum information theory is important in both mathematics and engineering. It has been
developed with quantum entropy theory and quantum probability. In quantum information
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theory, one of the important problems is to investigate how much information is exactly
transmitted to the output system from the input system through a quantum channel. The amount
of information of the quantum input system is described by the quantum entropy defined by
von Neumann [29] in 1932. The C*-entropy was introduced in [33,35] and its property is
discussed in [28,21]. The quantum relative entropy was introduced by Umegaki [55] and it is
extended to general quantum system by Araki [4,5], Uhlmann [54] and Donald [14]. Further‐
more, it had been required to extend the Shannon’s mutual entropy (information) of classical
information theory to that in the quantum one. The classical mutual entropy is defined by using
the joint probability expressing a correlation between the input system and the output system.
However, it was shown by Urbanik [56] that in quantum system there does not generally exists
a joint probability distribution. The semi-classical mutual entropy was introduced by Holevo,
Livitin, Ingarden [18,20] for classical input and output passing through a possible quantum
channel. By introducing a new notion, the so-called compound state, in 1983 Ohya formulat‐
ed the mutual entropy [31,32] in a complete quantum mechanical system (i.e., input state, output
state and channel are all quantum mechanical), which is called the Ohya mutual entropy. It was
generalized to C*-algebra in [Oent84]. The quantum capacity [40] is defined by taking the
supremum for the Ohya mutual entropy. By using the Ohya quantum mutual entropy, one can
discuss the efficiency of the information transmission in quantum systems [28,27,44,34,35],
which allows the detailed analysis of optical communication processes. Concerning quantum
communication processes, several studies have been done in [31,32,35,40,41]. Recently, several
mutual entropy type measures (Lindblad - Nielsen entropy [10] and Coherent entropy [6]) were
defined by using the entropy exchange. One can classify these mutual entropy type measures
by calculating their measures for the quantum channel. These entropy type complexities are
explained in [39,43].

The entangled state is an important concept for quantum theory and it has been studied
recently by several authors. One of the remarkable formulations to search the entanglement
state is the Jamiolkowski’s isomorphism [22]. It might be related to the construction of the
compound state in quantum communication processes. One can discuss the entangled state
generated by the beam splitting and the squeezed state.

The classical dynamical (or Kolmogorov-Sinai) entropy S(T) [23] for a measure preserving
transformation T was defined on a message space through finite partitions of the measurable
space. The classical coding theorems of Shannon are important tools to analyze communication
processes which have been formulated by the mean dynamical entropy and the mean dynam‐
ical mutual entropy. The mean dynamical entropy represents the amount of information per
one letter of a signal sequence sent from the input source, and the mean dynamical mutual
entropy does the amount of information per one letter of the signal received in the output
system. In this chapter, we will discuss the complexity of the quantum dynamical system to
calculate the mean mutual entropy with respect to the modulated initial states and the
attenuation channel for the quantum dynamical systems [59].

The quantum dynamical entropy (QDE) was studied by Connes-Størmer [13], Emch [15],
Connes-Narnhofer-Thirring [12], Alicki-Fannes [3], and others [9,48,19,57,11]. Their dynamical
entropies were defined in the observable spaces. Recently, the quantum dynamical entropy
and the quantum dynamical mutual entropy were studied by the present authors [34,35]: (1)
the dynamical entropy is defined in the state spaces through the complexity of Information
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Dynamics [36]. (2) It is defined through the quantum Markov chain (QMC) was done in [2].
(3) The dynamical entropy for a completely positive (CP) map was defined in [25]. In this
chapter, we will discuss the complexity of the quantum dynamical process to calculate the
generalized AOW entropy given by KOW entropy for the noisy optical channel [58].

2. Quantum channels

The signal of the input quantum system is transmitted through a physical device, which is
called a quantum channel. The concept of channel has been performed an important role in
the progress of the quantum information communication theory. The mathematical represen‐
tation of the quantum channel is a mapping from the input state space to the output state space.
In particular, the attenuation channel [31] and the noisy optical channel [44] are remarkable
examples of the quantum channels describing the quantum optical communication processes.
These channels are related to the mathematical desctiption of the beam splitter.

Here we review the definition of the quantum channels.

Let (B(ℋ1), �(ℋ1)) and (B(ℋ2), �(ℋ2)) be input and output systems, respectively, where
B(ℋk ) is the set of all bounded linear operators on a separable Hilbert space ℋk  and �(ℋk )
is the set of all density operators on ℋk  (k =1, 2). Quantum channel Λ ∗ is a mapping from�(ℋ1) to �(ℋ2).

1. Λ ∗ is called a linear channel if Λ ∗ satisfies Λ ∗(λρ1 + (1−λ)ρ2)=λΛ ∗(ρ1) + (1−λ)Λ ∗(ρ2) for
any ρ1, ρ2∈�(ℋ1) and any λ∈ 0, 1 .

2. Λ ∗ is called a completely positive (CP) channel if Λ ∗ is linear and its dual map Λ from
B(ℋ2) to B(ℋ1) holds

∑
i, j=1

n

Ai
∗Λ(Bi

∗Bj)Aj ≥0

for any n∈N , any Bj∈B(ℋ2) and any Aj∈B(ℋ1), where the dual map Λ of Λ ∗ is defined by
trΛ ∗(ρ)B = trρΛ(B) for any ρ∈�(ℋ1) and any B∈B(ℋ2). Almost all physical transformations
can be described by the CP channel [30,39,21,46, 43].

3. Quantum communication processes

Let �1 and �2 be two Hilbert spaces expressing noise and loss systems, respectively. Quantum
communication process including the influence of noise and loss is denoted by the following
scheme [31]: Let ρ be an input state in �(ℋ1), ζ be a noise state in �(�1).
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�(ℋ1) Λ ∗
→ �(ℋ2)

γ ∗↓ ↑a∗�(ℋ1⊗�1) Π ∗
↔ �(ℋ2⊗�2)

The above maps γ ∗, a∗ are given as

γ ∗(ρ)=ρ⊗ ξ, ρ∈�(ℋ1),
a∗(σ)= tr�2

σ, σ∈ �(ℋ2⊗�2).

The map Π ∗ is a CP channel from �(ℋ1⊗�1) to �(ℋ2⊗�2) given by physical properties of
the device transmitting signals. Hence the channel for the above process is given as

Λ ∗(ρ)≡ tr�2
Π ∗( ρ⊗ ζ)= (a∗◦Π ∗◦γ ∗)(ρ)

for any ρ∈�(ℋ1). Based on this scheme, the noisy optical channel is constructed as follows:

4. Noisy optical channel

Noisy optical channel Λ ∗ with a noise state ζ was defined by Ohya and NW [44] such as

Λ ∗(ρ)≡ tr�2
Π ∗(ρ⊗ ζ)= tr�2

V (ρ⊗ ζ)V ∗,

where ζ = |m1 m1 |  is the m1 photon number state in �(�1) and V  is a mapping from ℋ1⊗�1

to ℋ2⊗�2 denoted by

V (|n1 ⊗ |m1 )=∑
j=0

n1+m1

Cj
n1,m1 | j ⊗ |n1 + m1− j ,

where

Cj
n1,m1 =∑

r=L

K

(−1)n1+ j−r n1 !m1 ! j ! (n1 + m1− j) !
r ! (n1− j) ! ( j − r) ! (m1− j + r) ! α m1− j+2r(− β̄)n1+ j−2r ,

and |n1  is the n1 photon number state vector in ℋ1, and α, β are complex numbers satisfying
|α | 2 + |β | 2 =1. K  and L  are constants given by K =min{n1, j}, L =max{m1− j, 0}. We have
the following theorem.

Theorem The noisy optical channel Λ ∗ with noise state |m m |  is described by

Λ ∗(ρ)=∑
i=0

∞

OiV Q (m)ρQ (m)∗V ∗Oi
∗,
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where Q (m)≡
l=0
∞ (| yl ⊗ |m ) yl | ,  Oi ≡ k =0

∞ | zk ( zk | ⊗ i | ), {| yl } is a CONS in ℋ1, {| zk } is a

CONS in ℋ2 and {| i } is the set of number states in �2.

In particular for the coherent input states

ρ = |ξ ξ | ⊗ |κ κ | ∈�(ℋ1⊗�1),

the output state of Π ∗ is obtained by

Π ∗(|ξ ξ | ⊗ |κ κ |)= |αξ + βκ αξ + βκ | ⊗ | − β̄ξ + ᾱκ − β̄ξ + ᾱκ | .

|κ κ |
↓

|ξ ξ | → → |αξ + βκ αξ + βκ |
↓

| − β̄ξ + ᾱκ − β̄ξ + ᾱκ |

5. Attenuation channel

The noisy optical channel with a vacuum noise is called the attenuation channel introduced in
[31] by

Λ0
∗(ρ)≡ tr�2

Π0
∗(ρ⊗ ζ0)= tr�2

V0(ρ⊗ |0 0| )V0
∗,

where |0 0|  is the vacuum state in �(�1) and V0 is a mapping from ℋ1⊗�1 to ℋ2⊗�2

given by

V0(|n1 ⊗ |0 )=∑
j

n1

Cj
n1 | j ⊗ |n1− j ,

Cj
n1 =

n1 !
j ! (n1− j) ! α j(− β̄)n1− j

In particular, for the coherent input state

ρ = |ξ ξ | ⊗ |0 0| ∈�(ℋ1⊗�1),

one can obtain the output state

Π0
∗(|ξ ξ | ⊗ |0 0|)= |αξ αξ | ⊗ | − β̄ξ − β̄ξ | .

Lifting ℰ0
∗ from �(ℋ) to �(ℋ⊗�) in the sense of Accardi and Ohya [1] is denoted by

ℰ0
∗(|ξ ξ |)= |αξ αξ | ⊗ |βξ βξ | .
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ℰ0
∗ (or Π0

∗) is called a beam splitting. Based on liftings, the beam splitting was studied by
Accardi - Ohya [1] and Fichtner - Freudenberg - Libsher [16].

6. Information dynamics

We are interested to study the dynamics of state change or the complexity of state for several
systems. Information dynamics (ID) is a new concept introduced by Ohya [36] to construct a
theory under the ID's framework by synthesizing these investigating schemes. In ID, a
complexity of state describing system itself and a transmitted complexity between two systems
are used. The examples of these complexities are the Shannon's entropy and the mutual
entropy (information) in classical entropy theory. In quantum entropy theory, it was known
that the von Neumann entropy and the Ohya mutual entropy relate to these complexities.
Recently, several mutual entropy type measures (the Lindblad - Nielsen entropy [10] and the
Coherent entropy [6]) were proposed by means of the entropy exchange for an input state and
a channel.

7. Concept of information dynamics

Ohya introduced Information Dynamics (ID) synthesizing dynamics of state change and
complexity of state. Based on ID, one can study various problems of physics and other fields.
Channel and two complexities are key concepts of ID. Two kinds of complexities C �(ρ),
T �(ρ;Λ ∗) are used in ID. C �(ρ)is a complexity of a state ρ measured from a subset � and
T �(ρ;Λ ∗) is a transmitted complexity according to the state change from ρ to Λ ∗ρ. Let �, �̄, �t

be subsets of �(ℋ1),  �(ℋ2),  �(ℋ1⊗ℋ2), respectively. These complexities should fulfill the
following conditions as follows:

8. Complexity of system

1. For any ρ∈�, C �(ρ) is nonnegative (i.e., C �(ρ)≥0 )

2. For a bijection j from ex�(ℋ1) to ex�(ℋ1),

C �(ρ)=C �( j(ρ))

is hold, where ex�(ℋ1) is the set of all extremal points of �(ℋ1).

3. For ρ⊗ σ∈�(ℋ1⊗ℋ2), ρ∈�(ℋ1), σ∈�(ℋ2),

C �t(ρ⊗ σ)=C �(ρ) + C �̄(σ)
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It means that the complexity of the state ρ⊗ σof totally independent systems are given by the
sum of the complexities of the states ρ and σ.

9. Transmitted complexity

(1’) For any ρ∈� and a channel Λ ∗, T �(ρ;Λ ∗) is nonnegative (i.e., T �(ρ;Λ ∗)≥0 )

(4) C �(ρ) and T �(ρ;Λ ∗) satisfy the following inequality 0≤T �(ρ;Λ ∗)≤C �(ρ).

(5) If the channel Λ ∗ is given by the identity map id , then T �(ρ; id )=C �(ρ) is hold.

The examples of the above complexities are the Shannon entropy S (p) for C �(p) and the
classical mutual entropy I (p;Λ ∗) for T �(p;Λ ∗), respectively Let us consider these complexities
for quantum communication processes.

10. Quantum entropy

Since the present optical communication is using the optical signal including quantum effect,
it is necessary to construct new information theory dealing with those quantum phenomena
in order to discuss the efficiency of information transmission of optical communication
processes rigorously. The quantum information theory is important in both mathematics and
engineering, and it contains several topics, for instance, quantum entropy theory, quantum
communication theory, quantum teleportation, quantum entanglement, quantum algorithm,
quantum coding theory and so on. It has been developed with quantum entropy theory and
quantum probability. In quantum information theory, one of the important problems is to
investigate how much information is exactly transmitted to the output system from the input
system through a quantum channel. The amount of information of the quantum communica‐
tion system is described by the quantum mutual entropy defined by Ohya [31], based on the
quantum entropy by von Neumann [29], and the quantum relative entropy by Umegaki [55],
Araki [4] and Uhlmann [54]. The quantum information theory directly relates to quantum
communication theory, for instance, [40,41,45]. One of the most important communication
processes is quantum teleportation, whose new treatment was studied in [24]. It is important
to classify quantum states. One of such classifications is to study entanglement and separability
of states (see [7,8]). There have been lots of trials in finite dimensional Hilbert spaces. Quantum
mechanics should be basically discussed in infinite dimensional Hilbert spaces. We have to
study such a classification in infinite dimensional Hilbert spaces.

10.1. Von Neumann entropy

The study of the entropy in quantum system was begun by von Neumann [29] in 1932. For
any state given by the density operator ρ, the von Neumann entropy is defined by

S (ρ)= − trρlogρ, ∀ρ∈�(ℋ).
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Since the von Neumann entropy satisfies the conditions (1),(2),(3) of the complexity of state of
ID, it seems to be considered as an example of the complexity of state C(ρ)=S (ρ).

10.2. Entropy for general systems

Here we briefly explain Let us comment general entropies of states in C*-dynamical systems.
The C*-entropy (�-mixing entropy) was introduced by Ohya in [33,35] and its property is
discussed in [28,21].

Let (�, �(�), α(G)) be a C*-dynamical system and � be a weak* compact and convex subset
of �(�). For example, � is given by �(�) (the set of all states on �), I (α) (the set of all invariant
states for α), K (α) (the set of all KMS states),and so on. Every state φ∈� has a maximal measure
μ pseudosupported on ex� such that

φ = ∫�ωdμ,

where ex� is the set of all extreme points of �. The measure μ giving the above decomposition
is not unique unless � is a Choquet simplex. The set of all such measures is denoted by Mφ(�)
and Dφ(�)is the subset of Mφ(�) constituted by

D(�)= {Mφ(�); ∃μk⊂ℝ+ and {φk }⊂ exS

s.t . ∑
k

μk =1, μ =∑
k

μkδ(φk )}
where δ(φ) is the Dirac measure concentrated on an initial state φ. For a measure μ∈Dφ(�),
the entropy type functional H (μ) is given by

H (μ)= −∑
k

μk logμk .

For a state φ∈� with respect to �, Ohya introduced the C*-entropy (�-mixing entropy) [33,35]
defined by

S �(φ)= { inf{H (μ); μ∈Dφ(�)}
+∞ if Dφ(�)=∅ .

It describes the amount of information of the state φ measured from the subsystem �. If�=�(�), then S �(�)(φ) is denoted by S (φ). This entropy is an extension of the von Neumann
entropy mentioned above.

10.3. Quantum relative entropy

The classical relative entropy in continuous probability space was defined by Kullback-Leibler
[26]. It was developed in noncommutative probability space. The quantum relative entropy
was first defined by Umegaki [55] for σ-finite von Neumann algebras, which denotes a certain
difference between two states. It was extended by Araki [4] and Uhlmann [54] for general von
Neumann algebras and *-algebras, respectively.
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10.4. Umegakirelative entropy

The relative entropy of two states was introduced by Umegaki in [55] for σ-finite and semi-
finite von Neumann algebras. Corresponding to the classical relative entropy, for two density
operators ρ and σ, it is defined as

S (ρ, σ)= {trρ(logρ − logσ) (s(ρ)≪ s(σ)),
∞ (else),

where s(ρ)≪ s(σ) means the support projection s(σ) of σ is greater than the support projection
s(ρ) of ρ. It means a certain difference between two quantum states ρ and σ. The Umegaki’s
relative entropy satisfies (1) positivity, (2) joint convexity, (3) symmetry, (4) additivity, (5)
lower semicontinuity, (6) monotonicity. Araki [4] and Uhlmann [54] extended this relative
entropy for more general quantum systems.

10.5. Relative entropy for general systems

The relative entropy for two general states was introduced by Araki [4,5] in von Neumann
algebra and Uhlmann [54] in *-algebra. The above properties are held for these relative
entropies.

10.5.1. Araki's relative entropy[4,5]

Let � be a σ-finite von Neumann algebra acting on a Hilbert space ℋ and φ, ψ be normal
states on � given by φ(⋅ )= x, ⋅ x  and ψ(⋅ )= y, ⋅ y  with x, y∈� (i.e., � is a positive natural
cone) ⊂ℋ. On the domain �y + (I − s�′

(y))ℋ, the operator Sx ,y is defined by

Sx ,y(Ay + z)= s�(y)A∗x,  A∈� (z∈ℋ is satisfying s�′
(y)z =0),

where s�(y) (the �-support of y) is the projection from ℋ to {�′y}−. Using this Sx ,y, the
relative modular operator Δx ,y is defined as Δx ,y = (Sx ,y)∗Sx , ȳ, whose spectral decomposition

is denoted by ∫0
∞

λdex ,y(λ) (Sx , ȳ is the closure of Sx ,y). Then the Araki’s relative entropy is given

by

Definition The Araki’s relative entropy of φ and ψ is defined by

S (ψ, φ)= {∫0∞logλd y, ex ,y(λ)y (ψ≪φ),

∞ (otherwise),

where ψ≪φ means that φ(A∗A)=0 implies ψ(A∗A)=0 for A∈�.

10.5.2. Uhlmann's relative entropy[54]

Let ℒ be a complex linear space and p, q be two semi-norms on ℒ. H (ℒ(p, q)) is the set of all
positive Hermitian forms α on ℒ satisfying |α(x, y)| ≤ p(x)q(y) for all x, y∈ℒ. For x∈ℒ,
the quadratical mean QM (p, q) of p and q is defined by
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QM (p, q)(x)=sup{α(x, x)1/2; α∈H (ℒ(p, q))}.

For each x∈ℒ, there exists a family of semi-norms pt(x) of t∈ 0, 1 , which is called the
quadratical interpolation from p to q, satisfying the following conditions:

1. For any x∈ℒ, pt(x) is continuous in t ,

2. p1/2 =QM (p, q)

3. pt /2 =QM (p, pt) (∀ t∈ 0, 1 )

4. p(t+1)/2 =QM (pt , q) (∀ t∈ 0, 1 )

This semi-norm pt  is denoted by QIt(p, q). It is shown that for any positive Hermitianforms
α, β, there exists a unique function QFt(α, β) of t∈ 0, 1  with values in the set H (ℒ(p, q)) such

that QFt(α, β)(x, x)1/2 is the quadratical interpolation from α(x, x)1/2 to β(x, x)1/2. For x∈ℒ,
the relative entropy functional S (α, β)(x) of α and β is defined as

S (α, β)(x)= − lim
t→+0

inf
1
t {QFt(α, β)(x, x)−α(x, x)}.

Let ℒ be a *-algebra �. For positive linear functional φ, ψ on �, two Hermitian forms φ L , ψ R

are given by φ L (A, B)=φ(A∗B) and ψ R(A, B)=ψ(BA∗).

Definition The Uhlmann’s relative entropy of φ and ψ is defined by

S (ψ, φ)=S (ψ R, φ L )(I ).

10.5.3. Ohya mutual entropy [31]

The Ohya mutual entropy [31] with respect to the initial state ρ and a quantum channel Λ ∗ is
described by

I (ρ;Λ ∗)≡sup{∑
n

S (Λ ∗En, Λ ∗ρ), ρ =∑
n

λnEn},
where S (⋅ , ⋅ ) is the Umegaki's relative entropy and ρ =∑

n
λnEn represents a Schatten-von

Neumann (one dimensional orthogonal) decomposition [49] of ρ. Since the Schatten-von
Neumann decomposion of a state ρ is not unique unless all eigenvalues of ρ do not degenerate,
the Ohya mutual entropy is defined by taking a supremum for all Schatten-von Neumann
decomposion of a state ρ. Then the Ohya mutual entropy satisfies the following Shannon's
type inequality [31]

0≤ I (ρ, Λ ∗)≤min{S (ρ), S (Λ ∗ρ)},

where S (ρ) is the von Neumann entropy. This inequalities show that the Ohya mutual entropy
represents the amount of information correctly carried from the input system to the output
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system through the quantum channel. The capacity denotes the ability of the information
transmission of the communication processes, which was studied in [40,41,45].

For a certain set �⊂S (ℋ1) satisfying some physical conditions, the capacity of quantum

channel Λ ∗ [40] is defined by

Cq
�(Λ ∗)≡sup{I (ρ;Λ ∗);ρ∈�}.

If �=S (ℋ1) holds, then the capacity is denoted by Cq(Λ ∗). Then the following theorem for the
attenuation channel was proved in [40].

Theorem For a subset �n ≡ {ρ∈S (ℋ1);dims(ρ)=n},  the capacity of the attenuation channel Λ0
∗

satisfies

Cq
�n(Λ0

∗)= logn,

where s(ρ) is the support projection of ρ.

10.6. Mutual entropy for general systems

Based on the classical relative entropy, the mutual entropy was discussed by Shannon to study
the information transmission in classical systems and it was extended by Ohya [33,34,35] for
fully general quantum systems.

Let (�, �(�), α(G)) be a unital C ∗-system and � be a weak* compact convex subset of �(�).
For an initial state φ∈� and a channel Λ ∗ : �(�)→�(ℬ), two compound states are

Φμ
�= ∫�ω⊗Λ ∗ω dμ,

Φ0 =φ⊗Λ ∗φ.

The compound state Φμ
� expresses the correlation between the input state φ and the output

state Λ ∗φ. The mutual entropy with respect to � and μ is given by

Iμ
�(φ ; Λ ∗)=S(Φμ

�, Φ0)
and the mutual entropy with respect to � is defined by Ohya [33] as

I �(φ ;Λ ∗)=sup{Iμ
�(φ ;Λ ∗) ; μ∈Mφ(�)}.

10.7. Mutual entropy type complexity

Shor [53] and Bennet et al [6,10] proposed the mutual type measures so-called the coherent
entropy and the Lindblad-Nielson entropy by using the entropy exchange [50] defined by

Se(ρ, Λ ∗)= − trW logW ,

where W  is a matrix W = (W ij)i , j with
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W ij ≡ tr Ai
∗ρAj

for a state ρ concerning a Stinespring-Sudarshan-Kraus form

Λ ∗(⋅ )≡∑ j Aj
∗⋅Aj,

of a channel Λ ∗. Then the coherent entropy IC(ρ; Λ ∗) [53] and the Lindblad-Nielson entropy

IL (ρ; Λ ∗) [10] are given by

IC(ρ; Λ ∗)≡S (Λ ∗ρ)−Se(ρ, Λ ∗),

IL (ρ; Λ ∗)≡S (ρ) + S (Λ ∗ρ)−Se(ρ, Λ ∗).

In this section, we compare with these mutual types measures. By comparing these mutual
entropies for quantum information communication processes, we have the following theorem
[47]:

Theorem Let {Aj} be a projection valued measure withdim Aj =1. For arbitrary state ρ and the

quantum channel Λ ∗(⋅ )≡∑ j Aj ⋅Aj
∗, one has

1. 0≤ I (ρ; Λ ∗)≤min{S (ρ), S (Λ ∗ρ)} (Ohya mutual entropy),

2. IC(ρ; Λ ∗)=0 (coherent entropy),

3. IL (ρ; Λ ∗)=S (ρ) (Lindblad-Nielsen entropy).

For the attenuation channel Λ0
∗, one can obtain the following theorems [47]:

Theorem For any state ρ =∑
n

λn |n n |  and the attenuation channel Λ0
∗ with

|α | 2 = |β | 2 = 1
2 , one has

1. 0≤ I (ρ; Λ0
∗)≤min{S (ρ), S (Λ0

∗ρ)} (Ohya mutual entropy),

2. IC(ρ; Λ0
∗)=0 (coherent entropy),

3. IL (ρ; Λ0
∗)=S (ρ) (Lindblad-Nielsen entropy).

Theorem For the attenuation channel Λ0
∗ and the input state ρ =λ |0 0| + (1−λ)|θ θ | , we

have

1. 0≤ I (ρ; Λ0
∗)≤min{S (ρ), S (Λ0

∗ρ)} (Ohya mutual entropy),

2. −S (ρ)≤ IC(ρ; Λ0
∗)≤S(ρ) (coherent entropy),

3. 0≤ IL (ρ; Λ0
∗)≤2S (ρ) (Lindblad-Nielsen entropy).
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The above Theorem shows that the coherent entropy IC(ρ; Λ0
∗) takes a minus value for

|α | 2 < |β | 2 and the Lindblad-Nielsen entropy IL (ρ; Λ0
∗) is greater than the von Neumann

entropy of the input state ρ for |α | 2 > |β | 2. Therefore Ohya mutual entropy is most suitable
one for discussing the efficiency of information transmission in quantum processes. Since the
above theorems and other results [47] we could conclude that Ohya mutual entropy might be
most suitable one for discussing the efficiency of information transmission in quantum
communication processes. It means that Ohya mutual entropy can be considered as the
transmitted complexity for quantum communication processes.

11. Quantum dynamical entropy

The classical dynamical (or Kolmogorov-Sinai) entropy S(T) [23] for a measure preserving
transformation T was defined on a message space through finite partitions of the measurable
space.

The classical coding theorems of Shannon are important tools to analyse communication
processes which have been formulated by the mean dynamical entropy and the mean dynam‐
ical mutual entropy. The mean dynamical entropy represents the amount of information per
one letter of a signal sequence sent from an input source, and the mean dynamical mutual
entropy does the amount of information per one letter of the signal received in an output
system.

The quantum dynamical entropy (QDE) was studied by Connes-Størmer [13], Emch [15],
Connes- Narnhofer-Thirring [12], Alicki-Fannes [3], and others [9,48,19,57,11]. Their dynami‐
cal entropies were defined in the observable spaces. Recently, the quantum dynamical entropy
and the quantum dynamical mutual entropy were studied by the present authors [34,35]: (1)
The dynamical entropy is defined in the state spaces through the complexity of Information
Dynamics [36]. (2) It is defined through the quantum Markov chain (QMC) was done in [2].
(3) The dynamical entropy for a completely positive (CP) maps was introduced in [25].

12. Mean entropy and mean mutual entropy

The classical Shannon ‘s coding theorems are important subject to study communication
processes which have been formulated by the mean entropy and the mean mutual entropy
based on the classical dynamical entropy. The mean entropy shows the amount of information
per one letter of a signal sequence of an input source, and the mean mutual entropy denotes
the amount of information per one letter of the signal received in an output system. Those
mean entropies were extended in general quantum systems.

In this section, we briefly explain a new formulation of quantum mean mutual entropy of K-
S type given by Ohya [35,27].
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In quantum information theory, a stationary information source is denoted by a C ∗ triple
(�, �(�), θ�) with a stationary state φ with respect to θ�; that is, � is a unital C ∗-algebra,�(�) is the set of all states over �, θ� is an automorphism of �, and φ∈�(�) is a state over� with φ◦θ�=φ.

Let an output C ∗-dynamical system be the triple (ℬ, �(ℬ), θℬ), and Λ ∗ : �(�)→�(ℬ) be a

covariant channel which is a dual of a completely positive unital map Λ : ℬ→� such that
Λ◦θℬ =θ�◦Λ.

In this section, we explain functional Sμ
�(φ;α M ), S �(φ;α M ), Iμ

�(φ;α M , β N ) and I �(φ;α M , β N )

introduced in [35,27] for a pair of finite sequences of α M =(α1, α2, ⋯ , αM ), β N =(β1, β2, ⋯ , βN )

of completely positive unital maps αm : �m →�, βn : ℬn →ℬ where �m and ℬn (m =1, ⋯ , M ,

n =1, ⋯ , N ) are finite dimensional unital C ∗-algebras.

Let � be a weak * convex subset of �(�) and φ be a state in �. We denote the set of all regular
Borel probability measures μ on the state space �(�) of � by Mφ(�), so that μ is maximal in

the Choquet ordering and μ represents φ = ∫S (�)
ωdμ(ω). Such measures is taken by extremal

decomposition measures for φ, Using Choquet's theorem, one can be shown that there exits
such measures for any state φ∈�(�). For a given finite sequences of completely positive unital
maps αm : �m →� from finite dimensional unitalC ∗-algebras �m (m =1, ⋯ , M ) and a given

extremal decomposition measure μ of φ, the compound state of α1
∗φ, α2

∗φ, ⋯ , αM
∗φ on the

tensor product algebra ⊗
m=1

M �m is given by [35,27]

Φμ
�(α M )= ∫S (�)

⊗
m=1

M

αm
∗ωdμ(ω).

Furthermore Φμ
�(α M ∪β N ) is a compound state of Φμ

�(α M ) and Φμ
�(β N ) with

α M ∪β N ≡ (α1, α2, ⋯ , αM , β1, β2, ⋯ , βN ) constructed as

Φμ
S (α M ∪β N )= ∫S (A)

(⊗
m=1

M

αm
∗ω)⊗ (⊗

n=1

N

βn
∗ω)dμ

For any pair (α M , β N ) of finite sequences α M =(α1, ⋯ , αM ) and β N =(β1, ⋯ , βN ) of completely

positive unital maps αm : �m →�, βn : ℬn →� from finite dimensional unital C ∗ -algebras
and any extremal decomposition measure μ of φ, the entropy functional Sμ and the mutual
entropy functional Iμ are defined in [35,27] such as
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Sμ
�(φ;α M )= ∫S (A)S (⊗

m=1

M

αm
∗ω, Φμ

�(α M ))dμ(ω),

Iμ
�(φ;α M , β N )=S(Φμ

S(α M ∪β N ), Φμ
�(α M )⊗Φμ

�(β N )),
where S (⋅ , ⋅ ) is the relative entropy.

For a given pair of finite sequences of completely positive unitalmaps α M =(α1, ⋯ , αM ),

β N =(β1, ⋯ , βN ), the functional S �(φ;α M ) (resp. I �(φ;α M , β N ) ) is given in [35,27] by taking

the supremum of Sμ
�(φ;α M ) (resp. Iμ

�(φ;α M , β N )) for all possible extremal decompositions
μ's of φ:

S �(φ;α M )=sup{Sμ
�(φ;α M ); μ∈Mφ(�)},

I �(φ;α M , β N )=sup{Iμ
�(φ;α M , β N ); μ∈Mφ(�)}.

Let � (resp. ℬ) be a unital C ∗-algebra with a fixed automorphism θ� (resp. θℬ), Λ be a
covariant completely positive unital map from ℬ to �, and φ be an invariant state over �, i.e.,
φ◦θ�=φ.

α N ≡ (α, θ�◦α, ⋯ , θ�N −1◦α),
βΛ

N ≡ (Λ◦β, Λ◦θℬ◦β, ⋯ , Λ◦θℬ
N −1◦β).

For each completely positive unital map α : �0 →� (resp. β : ℬ0 →ℬ ) from a finite dimen‐

sional unital C ∗-algebra �0 (resp. ℬ0) to � (resp. ℬ), S̃�(φ;θ�, α), Ĩ �(φ;Λ ∗, θ�, θℬ, α, β) are
given in [35,27] by

S̃�(φ;θ�, α)= liminf
N →∞

1
N S �(φ;α N ),

Ĩ �(φ;Λ ∗, θ�, θℬ, α, β)= liminf
N →∞

1
N I �(φ;α M , β N ).

The functional S̃�(φ;θ�) and Ĩ �(φ;Λ ∗, θ�, θℬ) are defined by taking the supremum for all
possible �0's, α's, ℬ0's, and β's:

S̃�(φ;θ�)=sup
α

S̃�(φ;θ�, α),

Ĩ �(φ;Λ ∗, θ�, θℬ)=sup
α,β

Ĩ �(φ;Λ ∗, θ�, θℬ, α, β).

Then the fundamental inequality in information theory holds for S̃�(φ;θ�) and

Ĩ �(φ;Λ ∗, θ�, θℬ) [35].

12.1. Proposition

0≤ Ĩ �(φ;Λ ∗, θ�, θℬ)≤min{S̃�(φ;θ�), S̃�(Λ ∗φ;θℬ)}.
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These functional S̃�(φ;θ�) and Ĩ �(φ;Λ ∗, θ�, θℬ) are constructed from the functional

Sμ
�(φ;α N ) and Iμ

�(φ;α N , β N ) coming from information theory and these functionals are
obtained by using a channel transformation, so that those functionals contains the dynamical
entropy as a special case [35,27]. Moreover these functionals contain usual K-S entropies as
follows [35,27].

Proposition If �k , � are abelian C ∗-algebras and each αk  is an embedding, then our func‐
tionals coincide with classical K-S entropies:

Sμ
�(�)(φ;α M )=Sμ

classical(∨
m=1

M

Ãm),
Iμ
�(�)(φ;α M , βid

N )= Iμ
classical(∨

m=1

M

Ãm, ∨
n=1

N

B̃n)
for any finite partitions Ãm, B̃n of a probability space (Ω, �, φ).

In general quantum structure, we have the following theorems [35,27].

Theorem Let αm be a sequence of completely positive maps αm : �m →� such that there exist

completely positive maps αm
′ : �→�m satisfying αm◦αm

′ → id� in the pointwise topology.
Then:

S̃�(φ;θ�)= lim
m→∞

S̃�(φ;θ�, αm).

Theorem Let αm and βm be sequences of completely positive maps αm : �m →� and

βm : ℬm →ℬ such that there exist completely positive maps αm
′ : �→�m and βm

′ : ℬ→ℬm

satisfying αm◦αm
′ → id� and βm◦βm

′ → idℬ in the pointwise topology. Then one has

Ĩ �(φ;Λ ∗, θ�, θℬ)= lim
m→∞

Ĩ �(φ;Λ ∗, θ�, θℬ, αm, βm).

The above theorem is a Kolmogorov-Sinai type convergence theorem for the mutual entropy
[35,27,28,34].

In particular, a quantum extension of classical formulation for information transmission giving

a basis of Shannon's coding theorems can be considered in the case that A=⊗
−∞

∞

A0, B =⊗
−∞

∞

B0,

S =� and θA, θB are shift operators, both denoted by θ. In this case, the channel capacity is
defined as [40,41,45,46,38,39,42,43]

C̃(Λ ∗)≡sup{Ĩ �(φ ; Λ ∗ , θ) ; φ∈�}.

Using this capacity, one can consider Shannon's coding theorems in fully quantum systems.
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13. Computations of mean entropies for modulated states

Based on the paper [59], we here explain general modulated states and briefly review some
examples of modulated states (PPM, OOK, PSK).

Let {a1, ⋯ , aN } be an alphabet set constructing the input signals and N ≡ {E1, ⋯ , EN } be the set
of one dimensional projections on a Hilbert space ℋ satisfying

1. En⊥Em (n ≠m)

2. En corresponds to the alphabet an.

We denote the set of all density operators on ℋ generated by

�0≡ {ρ0 =∑
n=1

N

λnEn;ρ0≥0, trρ0 =1},
where an element of �0 represents a state of the quantum input system. The state is transmitted
from the quantum input system to the quantum modulator in order to send information
effectively, whose transmitted state is called the quantum modulated state. The quantum
modulated states are denoted as follows: Let M  be an ideal modulator and N ≡ {E1

(M ), ⋯ , EN
(M )}

be the set of one dimensional projections on a Hilbert space ℋM  for modulated signals
satisfying

En
(M )⊥Em

(M )(n ≠m), and we represent the set of all density operators on ℋM  by

�0
(M )≡ {ρ0

(M ) =∑
n=1

N

μnEn
(M ); ρ0

(M )≥0, trρ0
(M ) =1},

where an element of �0
(M ) represents a modulated state of the quantum input system. There

are many expressions for the modulations. In this section, we take the modulated states by
means of the photon number states.

γM
∗ is a modulator M  if γM

∗(En)= En
(M ) is a map from �0 to �0

(M ) satisfying (1) γM  is a completely

positive unital map from �0 to �. Moreover γIM
∗  is called an ideal modulator IM  if (1)

γIM
∗ (En)= En

(M ) is a modulator from �0 to �0
(M ), γIM

∗ (En)⊥γIM
∗ (Em) for any orthogonal En∈�0.

Some examples of ideal modulator are given as follows:

1. For any En∈�0, the PPM (Pulse Position Modulator) is defined by

γPPM
∗ (En)≡En

(PPM )

= E0
PAM ⊗ ⋯ ⊗ E0

(PAM )⊗ Ed
(PAM )⊗ E0

(PAM )⊗ ⋯E0
(PAM )

where E0
(PAM ) is the vacuum state on ℋ(PAM ).

2. For E1, E2∈�0, the OOK (On-Off Keying) is defined by
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γOOK
∗ (E1)≡E1

(OOK ) = |0> <0| ,

γOOK
∗ (E2)≡E2

(OOK ) = |κ > <κ |
where |κ > <κ |  is the coherent state on ℋOOK .

3. For E1, E2∈S0, the PSK (Phase Shift Keying) is defined by

γPSK
∗ (E1)≡E1

(PSK ) = | −κ > < −κ | ,

γPSK
∗ (E2)≡E2

(PSK ) = |κ > <κ |
where |κ > <κ | , | −κ > < −κ |  are the coherent states on ℌPSK .

Now we briefly review the calculation of the mean mutual entropy of K-S type for the
modulated state (PSK) by means of the coherent state. Other calculations are obtained in [59].

α(IM )
N , β(IM )

N  are given by

α(IM )
N ≡ (α◦γ̃(IM ), θ�◦α◦γ̃(IM ), ⋯ , θ�N −1◦α◦γ̃(IM )),

β(IM )
N ≡ (γ̃(IM )◦Λ◦β, γ̃(IM )◦Λ◦θℬ◦β, ⋯ , γ̃(IM )◦Λ◦θℬ

N −1◦β),

where Λ̃ ≡⊗
i=−∞

∞

Λ and γ̃(IM )≡⊗
i=−∞

∞

γ(IM ) are held.

PSK. For an initial state ρ =⊗
i=−∞

∞

ρi∈⊗
i=−∞

∞

Si, let ρi =ν | −κ −κ | + (1−ν)|κ κ |  (0≤ν ≤1). The

Schatten decomposition of ρi is obtained as

ρi =∑
ni=1

2

λni
Eni

(PSK ),

where the eigenvalues λni
 of ρi are

λ1 =
1
2

{1 + 1−4ν(1−ν) (1−exp( − |2κ | 2))},

λ2 =
1
2

{1− 1−4ν(1−ν) (1−exp( − |2κ | 2))}.

Two projections Eni

(PSK ) (ni =1, 2) and the eigenvectors | eni

(PSK )  of λni
 (ni =1, 2) are given by

Eni

(PSK ) = | eni

(PSK ) eni

(PSK ) | ,

| eni

(PSK ) =ani
| −κ + bni

|κ , (ni =1, 2),

where
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|bni
| 2 =

1
τni

2 + 2exp(− |κ | 2) τni
+ 1

,

|ani
| 2 =τni

2 |bni
| 2,

ani
bni
¯ =anī

bni
=τni

|bni
| 2

τ1 =
− (1−2ν) + 1−4ν(1−ν) (1−exp(− |2κ | 2))

2(1−ν) exp( − |κ | 2) ,

τ2 =
− (1−2ν)− 1−4ν(1−ν) (1−exp(− |2κ | 2))

2(1−ν) exp(− |κ | 2) .

For the above initial state Eni

(PSK ), one can obtain the output state for the attenuation channel

Λ ∗ as follows:

Λ ∗Eni

(PSK ) =∑
ni

′=1

2

λ
⌢

ni , ni
′E
⌢

ni , ni
′

(PSK )

(ni =1, 2),

where the eigenvalues λ
⌢

ni , ni
′ of Λ ∗Eni

(OOK ) are given by ( ni = 1, 2)

λ
⌢

ni , 1 =
1
2 {1 + 1−4μni

(1−μni
) (1− | uni , 1, uni , 2 | 2)},

λ
⌢

ni , 2 =
1
2 {1− 1−4μni

(1−μni
) (1− | uni , 1, uni , 2 | 2)},

μni
=

1
2 (1 + exp(− (1−η) |κ | 2))

τni

2 + 2exp(− |ακ | 2) τni
+ 1

τni

2 + 2exp(− |κ | 2) τni
+ 1

.

| uni , ni
′, uni , ni

′ | 2 =1,

uni , 1, uni , 2 =
τni

2−1

(τni

2 + 1)2−4exp(− |2ακ | 2) τni

2
(ni =1, 2).

E
⌢

ni , ni
′

(PSK )

are the eigenstates with respect to λ
⌢

ni , ni
′. Then we have

ΦE (α(PSK )
N )=⊗

i=0

N −1

γ(PSK )
∗ ◦α ∗◦θA

∗i(ρ)=⊗
i=0

N −1

γ(PSK )
∗ (ρi)

=∑
n0=1

2

⋯∑
nN −1=1

2 (∏
k=0

N −1

λnk
) (⊗

i=0

N −1

Eni

(PSK ))
When Λ ∗ is given by the attenuation channel, we get
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ΦE (βΛ(PSK )
N )=⊗

i=0

N −1

β ∗◦θB
∗i◦Λ ∗◦γ(PSK )

∗ (ρ)

=∑
n0=1

2

⋯∑
nN −1=1

2 (∏
k=0

N −1

λnk
) (⊗

i=0

N −1

Λ ∗Eni

(PSK ))
The compound states through the attenuation channel Λ ∗ becomes

ΦE (α(PSK )
N ∪βΛ(PSK )

N )

=∑
n0=1

2

⋯∑
nN −1=1

2 (∏
k=0

N −1

λnk
)∑

n0
′=1

2

⋯∑
nN −1

′ =1

2 (∏
k ′=0

N −1

λ
⌢

n
k ′, n

k ′
′ )

× (⊗
i=0

N −1

Eni

(PSK ))⊗ (⊗
i ′=0

N −1

E
⌢

n
i ′, n

i ′
′

(PSK ))
ΦE (α(PSK )

N )⊗ΦE (βΛ(PSK )
N )

=∑
n0=1

2

⋯∑
nN −1=1

2 (∏
k=0

N −1

λnk
)∑

m0=1

2

⋯ ∑
mN −1=1

2 (∏
k ′=0

N −1

λm
k ′

)
×∑

m ′
0=0

2

⋯ ∑
m ′

N −1=0

2 (∏
k"=0

N −1

λ
⌢

mk ", mk "
′ )

× (⊗
i=0

N −1

Eni

(PSK ))⊗ (⊗
i ′=0

N −1

E
⌢

m
i ′, m

i ′
′

(PSK ) )
Lemma For an initial state ρ =⊗

i=−∞

∞

ρi∈⊗
i=−∞

∞

Si, we have

IE (ρ; α(PSK )
N , β(PSK )

N )

=∑
n0

′=1

2

⋯∑
nN −1

′ =1

2

∑
n0=1

2

⋯∑
nN −1=1

2 (∏
k=0

N −1

λnk
λ
⌢

nk , nk
′)log k =0

N −1λ
⌢

nk , nk
′

m0=1
2 ⋯

mN −1=1
2 (

k ′=0
N −1λm

k ′
λ
⌢

m
k ′, n

k ′
′ ) .

By using the above lemma, we have the following theorem.

Theorem For an initial state ρ =⊗
i=−∞

∞

ρi∈⊗
i=−∞

∞

Si, we have

S̃ (ρ; θA, α(PSK )
N )= lim

N →∞

1
N S (ρ; α(PSK )

N )= −∑
n=1

2

λnlogλn

and
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Ĩ (ρ; Λ ∗, θ฀, θ฀, α(PSK )
N , β(PSK )

N )=∑
n ′=1

2

∑
n=1

2

λnλ
⌢

n, n ′log
λ
⌢

n, n ′

∑m=1
2 λmλ

⌢
m, n ′

.

14. KOW dynamical entropy

In this section, we briefly explain the definition of the KOW entropy according to [25].

For a normal state ω on B(�) and a normal, unital CP linear map Γ from B(�)⊗ B(ℋ) to
B(�)⊗ B(ℋ), one can define a transition expectation E Γ,ω from B(�)⊗ B(ℋ) to B(ℋ) by

E Γ,ω(Ã)=ω(Γ(Ã))= tr�ω̃Γ(Ã), ∀ Ã∈B(�)⊗ B(ℋ)

in the sense of [1,25], where ω̃∈�(�) is a density operator associated to ω. The dual map E  is
a lifting from �(ℋ) to �(�⊗ℋ) by

E ∗Γ,ω(ρ)=Γ ∗(ω̃⊗ρ).

in the sense of Accardi and Ohya [1]. For a normal, unital CP map Λ from B(ℋ) to B(ℋ) and
the identity map id  on B(�), the transition expectation

EΛ
Γ,ω(Ã)=ω((id ⊗Λ)Γ(Ã)), ∀ Ã∈B(�)⊗ B(ℋ)

and the lifting is defined by

EΛ
∗Γ,ω(ρ)=Γ ∗(ω̃⊗Λ ∗(ρ)), ∀ρ∈�(ℋ),

where id ⊗Λ is a normal, unital CP map from B(�)⊗ B(ℋ) to B(�)⊗ B(ℋ) and Λ ∗ is a
quantum channel [30,21,31,39,44,46,43] from �(ℋ) to �(ℋ) with respect to an input signal
state ρ and a noise state ω̃. Based on the following relation

tr(⊗1
n�)⊗ℋΦΛ,n

∗Γ,ω(ρ)(A1⊗ ⋯ ⊗ An⊗ B)

≡ trℋρ(EΛ
Γ,ω(A1⊗ EΛ

Γ,ω(A2⊗ ⋯An−1⊗ EΛ
Γ,ω(An⊗ B)⋯ )))

for all A1, A2, ⋯ , An∈B(�), B∈B(ℋ) and any ρ∈�(ℋ), a lifting ΦΛ,n
∗Γ,ω from �(ℋ) to�((⊗1

n�)⊗ℋ) and marginal states are given by

ρΛ,n
Γ,ω ≡ trℋΦΛ,n

∗Γ,ω(ρ)∈�(⊗1
n �) and ρ̄Λ,n

Γ,ω ≡ tr⊗1
n�ΦΛ,n

∗Γ,ω(ρ)∈�(ℋ)

where ΦΛ,n
∗Γ,ω(ρ) is a compound state with respect to ρ̄Λ,n

Γ,ω and ρΛ,n
Γ,ω in the sense of [25,31] .

Definition The quantum dynamical entropy with respect to Λ, ρ, Γ and ω is defined by

S̃ (Λ;ρ, Γ, ω)≡ limsup
n→∞

1
n S (ρΛ,n

Γ,ω),
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where S (ρΛ,n
Γ,ω) is the von Neumann entropy of ρΛ,n

Γ,ω∈�(⊗1
n�) defined by

S (ρΛ,n
Γ,ω)= − trρΛ,n

Γ,ωlogρΛ,n
Γ,ω. The dynamical entropy with respect to Λ and ρ is defined as

S̃ (Λ;ρ)≡sup{�(Λ;ρ, Γ, ω);Γ, ω}.

15. Formulation of generalized AF and AOW entropies by KOW entropy

In this section, I briefly explain the generalized AF and AOW entropies based on the KOW
entropy [25].

For a finite operational partition of unity γ1, ⋯ , γd∈B(ℋ), i.e., ∑
i=1

d
γi
∗γi = I , and a normal unital

CP map Λ from B(ℋ) to B(ℋ), transition expectations EΛ
γ from Md ⊗ B(ℋ) to B(ℋ) and EΛ

γ(0)

from Md
0⊗ B(ℋ) to B(ℋ) are defined by

EΛ
γ(∑

i, j=1

d

Eij⊗Aij)≡∑
i, j=1

d

Λ(γi
∗Aijγj),

EΛ
γ(0)(∑

i, j=1

d

Eij⊗ Aij)≡∑
i=1

d

Λ(γi
∗Aiiγi),

where Eij = | ei ej |  with normalized vectors ei∈ℋ, i =1, 2, ⋯ , d ≤dimℋ, Md  in B(ℋ) is the

d ×d  matrix algebra and Md
0 is a subalgebra of Md  consisting of diagonal elements of Md . Then

the quantum Markov states

ρΛ,n
γ = ∑

i1,⋯,in=1

d

∑
j1,⋯, jn=1

d

trℋρΛ(W j1i1(Λ(W j2i2(⋯Λ(W jnin(Iℋ))))))

× Ei1 j1
⊗ ⋯ ⊗ Ein jn

and ρΛ,n
γ(0) is obtained by

ρΛ,n
γ(0) = ∑

i1,⋯,in=1

d

trℋρΛ(W i1i1(Λ(W i2i2(⋯Λ(W inin(Iℋ))))))Ei1i1
⊗ ⋯ ⊗ Einin

= ∑
i1,⋯,in=1

d

pi1,⋯,in
Ei1i1

⊗ ⋯ ⊗ Einin
,

where

W ij(A)≡γi
∗Aγj, A∈B(ℋ),

W ij
∗(ρ)≡γjργi

∗, ρ∈�(ℋ),
pi1,⋯,in

≡ trℋρΛ(W i1i1(Λ(W i2i2(⋯Λ(W inin(Iℋ))))))
= trℋW inin

∗ (Λ ∗⋯Λ ∗(W i2i2
∗(Λ ∗(W i1i1

∗(Λ ∗(ρ)))))).
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Therefore the generalized AF entropy S̃ ℬ(Λ;ρ) and the generalized AOW entropy S̃ ℬ
(0)(Λ;ρ) of

Λ and ρ with respect to a finite dimensional subalgebra ℬ⊂B(ℋ) are obtained by

S̃ ℬ(Λ;ρ)≡ sup
{γi}⊂ℬ

S̃(Λ;ρ, {γi}),

S̃ ℬ
(0)(Λ;ρ)≡ sup

{γi} ⊂ℬ

(0)
S̃(Λ;ρ, {γi}),

where the dynamical entropies S̃ (Λ;ρ, {γi}) and S̃ (0)(Λ;ρ, {γi}) are given by

S̃ (Λ;ρ, {γi})≡ limsup
n→∞

1
n S(ρΛ,n

γ ),

S̃ (0)(Λ;ρ, {γi})≡ limsup
n→∞

1
n S (ρΛ,n

γ(0)).

16. Computations of generalized AOW entropy for modulated states

Then we have the following theorem [25]:

16.1. Theorem

S̃ ℬ(Λ;ρ)≤ S̃ ℬ
(0)(Λ;ρ).

S̃ ℬ
(0)(Λ;ρ) is equal to the AOW entropy if {γi} is PVM (projection valued measure) and Λ is given

by an automorphism θ. S̃ ℬ(Λ;ρ) is equal to the AF entropy if {γi
∗γi} is POV (positive operator

valued measure) and Λ is given by an automorphism θ. For the noisy optical channel, the
generalized AOW entropy can be obtained in [58] as follows.

Theorem [58] When ρ is given by ρ =λ |0 0| + (1−λ)|ξ ξ |  and Λ ∗ is the noisy optical
channel with the cohetent noise |κ κ |  and parameters α, β satisfying |α | 2 + |β | 2 =1,  the
quantum dynamical entropy with respect to Λ,  ρ and {γj} is obtained by

S̃ (0)(Λ;ρ, {γj})= −∑
j,k

qk , jqjlogqk , j,

where

qj =λ | βκ, xj | 2 + (1−λ)| αξ + βκ, xj | 2

qk , j =νj
+ | xk , yj

+ | 2 + (1−νj
+)| xk , yj

− | 2,

| yj
+ =aj

+ |βκ + bj
+ |αξ + βκ ,

| yj
− =aj

−|βκ −bj
−|αξ + βκ ,
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aj
+ =εj

+aj,

aj
−=εj

−aj, bj
+ =εj

+bj,

bj
−=εj

−bj,

εj
+ =

τj
2 + 2exp(− 1

2 |ξ | 2)τj + 1

τj
2 + 2exp(− 1

2 |αξ | 2)τj + 1
,

εj
−=

τj
2 + 2exp(− 1

2 |ξ | 2)τj + 1

τj
2−2exp(− 1

2 |αξ | 2)τj + 1
,

νj
+ =

1
2 (1 + exp(− 1

2 (1− |α | 2)|ξ | 2)) 1
(εj

+)2 ,

τj =
− (1−2λ)

2(1−λ)exp(− 1
2 |ξ | 2) + (−1) j 1−4λ(1−λ)(1−exp(− |ξ | 2))

2(1−λ)exp(− 1
2 |ξ | 2) ,

|bj | 2 =
1

τj
2 + 2exp(− 1

2 |ξ | 2)τj + 1
,

|aj | 2 =τj
2 |bj | 2, ā jbj =ajb̄ j =τj |bj | 2

Theorem [58] For n≧3, the above compound state ρΛ,n
γ(0) is written by

ρΛ,n
γ(0) = ∑

j1,⋯, jn=1

2

q j1,⋯, jn
⊗
k=1

n

| x jk
x jk | ,

where

q j1,⋯, jn
≡ trℋW jn jn

∗ (Λ ∗(⋯Λ ∗(W j2 j2

∗ (Λ ∗(W j1 j1

∗ (Λ ∗(ρ)))))⋯ )),
Λ ∗(ρ)=λ |βκ βκ | + (1−λ)|αξ + βκ αξ + βκ | ,
W jj

∗(Λ ∗(ρ))≡γj
∗Λ ∗(ρ)γj = (λ | βκ, xj | 2 + (1−λ)| αξ + βκ, xj | 2)| xj xj | .

Based on [40,41,45,46], one can obtain

Λ ∗(| xj xj |)=νj
+ | yj

+ yj
+ | + (1−νj

+)| yj
− yj

−| .

Thus we have

q j1,⋯, jn
=∏

k=2

n

(ν jk −1
+ | x jk

, y jk −1
+ | 2 + (1−ν jk −1

+ )| x jk
, y jk −1

− | 2)
× (λ | βκ, xj | 2 + (1−λ)| αξ + βκ, xj | 2)

=∏
k=2

n

q jk , jk −1
q j1

.
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If 
j
qk , jqj =qk  is hold ,  then we get the dynamical entropy with respect to Λ, ρ and {γj} such as

S̃ (0)(Λ;ρ, {γj})= −∑
j,k

qk , jqjlogqk , j.
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