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1. Introduction

Facial attractiveness is a highly relevant social cue, readily assessed by human observers. Facial
attractiveness significantly impact on success in both work and social environments [1, 2].
Taking a Darwinian perspective, Perrett at al. [3] have argued that the physical structure of
beautiful faces – as judged by others – provide salient signals of mate value that motivate
behavior in others. Several general features have been shown to contribute to the perceived
attractiveness of a face, including both facial symmetry and the extent to which an individual
face conforms to an average prototype [4, 5, 6]. Additionally, faces displaying various emo‐
tional expressions (e.g., joy, anger, etc.) have been used to investigate the brain regions
involved in the coding of affect [7, 8, 9, 10, 11], such as the orbitofrontal cortex (OFC), the insular
cortex, and the amygdala.

At both an explicit and implicit level, humans through the ages have devised means by which
to enhance facial attractiveness (a multibillion dollar cosmetic industry attests to this fact). An
equally lucrative fragrance industry exploits the hedonic primacy of odors in the human brain,
yet it remains unclear whether the presence of odors can modulate the perceived attractiveness
of faces.

A pioneering positron emission tomography (PET) study by Nakamura and colleagues [12]
demonstrated that activity in left frontal brain regions correlates with perceived facial
attractiveness in humans. Furthermore, functional magnetic resonance imaging (fMRI) has
been used to show that the viewing of attractive female faces by male participants activates
reward circuitry in the brain, in particular, the nucleus accumbens and the OFC [13, 14].
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A recent study investigated the neural circuitry involved in the perception of facial attractive‐
ness more directly by presenting participants with faces of varying attractiveness, while they
performed a gender discrimination task [15]. Correlation analysis with ratings of attractiveness
for the presented faces revealed a region in the medial orbitofrontal cortex (OFC) that re‐
sponded specifically to facial attractiveness.

Physical attractiveness is not, however, solely dependent upon the visual aspects of appear‐
ance, but is often modulated by other sensory cues. For example, a person’s voice has been
shown to influence a speaker’s perceived attractiveness [16, 17]. Similarly, a person’s body
odor also influences their perceived attractiveness [18]. The notion that odors can exert an
influence over the perception of facial characteristics is also supported by the observation that
the perceived masculinity/femininity of faces may be modulated by the presence of human
sex hormone-like chemicals [19]. Additionally, the presence of a malodor can negatively
influence the perceived attractiveness of male faces as rated by female observers in a psycho‐
physical judgment task [20].

Only a few neuroimaging experiments have simultaneously presented odors and faces to
participants, but none have directly assessed the impact of odor valence on facial attractive‐
ness. For example, an fMRI study conducted by Gottfried and colleagues [21] paired faces with
either a pleasant, unpleasant, or neutral odor, in an associative learning paradigm. Their results
suggest that the brain regions involved in the processing of positive and negative affect, such
as OFC, nucleus accumbens, and amygdala, are engaged during the appetitive and aversive
learning process. Additionally, those brain areas previously found to participate in low-level
odor processing, such as the piriform cortex and the caudal OFC, were also found to play an
active role in the transfer of affective value between the olfactory and visual modalities.
However, since no measure of the attractiveness of the faces was obtained, it remains unclear
whether odor valence actually influenced the participants’ perception of the faces.

Finally, it could be argued that odors do not necessarily modulate facial attractiveness per se,
but rather other affective components of interpersonal perception such as, for example,
perceived sympathy [22]. Alternatively, however, the presentation of the odor could also
induce a general change in a person’s mood (or emotional state) that might also be expected
to alter facial attractiveness. Indeed, the psychological and physiological literature published
to date supports the view that visual stimuli can influence olfactory perception while olfactory
cues rarely influence visual perception [23, 24, 25, 26]. It thus appears reasonable to assume
that the simultaneous presentation of an odor will not change the visual characteristics of a
face as such, but rather will primarily just changes people’s affective reaction to it.

The main aim of the present study was therefore to investigate, both behaviorally and using
fMRI,  whether  olfactory  cues  can modulate  visual  judgments  of  facial  attractiveness.  In
particular,  we investigated whether olfactory cues of differing hedonic value (i.e.,  pleas‐
ant  vs.  unpleasant)  enhance and/or  reduce the perceived attractiveness  of  male  faces  to
female participants. Additionally, we selected an artificial body odor and a common male
fragrance as the olfactory stimuli for their ecological relevance when paired with human
faces.  We  hypothesized  that  the  OFC,  in  particular,  would  show  differential  responses
depending on the perceived attractiveness of the stimuli presented, since this brain region
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is activated by pleasant / unpleasant smells [27, 28, 29, 21, 30], and is also known to encode
facial attractiveness [31, 15].

2. Material and methods

2.1. Participants

Twenty-one healthy right-handed female volunteers participated in this study (mean age 23
years, age range 19-29 years). All of the participants were non-smoking, had no history of nasal
dysfunction or allergies to odors and each gave written informed consent after having received
the written instructions concerning the study. Three participants had to be removed from the
data analysis because of excessive head motion during the brain scanning session, and the data
from two participants were discarded because they were unable to detect the presence versus
absence of the odors at above chance levels (44% and 53% correct, respectively). Consequently,
the data analysis at the group level included a total of 16 datasets. The study was approved
by the Central Oxford Research Ethics Committee (C99.179).

2.2. Stimuli and task

Two odorants were used in this study, an artificial body odor (Thiol compound) and a popular
male fragrance. The odors were diluted in 30ml of dipropylene glycol at concentrations of
0.0033% for the body odor and 0.5% for the male fragrance. The olfactory stimuli were
delivered with a custom-built, computer-controlled olfactometer at a flow rate of 4 liters/
second, through Teflon tubes placed directly under the participant’s nose. The participants
were asked to breathe normally through their nose and to refrain from making any unduly
strong sniffing movements. Clean medical air was delivered continuously through the
olfactometer except during the delivery of the olfactory stimuli.

Twenty male faces taken from the standardized database developed by Perrett and his
colleagues [3] were used as the visual stimuli. These faces have previously been rated for
attractiveness on a 5-point rating scale. We used a subset of these faces, consisting of the 10
faces with the highest attractiveness ratings and the 10 faces with the lowest attractiveness
ratings. Full screen color images of the faces were generated using a video projector located
outside the scanner room and projected onto a translucent screen placed directly outside the
bore of the magnet. A mirror fixed on the head coil allowed the participants to view the screen
while lying in the scanner.

Each of the 20 faces was presented three times, once together with each of the two odors and
once in the absence of any odor, resulting in the three conditions ‘face-pleasant odor’, ‘face-
unpleasant odor’ and ‘face-no odor’. Additionally, each odor was presented 10 times in the
absence of any visual stimulus, resulting in a total of 80 trials being presented to each partic‐
ipant. The order of trials was randomized for each participant, with the sole constraint that the
same face was never presented consecutively.
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At the beginning of each trial, the participants were visually cued by the presentation of a
fixation cross to breathe in and detect the presence or absence of an odor which was delivered
for 2500ms following the onset of the visual cue (Figure 1). The faces were presented for 1000ms
starting 1500ms after the onset of the odor stimuli. This lag between visual and olfactory stimuli
was chosen on the basis of the results of a pilot study which had established that participants
perceived the onset of both stimuli as concurrent when presented at this temporal delay.

Figure 1. Participants were cued visually with a fixation cross that changed color from red to green to breathe-in and
detect the presence or absence of an odor. In the trials where a face was presented, it was shown for 1000ms, begin‐
ning 2000ms after the cue to breathe in. After a rest period of 5500ms, the participants had to rate the attractiveness
of the face on a 5-point rating scale. When odors were presented in the same trial, odor stimulation started 500ms
after the onset of the cue to breathe-in and lasted for 2500ms, terminating together with the face. When odors were
presented without a face, the cue to breathe in was displayed for 3000ms and the participants had simply to rate the
pleasantness of the odor.

Following the presentation of the face, the participants rated its attractiveness on a rating scale
ranging from 1=’very unattractive’ to 5=’very attractive’ with 3 as the neutral point. For the
odor only trials, the participants had to rate the pleasantness of the odor on a similar scale
ranging from 1='very unpleasant' to 5='very pleasant'. Behavioral measures relating to odor
detection as well as the ratings were collected using a custom build button-box. The E-Prime
software [32] was used to control stimulus presentation and to collect responses from the
participants.

2.3. Data acquisition and analysis

Both functional and structural MRI images were acquired using a 3T Sonata Siemens scanner
fitted with an 8-channel head coil (Siemens Medical Solutions, Erlangen, Germany) based at
the University of Oxford Centre for Clinical Magnetic Resonance Research (OCMR). For the
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functional data series, a total of 1120 T2* weighted echo-planar imaging (EPI) volumes were
taken over a time period of 28 min.

Each volume consisted of 27 continuous oblique (tilted approximately 20º upward from the
anterior to posterior commissure line, so as to be aligned with the temporal lobes) slices of
3mm thickness with an in-plane resolution of 3×3mm. These imaging parameters allowed
us to image the ventral two thirds of the brain until approximately Z-coordinate of +50 of
the  Montreal  Neurological  Institute  (MNI)  152  standard  brain  space,  to  include  all  pri‐
mary and secondary olfactory areas in the temporal lobes and OFC, as well as the visual
cortex. Other imaging parameters were: TR=1.5s, 64x64 matrix, FOV 192×192 mm, TE=30ms
and, flip angle = 90º.

After acquisition of the functional volumes, a B0 field map was acquired using a combined
symmetric and asymmetric spin echo sequence. For registration into standard anatomical
space, a single whole brain EPI volume (50 slices, TR=5s, other imaging parameters as above)
as well as a high-resolution, whole-brain T1 weighted morphological scan (inversion-recovery
fast gradient echo, 1 mm slice thickness, 1mm×1mm in-plane resolution) was acquired after
the experimental paradigm had been completed.

Statistical image analysis of the functional dataset was carried out using the FMRIB Expert
Analysis Tool (FEAT; www.fmrib.ox.ac.uk/fsl). The following pre-processing was applied:
motion correction using MCFLIRT [33]; spatial smoothing using a Gaussian kernel of FWHM
5mm; mean-based intensity normalization of all volumes by the same factor; non-linear high-
pass temporal filtering (Gaussian-weighted LSF straight line fitting, sigma=25s). A general
linear model using the conditions Face-No odor/Face-Body odor/Face-Fragrance/Body odor/
Fragrance as explanatory variables was fitted to the time course at each voxel. Statistical
analysis for each experimental run was carried out using FMRIB’s Improved Linear Model
(FILM) with local autocorrelation correction [34].

For group analysis, the individual results were registered both to high-resolution anatomical
MR images and to the Montreal Neurological Institute (MNI) 152 standard image. Registration
to high resolution and standard images was carried out using FMRIB’s Linear Image Regis‐
tration Tool (FLIRT) [33]. Mixed-effects (often referred to as ‘random-effects’) group analysis
was carried out using FMRIB’s Local Analysis of Mixed Effects (FLAME) software [35] with a
cluster threshold of Z>2.0 and a cluster significance threshold of p=.05 (corrected for multiple
comparisons) [36, 37, 38].

3. Results

3.1. Behavioral

Comparison of the pleasantness ratings when the two odors were presented in isolation
confirmed that the body odor was indeed perceived as significantly [t(15) = 8.04; p < .001] less
pleasant (M = 1.78; SEM = 0.14) than the fragrance (M = 3.68; SEM = 0.22), as expected. The
rating data for facial attractiveness were analyzed using a repeated-measures analysis of
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variance (ANOVA) with the factors of facial attractiveness (low vs. high) and odor condition
(pleasant, unpleasant, or odorless). As expected, the results revealed a significant main effect
of facial attractiveness, [F(1,15) = 138.23, p < .001], with participants judging the pre-selected
attractive faces as being more attractive (M = 3.56; SEM = 0.11) than those faces pre-selected to
be less attractive (M = 2.15; SEM = 0.1). Crucially, the main effect of odors on ratings of facial
attractiveness was also significant [F(2,14)= 9.17, p < .01], demonstrating that the odors affected
the perceived attractiveness of the male faces to the female participants. Post-hoc comparisons
(Bonferroni corrected) of the 3 odor conditions revealed that participants rated the same faces
as being significantly less attractive when presented together with the unpleasant body odor
(M = 2.60; SEM = 0.09) than when presented together with the pleasant odor (M = 2.99; SEM =
0.11; p < .01), or in the absence of any odor (M = 2.97; SEM = 0.1; p < .01; see Figure 2). The
analysis of this behavioral data revealed no significant difference in mean facial attractiveness
ratings between the pleasant versus odorless conditions, nor any interaction between facial
attractiveness and odor pleasantness [F(2,14) < 1; n.s.].

Figure 2. The average attractiveness ratings (n=16 participants) for the same 10 faces a-priori assumed to be of high
attractiveness compared to the 10 low attractiveness faces are shown when either presented with an unpleasant body
odor, a pleasant fragrance, or in the absence of any specific odor. The difference in ratings between the attractive and
unattractive faces was significant (paired t-test, p <.05) in each odor group. Additionally, faces presented together
with the body odor were rated as significantly less attractive than those presented with the fragrance or those pre‐
sented in the absence of any odor (paired t-test, p <.05) for both high and low attractive faces.
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3.2. Neuroimaging data

3.2.1. Odor valence

We first investigated those brain regions involved in encoding odor valence (pleasant vs.
unpleasant) in the absence of any visual stimuli (i.e., faces). For this purpose, we computed
two contrasts between the unimodal odor presentations, which were [Fragrance > Body odor]
and [Body odor > Fragrance]. Results from the first contrasts showed several regions within
the OFC to be more strongly activated by the pleasant fragrance as compared to the unpleasant
odor (see Figure 3). These were located bilaterally in the medial OFC along the olfactory sulcus
(x/y/z = 12/44/-18; z-score = 2.62 and x/y/z = -14/44/-14; z-score = 2.55), and in the lateral OFC in
the right hemisphere only (x/y/z = 22/50/-8; z-score = 2.63). Additionally, a small cluster was
detected in the right inferior frontal gyrus pars triangularis (x/y/z = 32/34/2; z-score = 2.36).

Figure 3. Group results (n=16 participants) for brain regions showing differences in brain activation relating to the
pleasantness of the odors are shown on coronal slices at different y-coordinates in the canonical MNI 152 space. The
contrast [Fragrance > BO] is rendered in orange/yellow and the contrast [BO > Fragrance] is rendered in blue. The un‐
pleasant BO elicited stronger responses in the supramarginal gyrus (yellow), thalamus (red), piriform cortex (white),
and lateral OFC (green). In contrast, the pleasant fragrance caused stronger activation primarily in medial OFC (tur‐
quoise). The right side of each slice corresponds to the right side of the brain.

Conversely, within the OFC, the unpleasant odor activated more strongly only in the left lateral
orbital gyrus (x/y/z = -24/54/-18; z-score = 2.51). However, activation was stronger in the primary
sensory olfactory areas in the piriform cortex/amygdaloid area bilaterally (x/y/z = 20/10/-26; z-
score = 2.13 and x/y/z = -16/6/22; z-score = 2.28) and in the frontal operculum (x/y/z = 58/0/10; z-
score = 2.13 and x/y/z = -54/8/8; z-score = 2.33). Activation differences were also detected
bilaterally in the supramarginal gyrus (x/y/z = 58/-20/16; z-score = 2.27 and x/y/z = -56/-22/22; z-
score = 2.52) and in the right thalamus (x/y/z = 18/-22/6; z-score = 2.30).

3.2.2. Facial attractiveness

In order to highlight those brain areas involved in encoding the attractiveness of the face
stimuli independently of odors, we compared the responses to faces with high vs. low
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attractiveness. For these contrasts, no distinction was made between the various odor condi‐
tions (Fragrance, Body odor and clean air), which were grouped together. The results revealed
that irrespective of the odor condition, the presentation of the more attractive faces led to
increased BOLD signal amplitude in the medial OFC in both hemispheres (x/y/z = 4/36/-8; z-
score = 2.60 and x/y/z = -2/36/-4; z-score = 2.96, see Figure 4). Two other brain regions also showed
stronger activation in response to the more attractive faces, namely the left nucleus accumbens
(x/y/z = -6/8/-18; z-score = 2.93) and the hypothalamus (x/y/z = 0/-6/-18; z-score = 2.69). Conversely,
the presentation of the unattractive faces resulted in stronger activation bilaterally in the
amygdala (x/y/z = 22/0/-12; z-score = 2.19 and x/y/z = -22/-4/-14; z-score = 2.45) as well as in the
right pallidum (x/y/z = 26/-10/-6; z-score = 2.99). Interestingly, the unattractive faces also elicited
stronger activation in visual areas in the left inferior occipital gyrus (x/y/z = -16/-96/-8; z-score
= 2.61).

Figure 4. Group results (n=16 participants) for brain regions showing differences in brain activation relating to the
attractiveness of the faces (high vs. low) are shown on coronal slices at different y-coordinates in the canonical MNI
152 space. The contrast [High > Low] is rendered in orange/yellow and the contrast [Low > High] is rendered in blue.
Attractive faces preferentially engaged the medial OFC, whereas the less attractive faces led to stronger activation in
the amygdala. The right side of each slice corresponds to the right side of the brain.

3.2.3. Odor-face interactions

The primary interest of the present study was to address the question of whether or not odor
hedonics would influence the perceived or implicit attractiveness of male faces to female
participants. The behavioral results confirmed that the same set of faces was rated as being
significantly more attractive when accompanied by the pleasant odor as compared to the
unpleasant odor. We were specifically interested in the brain regions associated with this effect
and therefore contrasted those trials in which the faces were presented with the pleasant male
fragrance to those where the same faces were presented with the unpleasant body odor. Similar
to the unisensory effects of pleasant vs. unpleasant odors and attractive vs. unattractive faces,
the face stimuli caused significantly stronger activation in the medial (x/y/z = -6/44/-24; z-
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score = 2.64) and lateral (x/y/z = -38/54/-16; z-score = 2.93) OFC as well as in the ventral striatum
(x/y/z = -2/12/-16; z-score = 2.63), when they were presented together with the pleasant odor (see
Figure 5). A further analysis of the percentage BOLD signal change in the peak activated voxels
in the left OFC (see Figure 6) revealed positive signal changes only when faces were presented
with the fragrance or in the absence of odors. The responses in these regions to all other stimuli
were either close to zero or slightly negative.

Figure 5. Group results (n=16 participants) for brain regions showing differences in brain activation when the same
set of faces was presented together with the pleasant fragrance compared to the unpleasant body odor. The contrast
[Faces + Fragrance > Faces + BO] is rendered in orange/yellow and the contrast [Faces + BO > Faces + Fragrance] is
rendered in blue. The presence of the fragrance preferentially engaged the OFC and ventral striatum. Conversely, the
unpleasant odor caused stronger activation in the amygdala, insular cortex, and visual cortex. The right side of each
slice corresponds to the right side of the brain.

Conversely, a different network of brain regions responded more strongly when the faces were
presented together with the unpleasant body odor. The presence of the unpleasant odor caused
significantly stronger activation in the amygdala (x/y/z = 20/-8/-16; z-score = 3.03 and x/y/z =
-18/-6/-16; z-score = 2.65) and anterior insular cortex (x/y/z = 36/12/6; z-score = 3.95 and x/y/z =
-32/24/0; z-score = 3.01). Furthermore, we observed significantly stronger responses in the
thalamus (x/y/z = 12/-16/4; z-score = 3.95 and x/y/z = -6/-20/4; z-score = 3.39) and an extensive
cluster located at the junction of the rolandic operculum with the superior temporal sulcus (x/
y/z = 60/-22/18; z-score = 4.06 and x/y/z = -62/-20/-14; z-score = 3.79). The only differences in frontal
brain regions was found in the right medial frontal gyrus (x/y/z = 30/28/30; z-score = 2.69).
Interestingly, both visual cortical areas (x/y/z = -2/-86/-10; z-score = 3.02) as well as the cerebel‐
lum (x/y/z = 12/-56/-14; z-score = 3.50 and x/y/z = -20/-60/-20; z-score = 3.97) also displayed
stronger activation when the faces were accompanied by the unpleasant odor. A further
analysis of the percentage BOLD signal change in the peak activated voxels in the amygdala
(see Figure 7) revealed positive signal changes for all conditions.
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Figure 7. The average (n=16 participants) percentage BOLD signal change from baseline in the peak voxels in both
the left and right amygdala are shown for each of the five experimental conditions. Error bars depict the standard
error.

Figure 6. The average (n=16 participants) percentage BOLD signal change in the peak voxels in both medial and later‐
al OFC are shown for each of the five experimental conditions. Error bars depict the standard error.
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4. Discussion

The principal aim of the present study was to determine whether specific pleasant vs. un‐
pleasant odors can exert a significant influence on the perception of facial attractiveness.
Behavioral results confirmed that the two odors used in this study (a male fragrance and a
synthetic body odor) were indeed perceived as different with respect to their pleasantness.
Significantly, when briefly presented with the same set of male faces, the female participants
in this study judged the faces accompanied by the pleasant fragrance as more attractive than
when the faces were presented with an unpleasant synthetic body odor. This effect was related
to a modulatory effect exerted by the unpleasant odor, as no significant difference in facial
attractiveness ratings was found between the pleasant odor and a ‘no odor’ control condition.

In agreement with the behavioral data, the pleasant fragrance activated the medial OFC, a
region that encodes the reward value of stimuli across a variety of sensory modalities including
olfaction [27, 30, 39, 40]. Conversely, the unpleasant odor activated a different network or brain
regions, including the amygdala which has previously been implicated in the processing of
aversive stimuli [30, 41, 42].

There is currently some controversy over the role of the amygdala in the processing of odor
hedonics, since the established view that this region specifically encodes aversive odors [43,
42] has been challenged by several more recent studies. For example, Anderson and colleagues
[27] used the pleasant odor citral (which has a lemon smell) and the unpleasant odor valeric
acid (a rancid smell) in high and low concentrations so that they could vary the valence and
intensity of these stimuli. They found that amygdala activation was associated with odor
intensity, but was independent of valence. Conversely, activity in the OFC was associated with
odor valence, independent of intensity. In a similar study using a greater number of odors (3
pleasant and 3 unpleasant), Rolls and colleagues [40] found that ratings of odor intensity were
correlated with the magnitude of the BOLD signal in medial olfactory cortical areas (including
the piriform and anterior entorhinal cortex), but not in the OFC. In contrast, pleasant odors
were found to activate a medial region of the OFC, whereas unpleasant odors activated the
left lateral OFC, irrespective of odor intensity. Activation of this area have also been reported
after monetary losses, unattractiveness in face stimuli, and the presentation of aversive odors
[39, 44, 45, 46]. Since the odors used in the present study were matched with respect to their
intensities, this supports the notion that stimulus aversiveness is encoded in the human
amygdala. This view is also supported by the results of a recent study demonstrating that the
amygdala does not encode odor valence or intensity per se, but rather appears to contain a
general representation of the emotional value of a stimulus [47].

When the activation seen in response to more attractive faces was compared to that seen in
response to relatively less attractive faces, it was found that the former engaged a reward circuit
consisting of the medial OFC and nucleus accumbens, consistent with previous studies [31,
14, 15]. By contrast, relatively less attractive faces gave rise to stronger activation in the
amygdala, a region implicated in the processing of the emotional expression of faces [48, 49]
particularly when the expression is negative (fear, anger). The results presented here suggest
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that less attractive faces produce a similar neural response to that elicited by faces displaying
negative emotions.

The main finding to emerge from this study was that the presence of odors with different
hedonic characteristics altered the perception of male facial attractiveness in female partici‐
pants. Under such conditions of bimodal stimulation, we found that when the faces were
presented together with a pleasant fragrance, increased BOLD activation was predominantly
observed in the OFC and ventral striatum (i.e. in the same regions that are engaged when
viewing attractive faces). It appears that the positive valence of the odor interacted with the
representation (itself not unpleasant), with the neuroimaging data providing a more in these
regions, leading to an overall positive emotional response to the multisensory combination of
stimuli (i.e., face plus odor). This observation is consistent with previous studies that have
implicated these regions in the processing of facial attractiveness [31, 14, 15] and positively
valenced odors [27, 40, 47]. Despite the observation that attractiveness ratings were no different
when faces were presented together with the pleasant odor compared to faces presented in
the absence of odors, significantly positive BOLD responses within the OFC were only
observed in the former condition. This may suggest that even though the pleasant odor did
not increase the consciously perceived and reported visual attractiveness of the faces per se,
the medial OFC did and here we conjecture that this effect engaged more implicit affective
processes that participants were unable to access consciously, but would nonetheless impact
on mechanisms underpinning liking.

In contrast, when the male faces were presented with the unpleasant body odor, ratings of
facial attractiveness were significantly reduced, compared to the pleasant odor and the
odorless condition. The presence of the unpleasant odor caused significantly stronger activa‐
tion in the insular cortex and the amygdala, both of which have previously been implicated in
the representation of negative affect [50, 51, 52] and facial unattractiveness [15]. It thus appears
that the aversiveness of the body odor negatively influences the emotional response to a face,
leading to a decrease in its perceived attractiveness, an effect that was observed for faces of
both high and low attractiveness. Several factors might explain the observation that the body
odor influenced the ratings and brain activation more strongly than the fragrance. First, the
hedonic difference of the body odor from hedonically neutral was greater than that of the
fragrance (rating of 1.78 for body odor versus. 3.68 for fragrance with 3 being ‘neutral’), so that
a stronger effect might be expected on that basis alone.

In conclusion, even though the behavioral response (as measured by overt rating of facial
attractiveness) in the presence of the pleasant odor, or no odor, condition did not influence
facial attractiveness, results from the neuroimaging component of the study did show
activations in the reward processing areas of OFC and ventral striatum. Reward region activity
as evaluated using fMRI did not therefore follow the results of the behavioural task. The latter,
we suggest, lacked the sensitivity required to dissociate between the fragrance and clean air
(itself not unpleasant) of facial attractiveness with the neuroimaging data providing a more
sensitive measure of affective state. For the unpleasant body odor, our findings support the
notion that in the context of facial beauty, unpleasant odors have higher overt emotional
salience than pleasant odors.
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