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1. Introduction

Local agricultural production is a key element of food security in many agricultural countries
in Africa. Climate change and variability is likely to adversely affect these countries, particu‐
larly as they affect the ability of smallholder farmers to raise enough food to feed themselves.
Seasonality influences farmers’ decisions about when to sow and harvest, and ultimately the
success or failure of their crops.

At a 2009 conference in the United Kingdom hosted by the Institute of Development Studies,
Jennings and Magrath (2009) described farmer reports from East Asia, South Asia, Southern
Africa, East Africa and Latin America. Farmers indicate significant changes in the timing of
rainy seasons and the pattern of rains within seasons, including:

• More erratic rainfall, coming at unexpected times in and out of season;

• Extreme storms and unusually intense rainfall are punctuated by longer dry spells within
the rainy season;

• Increasing uncertainty as to the start of rainy seasons in many areas;

• Short or transitional second rainy seasons are becoming stronger than normal or are
disappearing altogether.

These farmer perceptions of change are striking in that they are geographically widespread
and are remarkably consistent across diverse regions (Jennings and Magrath, 2009). The impact
of these changes on farmers with small plots and few resources is large. Farming is becoming
riskier because of heat stress, lack of water, pests and diseases that interact with ongoing
pressures on natural resources. Lack of predictability in the start and length of the growing
season affects the ability of farmers to invest in appropriate fertilizer levels or improved, high
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yielding varieties. These changes occur at the same time as the demand for food is rising and
is projected to continue to rise for the next fifty years (IAASTD, 2008).

Long-term data records derived from satellite remote sensing can be used to verify these
reports, providing necessary analysis and documentation required to plan effective adaptation
strategies. Remote sensing data can also provide some understanding of the spatial extent of
these changes and whether they are likely to continue.

Given the agricultural nature of most economies on the African continent, agricultural
production continues to be a critical determinant of both food security and economic growth
(Funk and Brown, 2009). Crop phenological parameters, such as the start and end of the
growing season, the total length of the growing season, and the rate of greening and senescence
are important for planning crop management, crop diversification, and intensification.

The World Food Summit of 1996 defined food security as: ”when all people at all times have
access to sufficient, safe, nutritious food to maintain a healthy and active life”. Food security
roughly depends on three factors: 1) availability of food; 2) access to food and 3) appropriate
use of food, as well as adequate water and sanitation. The first factor is dependent on growing
conditions and weather and climate. In a previous paper we have investigated this factor by
evaluating the effect of large scale climate oscillation on land surface phenology (Brown et al.,
2010). We found that all areas in Africa are significantly affected by at least one type of large
scale climate oscillations and concluded that these somewhat predictable oscillations could
perhaps be used to forecast agricultural production. In addition, we have evaluated changes
in agricultural land surface phenology over time (Brown et al., 2012). We found that land
surface phenology models, which link large-scale vegetation indices with accumulated
humidity, could successfully predict agricultural productivity in several countries around the
world.

In this chapter we are interested in the effect of variability in peak timing of the growing season,
or phenology, on the second factor of food security, food access. In this chapter we want to
determine if there is a link between market prices and land surface phenology and to determine
which markets are vulnerable to land surface phenology changes and variability and which
market prices are not correlated.

2. Background

2.1. Vegetation seasonality and change

Early research on the impact of global climate change on the growing season in northern
latitudes was based on satellite remote sensing observations of vegetation (Myneni et al.,
1997, Nemani et al., 2003, Slayback et al., 2003). These direct observations of change in the onset
of spring led to the development of phenological models using remote sensing information.
Phenology is the study of the timing of recurring biological cycles and their connection to
climate (Lieth, 1974). Phenology has the promise of capturing quantitatively the changes
reported by farmers and providing evidence for its link to climate change. Land surface
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phenology is the analysis of changes in the vegetated land surface as observed by satellite
images (de Beurs and Henebry, 2004). Land surface phenology distinguishes itself from species
centric phenology in that it focuses on the analysis of the land surface in mixed pixels. White
et al. (2009) described the complexity of comparing ground observations of the start of season
with satellite-derived estimates due to the difficulty in understanding the myriad definitions
of season metrics.

Land surface phenology models rely on remote sensing information of vegetation, such as the
dataset derived from the Advanced Very High Resolution Radiometer (AVHRR) (Tucker et
al., 2005) and the newer MODIS sensors on Aqua and Terra. Vegetation and rainfall data can
assess variables such as the start of season, growing season length and overall growing season
productivity (Brown and De Beurs, 2008, Brown, 2008). These metrics are common inputs to
crop models that estimate the impact of weather on yield (Verdin and Klaver, 2002). Land
surface phenology metrics have a strong relationship with regional food production, particu‐
larly those with sufficiently long records to capture local variability (Funk and Budde, 2009,
Vrieling et al., 2008).

2.2. Price seasonality

The integration of a market into the broader economy has been the objective of many devel‐
opment programs (Barrett, 2008), since the increased integration of food markets in developing
countries is considered to be of vital importance for agricultural transformation and economic
growth (Fafchamps, 1992). Market integration is also an important aspect of food security,
since many sub-Saharan countries face food shortages as a result of crop failures caused by
drought or other climatic hazards (Zant, 2013). Integrated markets offer the potential to reduce
the impact of weather shocks by quickly moving food from surplus to deficit areas. Conversely,
poorly integrated markets, such as those where inadequate trade infrastructure hinders market
function, may result in food shortages (Zant, 2013). Poorly integrated markets are often isolated
because of low participation in the market by farmers, resulting in ‘thin’ markets that have too
little supply during times of high demand (before the harvest) and too much supply during
times with low demand (after the harvest). Many households in developing countries seek to
be as self-sufficient as possible in capital, labor and food to reduce exposure to variability in
prices and extremely high transaction costs (Lutz et al., 1995), which are both a cause and a
consequence of thinly traded, volatile markets. Thinly traded markets keep the difference
between producer and consumer prices high, further reinforcing household incentives to
minimize their reliance on markets (Tschirley and Weber, 1994, Kelly et al., 1996).

Seasonality in food prices, as measured by the ratio of post harvest to harvest prices, is high
in markets that are poorly integrated and isolated. Seasonal price changes may reflect changes
in production, particularly in good years when infrastructure and trade constraints reduce the
ability of traders to move excess grain out of an area. Seasonal price spreads can be explained
by storage losses, large postharvest grain sales, and lack of trader participation in isolated
markets during average and good years (Alderman and Shively, 1996). Thus price seasonality
is negatively related to production anomalies, where higher (lower) production will create
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lower (higher) prices during the post harvest season because of the inability or unwillingness
of households and traders to store grain.

Another source of seasonality in food prices in thin markets is the seasonality of transaction
costs, as well as transportation costs. Little is known about the variability of transportation
costs in each of the markets of this study, but rainfall and poor roads, increased demand for
movement of goods and people during the rainy season, and the increased difficulty of
distributing fuel and other necessities for transportation make it likely that transportation costs
will be higher during the growing seasons (Alderman and Shively, 1996). Transaction costs
are the costs incurred in making an economic exchange: determining the price and the demand
for a good in a market, the cost of bargaining for a fair price, and the cost of policing and
enforcement in the market (Asante et al., 1989, Fafchamps, 2004). All of these costs are also
likely to be seasonal. These sources of non-food production variability in the seasonality of
food prices can also be estimated with remote sensing data.

3. Data

3.1. MODIS data

MODIS Nadir BRDF-Adjusted Reflectance data (Schaaf et al., 2002) at 0.05° spatial resolution
with temporal resolution of 16 days (MCD43C4) and temporal coverage from 2001 through
2011 were employed to derive the Normalized Difference Vegetation Index as:

( ) ( )NDVI = NIR - RED  / NIR + RED (1)

Where, NIR is the near infrared reflectance of MODIS band 2 (841-876 nm) and RED is MODIS
band 1 (620-670 nm). NDVI is an often used vegetation index (Brown et al., 2006, Karnieli et
al., 2010) which exploits the significant difference between NIR and Red reflectance for living
vegetation. Healthy living vegetation strongly absorbs red reflectance and strongly reflects
NIR.

3.2. MOD 16 evapotranspiration data

We used the MOD16 global evapotranspiration product at 0.05° spatial resolution and 16-day
temporal resolution. The ET algorithm is based on the Penman-Monteith equation (Monteith,
1965, Mu et al., 2011). We accumulated the global evapotranspiration starting in January and
July to account for the different growing seasons in the Northern and Southern Hemisphere.

3.3. Market data

The data used in this paper is from a continuously updated price database comprised of food
prices from 232 markets in 39 countries, collected by the FAO and the US Agency for Interna‐
tional Development’s Famine Early Warning Systems Network (FEWS NET). The data is
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available from the FAO at the Global Information and Early Warning System (GIEWS) website:
http://www.fao.org/giews/pricetool/. We selected all the available markets that are located on
the African continent. We have a total of 933 time series with market price information for 51
different products ranging from fuel to cattle to grain crops. The most common commodities
were maize (137 price series), sorghum (118 price series), rice (102 price series), millet (56 price
series), beans (43 price series) and cowpea (40 price series).The monthly time series differ in
length with some starting as early as 1997 while others started in 2009. For time series with
long data, only the period from 2000 was analyzed, and for those beginning after 2000, we
report only the stations with at least four years of continuous data. We created a 0.5° buffer
around the markets and determined the percentage of cropland within these buffers.

4. Methods

4.1. Land surface phenology metrics

To extract the peak height in NDVI and the peak timing based on accumulated evapotranspi‐
ration, we fit quadratic models with accumulated evapotranspiration based on MOD16 as the
independent variable and NDVI as the dependent variable (Figure 1). We have used these
models before based on Accumulated Growing Degree Days (AGDD) in other parts of the
world (de Beurs and Henebry, 2008a,b, 2010). We have demonstrated recently that models
based on moisture variables resulted in higher R2 values in large areas around the world
including Africa (Brown et al., 2012). In that paper we based our analysis on AVHRR data and
we extend that work here with MODIS data. We fit the model two times for each pixel and
year, once with data beginning in January and ending in December, and once with data
beginning in July and ending in June. Figure 1 provides an example of the quadratic models
for a market in Niger. For each 0.05° we calculate the NDVI peak height and the amount of
accumulated evapotranspiration necessary to reach this peak NDVI. We also derive the day
of the year for which the peak NDVI is reached.

4.2. Market analysis

Market  prices  are  provided  in  monthly  time  series.  Most  market  price  series  show  a
steady increase between 2000 and 2011 as a result of inflation and changes in world mar‐
ket prices. In this study we are not interested in the trend in these time series but rather
in its seasonality. We calculate in which month, on average, the maximum price occurred,
and we calculate  the  seasonal  price  spread.  In  addition,  we calculate  the  difference  be‐
tween the maximum market price in each year and the minimum market price in the pre‐
ceding eight months (Figure 2).

We apply Spearman’s rank correlation to calculate the correlation between these price
differences and the peak height based on our land surface phenology metrics (Figure 3).
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5. Results

5.1 Seasonal timing of vegetation and prices

The timing of the annual price maximum reveals a basic north-south pattern similar to the
timing of the peak of the growing season observed by the land surface phenology models
(Figure 4). The highest prices in West Africa occur in June and July in the far west, and in
August and September in the central region. In East Africa the peak times occur in October
and November, although a fair bit of variability can be observed. Southeastern Africa reveals
highest prices in the months December through March. Figure 4 reveals that a great number
of price time series peak around or slightly before the time that the vegetation as observed by
satellite data peaks. There are a fair number of outliers, which are likely the result of non-
environmental factors weighing more strongly on the price time series.

Figure 5 shows the seasonal price spread. The spread is highest for southeastern Africa and
lowest for Western Africa. A low seasonal price spread indicates a certain amount of predict‐
ability about when prices may peak during the year.

Figure 1. Example of a quadratic model fit for a station as far north as Ouallam, Niger. The example is created based
on data from 2009. The NDVI peak height and the accumulated evapotranspiration at peak are calculated based on
the quadratic regression model.
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5.2. Correlation between vegetation peak height and price increases

We found that the significance of the correlation between price increases and NDVI peaks in
the surrounding areas differed strongly by product. For example, we found that only 13% of
the rice price series correlated significantly (p<0.1) with NDVI peaks, while 35% of the cowpea
price time series correlated strongly with NDVI peaks in the surroundings (Table 1).

Crop Number of markets % of sign. correlations

Cowpea 26 35%

Sorghum 76 32%

Beans 30 23%

Millet 41 22%

Maize 89 22%

Rice 46 13%

Table 1. Percent of significant correlation between market price increases and NDVI at peak by crop type.

Table 2 provides the 10 countries for which we have the largest number of market price series.
We found a fair bit of variability in the number of significant correlations by country. For

Figure 2. Example of a price time series of millet prices in Ouallam, Niger. For each year we determine the highest
price (in grey dots). We also determine the difference between the highest price and the lowest price in the preceding
8-month period (shown in black triangles). Based on the highest prices we calculate in which month on average the
highest price is found.
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example, Nigeria, Somalia and Niger all revealed significant correlations between price

increases and NDVI peak height for a large percentage of their markets (50%, 42% and 33%,

respectively), while only 11% of the markets in Burundi revealed significant correlations.

Country Number of markets % of sign. correlations

Nigeria 22 50%

Somalia 45 42%

Niger 24 33%

Kenya 18 22%

Tanzania 28 18%

Mali 22 18%

Mozambique 22 14%

Burkina Faso 15 13%

Uganda 17 12%

Burundi 18 11%

Table 2. Percent of significant correlation between market price increases and NDVI at peak by country.

Figure 3. Example of correlation between the peak height of NDVI (Figure 1) and the price difference calculated
based on market prices (Figure 2) for Ouallam, Niger. Each dot indicates a peak height x price difference combination
for one year. We are showing the years 2004 – 2011. The final reported rank correlation for this area was -0.56, with a
p-value of 0.037.
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Figure 4. Mean month with the highest prices corresponds reasonably well with the peak timing based on NDVI.
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5.3. Correlation between the amount of accumulated evapotranspiration at peak vegetation
and prices

When we calculated the correlation between the peak timing in accumulated evapotranspira‐
tion and actual price values at their annual peak, we found a high number of markets with
significant correlation, especially for millet. Beans revealed the lowest number of markets with
significant correlation (16%). When we investigate the correlations by country, we find the
largest number of significant correlations in Mali (Table 4), where 48% of the market price
series correlate significantly with the peak timing in evapotranspiration units. Kenya and
Burkina Faso also show a large number of significant correlations (45% and 40%). The lowest
number of significant correlations was found in Tanzania, where only 15% of market price
series correlated significantly with the amount of accumulated evapotranspiration at peak
timing.

6. Discussion

In Sub-Saharan Africa, rice is the dominant commodity that appears to reflect changes in world
prices (Kelly et al., 2008). Consequently, it is profitable to import rice, while arbitrage oppor‐
tunities for grain trade are significantly lower. Further, several countries (many in West Africa)

Figure 5. High seasonal price spread indicates more variability in the timing of the price peaks. Low price spread indi‐
cates that the annual maximum prices are found approximately in the same month every year.
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consume rice, but need to import rice to meet domestic consumption needs. Thus, our lack of
correlation between rice price series and NDVI in the surrounding regions appears reasonable
(Table 1 and 3). Millet is one of the products that can be grown in semi-arid zones and is most
widely available (Brown, 2008). The ability of millet to grow in semi-arid zones likely results
in the higher number of markets that reveal significant correlations between prices and
evapotranspiration (Table 3).

Crop Number of markets % of sign. correlations

Millet 46 35%

Sorghum 84 32%

Maize 112 31%

Rice 54 30%

Cowpea 26 23%

Beans 36 16%

Table 3. Percent of significant correlation between market prices and amount of evapotranspiration at peak by crop
type.

Eight of the countries investigated are classified as having low food security; Nigeria and Bur‐
kina Faso are classified as middle food security (Yu et al., 2010). All have unfavorable climates
for agriculture, except for Uganda and Burundi, which also show the lowest amount of correla‐
tion between NDVI peak height and price increases (Table 2). It appears that price changes in
these two countries are less affected by weather conditions. More than 70% of cereal needs are
generally met through domestic production in Mali, Burkina Faso and Niger (Kelly et al., 2008).
As a result, food prices tend to rise as a result of production short falls. We found that prices in
these countries revealed very high correlation with peak height NDVI (Niger, Table 2) and
amount of accumulated evapotranspiration at peak (Mali and Burkina Faso, Table 4).

Country Number of Markets % of sign. correlations

Mali 23 48%

Kenya 22 45%

Burkina Faso 15 40%

Nigeria 25 36%

Uganda 22 32%

Somalia 49 29%

Niger 24 25%

Mozambique 23 22%

Burundi 22 18%

Tanzania 34 15%

Table 4. Percent of significant correlation between market prices and amount of evapotranspiration at peak by
country.
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7. Conclusions

Preliminary conclusion based on this analysis is that we can get a better understanding of
where satellite data could aid in the prediction of local market prices. For example, prices may
be driven by different factors in Uganda and Burundi than in Niger and Nigeria. If we combine
our knowledge of the effect of large scale climate oscillations on the land surface phenology
(Brown et al., 2010) with the links between price time series and land surface phenology, we
may be able to get an understanding of where we could predict local prices. Satellite data may
be most effective in predicting local prices in poorly integrated markets. Poorly integrated
markets are often ‘thin’ markets that have too little supply during times of high demand, such
as right before harvest, resulting in food shortages. Seasonal price changes may reflect changes
in production; in good years infrastructure and trade contraints reduce the ability of traders
to move excess grain out of the area, and in poor years food is not moved into the area.
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