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1. Introduction

Lithography, the fundamental fabrication process of semiconductor devices, is playing a
critical role nowadays in the fabrication of micro- and nano-structures especially for the
realization of micro-electro-mechanical systems (MEMS), microfluidic devices, photonic
crystals, photonic integrated circuits, micro-optics, and plasmonic optoelectronic devices.
These devices have various practical applications including optical display, optical memory,
optical interconnection for high speed computing systems, photonic planar lightwave circuits,
medical fluidic filtering devices, drug delivery devices, solar energy devices, antireflection
optical elements, and optical sensors.

Traditional photolithography, laser direct write maskless lithography, and gray-scale lithog-
raphy are suitable for micro-structural patterning. E-beam lithography, EUV and X-ray
lithography employing shorter wavelength beams can help improve pattern resolution for
fabrication of finer scale nano-structures. Contact lithography including soft lithography and
nano-imprint lithography offers capability of higher resolution nano-structure fabrication.
However, most of these existing lithography tools are limited to the fabrication of two-
dimensional (2D) micro- and nano-structures. Multilayer 2D patterning using the photo and
e-beam lithography tools can yield 3D layered structures. Such fabricated structures due to
multilayer lithography, would be very difficult to achieve high resolution layered thickness
control and layer to layer alignment for finer resolution 3D micro-structures.

We present herein prism-assisted inclined ultraviolet (UV) lithography and holographic
lithography (HL) for the fabrication of three-dimensional (3D) micro- and nano-structures in
SU-8 photoresist. For inclined UV lithography, a prism is used as a refractor to deflect the
incident UV light and expand the exposure beam angle range in the resist film. The sample
internal surface reflection of the exposing UV light can facilitate the fabrication of symmetric
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structures. Prism with multidirectional side surfaces can be used to achieve one-step exposure
fabrication of multidirectional slanted structures. For holographic lithography, a prism is used
to form multi-directional interference beams that greatly simplify the beam splitting and
redirecting in conventional HL and at the same time minimize the system vibration sensitivity.
The prism-assisted HL is attractive for fast and large area realization of crystal structures,
especially quasi-crystal structures. Some practical applications will be discussed.

2. Prism-assisted inclined UV lithography

Inclined UV lithography has recently been used for the fabrication of 3D microstructures
(Beuret et al., 1994; Yoon et al., 2006; Han et al., 2004; Campo & Arzt, 2008; Campo & Greiner,
2007). It has demonstrated effective production of various 3D patterns for many practical
applications. Two critical problems, namely limited exposure angle and complicated rotation
process, have so far restricted the widespread use of the inclined UV lithography in the
fabrication of 3D microstructures.

Many devices, such as optical pick-up heads (Huang et al., 2004), embedded waveguide
mirrors (Dou et al., 2010), and sharped microneedles (Han et. al., 2007), require microstructures
with large side surface angles measured from the normal direction of the resin surface. The
widely used negative photoresist SU-8 (refractive index 1.67 at 365 nm) from MicroChem as
an example when exposed directly in air, as shown in Fig. 1, the inclined exposure angle in the
lithographic resin can in general be easily adjusted by changing the slanted stage angle.
However, the refractive beam path bending associated to the large index difference between
the air and photoresist has limited the exposure angles in the resin and thus the realization of
large angle side surfaces.

Figure 1. Schematic diagram of inclined UV lithography in the air.

In order to expand the exposure angle in the resin, one way is to immerse the lithographic
resin in an index matching liquid (Huang et al., 2004; Han et. al., 2007; Ling & Lian, 2007), such
as deionized (DI) water (1=1.33), heptane (1=1.39), or glycerol (n=1.6), which can effectively
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minimize the light beam path bending, as shown in Fig. 2(a). Fig. 2(b) presents the simulation
results of the exposure angle 0 in the SU-8 versus slanted stage angle § in air, water, heptane
and glycerol, respectively. The exposure angle can be easily increased beyond 45° with the use
of an index matching liquid. However, this immersion method demands a sample settlement
time in the index matching liquid to avoid uneven liquid surface and bubble formation. The
presence of index matching liquid may affect the UV exposure properties of the resin, because
of its influence of certain characteristics of the lithographic resin, such as water content.
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Figure 2. a) Schematic diagram of inclined UV lithography in an index matching liquid and (b) simulation of the expo-
sure angle versus slanted stage angle in air, water, heptane, and glycerol.

Multi-directional inclined structures are normally applied in some more complex devices, such
as microfilter and micromixer. Multi-step UV exposure with sample rotation has been proved
effective. The slanted sample/mask holder of Fig. 3 can be used for such purpose. It would be
more attractive to introduce a one-step fabrication technique for the realization of 3D structures
with multi-directional inclined angles.

Figure 3. The sample/mask plate holder with rotation features for multi-directional inclined UV exposure.
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2.1. Prism-assisted UV lithography for slanted structures with large exposure angles

As schematically presented in Fig. 4, the prism-assisted UV lithography can expand the
exposure angle of slanted structures in the resin. A glass prism (refractive index 1.53 at 365
nm) acts as a refractor to deflect the direction of the incident UV light in the resin for the inclined
UV lithographic exposure. This overcomes the exposure angle limitation due to the original
large index difference between air and photoresist. The back-side UV exposure is applied here
for accurate patterning benefiting from the intimate contact between the photomask/substrate
and the resin. The prism side surface to bottom surface angle is a. Poly-dimethysiloxane
(PDMS) serves as a good candidate for fast custom prototyping of the prism in house (Kang
etal., 2006) with needed prism angle, benefiting from its low cost, molding flexibility, and easy
angle control. The slanted stage provides an inclined angle § to the horizontal plane. The
incident UV light at 365 nm wavelength is perpendicular to the horizontal plane. In the
lithographic exposure process, the refractions of UV light happen at air/prism, prism/mask,
and mask/SU-8 interfaces, as schematically illustrated in Fig. 4(b). The relationships between
the incident and refractive angles on all interfaces can be obtained based on the Snell’s law.
The exposure angle 0 in SU-8, as a function of the prism angle @ and slanted stage angle , can
be written as (Jiang et al., 2012a)

M prism Moy
9=sin_1{ £ sin{a—sin_l( sin(a—ﬁ))“,

su—8 prism

where 1 denotes the refractive index of each medium.

| | o

Slanted Stage

Figure 4. a) Schematic diagram of prism-assisted UV lithography for the expansion of the exposure angle in the resin.
(b) Schematic of cross-sectional view of the UV light path bending.

The calculated relationships of exposure angle 0, the prism angle a, and the slanted stage angle
p are shown in Fig. 5. The exposure angle in SU-8 can be easily expanded beyond 60° by using
this method. Different combinations of a and g to realize 15° (green dash-dot line), 30° (black
solid line), 45° (red dotted line), and 60° (blue dashed line) inclined surfaces are also high-
lighted in this figure. Obviously, we can expand and control the exposure angle in SU-8 by
flexibly varying the combination of the prism angle and the slanted stage angle.
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Using this technique, we have fabricated 3D slanted structures with different inclined angles
of 15° 30°, 45°, and 60° as illustrated in Fig. 6 (Jiang et al., 2012a). A 45° prism was used in the
fabrication process, and the slanted stage angles were set to 0°, 27°, 54°, and 85°, respectively.
Some functional and interesting inclined structures with 45° exposure angles (see Fig. 7) can

be easily fabricated using this method.

Exposure angle in SU-8 (degree)

Figure 5. The exposure angle 8in SU-8 as a function of the prism angle aand slanted stage angle .

© (d)

Figure 6. SEM images of the fabricated inclined structures with different exposure angles.
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Figure 7. SEM images of the fabricated 3D inclined microstructures with 450 exposure angles.

The concept of utilizing the sample internal surface reflected exposing UV light to initiate cross-
linking of the photoresist by increasing exposure times at a fixed UV light power (Campo &
Arzt, 2008; Zhu et al., 2008) is given in Fig. 8. This is a simple yet efficient way to fabricate
symmetric microstructures instead of twice exposures. The SEM images of the fabricated
symmetric microstructures with 45° slanted surfaces on both sides are shown in Fig. 9 (Jiang
et al., 2012b).

Figure 8. a) Schematic diagram of initiating cross-linking of the resin. (b) Schematic of cross-section view of the UV
light path bending showing both incident and reflection exposures.
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Figure 9. SEM images of the inclined structures with 450 exposure angles fabricated by internal reflected UV exposure
beams.

2.2. Prism-assisted on-step UV lithography for multidirectional inclined structures

Besides the expansion of the exposure angle, the prism-assisted UV lithography is also
attractive in one-step exposure fabrication of 3D structures with multi-directional inclined
angles. The fabrication of V-cut structures with a right angle prism has been reported (Huang
et al., 2008). A multi-surface optical prism of a polyhedron pyramid structure (a polyhedron
pyramid prism) is introduced here to assist the fabrication of some particular microstructures
as depicted in Fig. 10(a). Different side surfaces of the prism will simultaneously deflect UV
light to different directions. Therefore, a set of slanted exposure beam columns will be formed
by a set of refracted exposure beams from these side surfaces. It is thus possible to fabricate a
complex multi-directional slanted structure in one step. Here, the slant stage angle f is set to
be 0°. To illustrate this concept, we show the bending UV light paths from two side surfaces
of the prism in Fig. 10(b).

A corner prism in Fig. 11 (a) was used in our experiment. It has a refractive index of 1.53 at 365
nm and a prism angle of 54.7° for all three side surfaces. The exposure angle 0 in SU-8 caused
by the refracted UV beams from each side-surface is 21°. When using a separated circular hole
mask pattern, three slanted exposure beam columns are formed simultaneously by the
refracted exposure beams from these three side surfaces. Thus, the exposure structure is an
upside-down tripod structure. Fig. 11(b) and (c) present the fabricated upside-down tripod
structures with different heights (Jiang et al., 2012a). Fig. 11(d) is the side view of the tripod
structure when placing on its side which is dimensionally similar to that of Fig. 11(c).
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UV light

Figure 10. a) Schematic diagram of fabricating multi-directional structures using a polyhedron prism. (b) Schematic of
a cross-sectional diagram showing the UV light paths.

Figure 11. Fabrication of upside-down tripod structure by one-step exposure using a corner prism.

By arranging the basic upside-down tripod structures side by side, more complex 3D micro-
structures can be obtained. We use a mask pattern of an equilateral triangular lattice of circular
holes in the experiment. If one base side of the prism is parallel to one side of the triangular
lattice (see Fig. 12(a)), the nearest three upside-down tripod structures will intersect as shown
in Fig. 12(b). If the prism is rotated in-plane by 90°, one base side of the prism will be vertical
to one side of the triangular lattice (see Fig. 12(c)). The nearest three upside-down tripod
structures will not intersect with each other and a new structure as illustrated in Fig. 12(d) is
obtained.
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Figure 12. Two specific ways for the arrangement of the basic upside-down tripod structures.

With the setup in Fig. 12(a), the structure in Fig. 13(a) which owns a new layer with an
equilateral triangular lattice of circular holes is formed when the height of the structure is 55
um and the side length of the triangular lattice on the mask is 36 um. If we change the setup
as shown in Fig. 12(c), the 3D mesh structure highlighted in Fig. 13(b) is realized when the side
length of triangular lattice on the mask is 28 um and the height of the structure is 72 pum. This
structure consists of three independent parts similar to that of Fig. 13(a). The three independent
parts can be easily distinguished by following the color arrows indicated in Fig. 13(b), red
arrows (the first part), blue arrows (the second part), and black arrows (the third part). Since
this 3D mesh structure has three independent parts that are weaved closely together without
intersecting, it may have a great strength and a greater flexibility. Therefore, this technique
may be used to fabricate carbon fiber sheets with certain extensibility.

Fig. 13(c) and (d) presents a structure having one more layer than that of Fig. 12(a) which is
achieved by adjusting the height of the structure to be 85 um and the side length of the
triangular lattice to be 28 um. The periodicity of this 3D microstructure in the vertical direction
can be realized by increasing the height of the structures or decreasing the side length of the
triangular lattice on the mask. This method may be applied to the fabrication of 3D photonic
crystals at optical wavelengths if its size and periodicity can be further reduced.

If we replace the corner prism in Fig. 11(a) with a cone prism as illustrated in Fig. 14(a), circular
symmetric 3D structures can be obtained. In the experiment, the cone prism (refractive index
1.53 at 365 nm) has a 60° prism angle. Since all refracted UV light beams from cone surface
intersect at the center of the base plane, by position a circle hole mask pattern at the base center
of the prism, the exposure pattern on the photoresist will show a horn structure. The fabricated
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Figure 13. SEM images of the fabricated complex 3D microstructures using a corner prism.

horn structure is presented in Fig. 14(b) when using a mask with a 20 um diameter circular
hole pattern. The defects on the fabricated horn structure may be attributed to the misalign-
ment between the center of circle pattern and the base center of prism and/or the imperfections
of the cone prism.

If the circle hole mask pattern is not located at the center of the cone prism, the refracted UV
light beams from cone surface to different directions will be asymmetric when passing through
the circle hole mask pattern, so yielding asymmetric fan-shaped 3D structures. Fig. 14 (c) and
(d) presents the asymmetric exposure patterns on the photoresist, when the circle holes mask
patternis 3 mm and 10 mm away from the base center of the prism, respectively. Because these
holes are close to each other as a group but much farther away from the base center of the
prism, these holes received similar asymmetric exposure and thus resulted in similar litho-
graphic patterns. Clearly, different displacement from the base center of the prism will result
in different asymmetric exposures.

When using a polyhedron pyramid prism for one-step UV lithographic fabrication of 3D multi-
directional slanted structures, attention should be paid on the exposure dosage. There is certain
beam energy lost as the UV light passes through the prism and interfaces. The exposure energy
should be well controlled in the experiment. Fig. 15 shows the fabrication result of a similar
structure as shown in Fig. 12(c) without enough exposure dosage. The nearest three upside-
down tripod structures are intersecting, as we mentioned earlier. However, after photoresist
developing, the inclined pillars cannot support the intersection resulting in the structural
collapse. Over exposure may avoid the structural collapse but will introduce surface reflection
exposure and structure size expansion that is also not desirable.
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Figure 14. Fabrication of horn and fan-shaped structures by one-step exposure using a cone prism.

@ (b)

Figure 15. SEM images of the fabricated similar structure of Fig. 12(c) without enough exposure dosage with (b) as
magnified view of a local portion of (a).

For multi-directional exposure, attention should also be paid on the effective exposure area of
the prism, which also has a great influence on the formation of multi-directional slanted
structures. Each side surface has its own projected exposure area (the projection of the side
surface to the prism base), so the total effective exposure area means the common area of these
projected exposure areas. Take a rotationally symmetric polyhedron pyramid prism as an
example, the effective exposure area is determined by the slanted angle a of prism, the number
of side surfaces 1, and the circumradius r of the polygonal base. Fig. 16(a) shows the calculated
results of effective exposure area (blue circles) and its percentage on the base area (red
triangles) as a function of the number of side surfaces, at @ = 60° and r= 25 mm. The effective
exposure area and its percentage decrease rapidly as the increase of the number of the side
surfaces. Fig. 16(b) (blue solid line with a = 60° and n= 3) shows that the effective exposure
area can be enlarged by increasing the circumradius of the polygonal base when the number
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of the side surfaces is fixed. We also found that the percentage of the effective exposure area
is independent of the circumradius of the base, as indicated in Fig. 16(b) (red dashed line).
Therefore the number of side surfaces and the circumradius of the base need to be reasonably
selected in structural fabrication design.
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Figure 16. The effective exposure area and its percentage of base area (a) depend on the number of side surface and
(b) depend on the circumradius of the base.

The prism-assisted inclined UV lithography is a flexible lithographic technique for the
fabrication of 3D microstructures with different side surface angles. The one-step multi-
directional exposure fabrication is attractive for fabricating complex 3D microstructures. The
prism-assisted fabrication is also useful for the realization of periodic or quasi-periodic
nanostructures through interference based holographic lithography discussed below.

3. Prism-assisted holographic lithography for nanostructures

The fabrication of periodic micro- and nano-structures can also be performed by a prism
assisted holographic lithography technique. Holographic lithography has been used to
fabricate photonic crystals (Yablonovitch, 1987; John, 1987) and metamaterial structures
(Pendry et al., 1999; Smith et al., 2004; Soukoulis et al., 2007). Improvements in the HL for
minimizing vibration sensitivity and simplifying fabrication process have been a constant and
challenging issue. Besides holographic lithography (Berger et al., 1997; Shoji & Kawata, 2000;
Campbell et al., 2000) that has demonstrated its suitability for fabrication of periodic micro-
and nano-structures, there are other reported fabrication techniques like semiconductor
lithography (Fleming & Lin, 1999) and chemical self-assembly (Zhou et al., 2000). The semi-
conductor lithography is a very expensive and slow process. Itis also difficult to fabricate large
area 3D structures. The chemical self-assembly technique is only capable of fabricating face-
centered cubic structure with frequent appearance of defects. Holographic lithography is so
far a low-cost promising technique in generating multiple interference exposure beams on
photoresist for the realization of photonic crystal structures with defect-free micro- or nano-
structures over a large area.
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Holographic lithography based on the optical setup design can be classified as multiple beams
single-exposure (Campbell et al., 2000; Wang et al., 2003; Ullal et al., 2004; Mao et al., 2005,
2006, 2007), two beams multi-exposure (Orlic et al., 2011), and Lloyd’s mirror system (Choi &
Kim, 2006; Jesson et al., 2007). The multiple beams single-exposure has the advantage of both
simple fabrication process (one exposure) and tunable period and structure (1D, 2D and 3D,
even quasi-crystals). However, this traditional method requires two independent steps: one is
splitting the laser into multi-beams by beam splitters and then align the multi-beams to one
point for interference and exposure (Campbell et al., 2000), which introduce significant
adjustment complexity. The differences in the optical path lengths and angles among these
beams are difficult to eliminate even with a highly skilled optical scientist. Furthermore, it
requires very stable optical setup due to the vibration sensitivity of the HL system.

Recently, Wang et al. (2003) demonstrated a top-cut triangular prism (TCTP) that can be used
to split one incident beam into four beams and automatically overlay them in the bottom of
prism to form a 3D interference pattern in the light sensitive recording materials. They have
significantly improved the stability of the optical setup and simplify the alignment of the multi-
beams. Herein, we report our improved prism-assisted HL fabrication of micro- and nano-
structures.

3.1. Theory of multi-beams interference

The 2D or 3D periodic patterns can be formed by interference of multiple coherent laser beams.
In general, the interference equation is given by

1= | E; 12+ 2E,E ;cos Oycos [(K; - K )r +(¢; - ¢ )]
i i

where E;, K; and ¢, are the amplitude, wave vector and initial phase of the ith plane wave, and
0;; is the angle of the polarizations between i,jth plane waves. For simplicity, we neglect the

minor amplitude difference of different plane waves (assuming ideal equal amplitude beams),
and treat all the initial phases as the same. We mainly discuss the wave vectors K;s on how

they affect the final pattern formation and add the influence of polarization to the pattern
contrast.

It is well known that two beams of coherence light can form 1D periodic pattern, with periodic
bright and dark stripes as shown in Fig. 17.

As we increase the number of interference beams, we define G, =K, - K jas the vector from K j
to K; representing the reciprocal vectors of the periodic lattice structures. Once we determine
the independent vectors G, s, we also determine the lattice structure. The two beams have two
wave vectors K; and K,, but only one independent G, =K - K, (the vector G,=K, - K;= -G, is
not independent ). Thus, the interference pattern is 1D stripe. If the number of beams is more
than 2, and (G, =K; - K )s are all in the same plane but not parallel, we can generate 2D
interference patterns. For example, with three symmetrical beams, the interference pattern is
a hexagonal arrangement, as shown in Fig. 18(a). Four symmetrical beams would produce a

239



240 Updatesin Advanced Lithography

Jxn® :

15

, :

05

0

25

a1

48 g
g

2 It

2 15 1 a5 o 05 1 15 2 w

x10®

Figure 17. a) The simulated pattern of two beams interference in Matlab and (b) the observed exposed and devel-
oped pattern in photoresist under SEM.
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Figure 18. Simulated patterns come from the interference of three (a) and four (b) symmetrical beams.

square pattern shown in Fig. 18(b). These patterns can be realized in a photoresist after
exposure and development.

These simple period patterns can be generated by laser or e-beam direct writing with relatively
simple software control. The most attractive features of the HL is its capability in generating
3D and quasi-crystal patterns that are difficult by other pattern generating technique. Recently,
Meisel et al.(2004) demonstrated the interference of umbrella-like four beams (this arrangement
of beams will create 3 independent G, s in 3D space) can form different crystal structures, such

as simple cubic and face-centered cubic structure, simulated in Fig. 19.

Furthermore, these kinds of umbrella-like four beams can be easily realized by a top-cut
triangular prism. Other groups have reported the use of prism-assist HL to create many
different 3D structures (Wu et al., 2004; Xu et al., 2009; Park et al., 2011). Meanwhile, Wang et
al. (2003) firstly present 5-fold symmetry quasi-crystal by 5 symmetrical beams in half space,
simulated in Fig. 20(a). Other symmetrical multi-beams (such as 5, 8, 10...) can yield novel
quasi-crystal patterns, shown in Fig. 20(b). These structures have advantages over normal
photonic crystals, like higher symmetry and lower refractive index requirement for photonic
bandgap forming.
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Figure 19. Simulated face-centered cubic structure (a) and the periodic changes of pattern on different X-Y planes (b).

Figure 20. Simulated quasi-periodic pattern of five (a) and ten (b) symmetrical beams

The polarization states of these beams have significant effect to the interference patterns
including the contrast and the pattern shape. Commonly, the intensity of cross terms E;E ; will

be influenced by cos 0., that will affect the contrast of final pattern. Su et al. (2003) investigated

l]’
the relationship between the polarization and the contrast of the interference pattern, and
detailed the optimum selection of polarizations for 3- and 4-beams. Furthermore, choosing
special polarizations of different beams will significantly modify the final interference
patterns, resulting in wood like 3D pattern (Park et al., 2011) or U-shaped pattern (Yang et al.,

2008) for metameterial.

We introduce a novel HL method to create photonic quasi-crystals by fewer beams. Naturally,
the same number of beams may be chosen as the fold symmetry, namely 5 beams for 5-fold
symmetry, 8 for 8, 10 for 10 and so on (Wang et al., 2003). As the beam number is increased,
the contrast of pattern will dramatically reduce due to the huge number of cross terms in the
interference equation, making the fabrication very difficult or even impossible. Mao et al. (2006)
demonstrated earlier that the design and fabrication of higher order photonic quasi-crystals
with less number of laser beams. A quasi-periodic structure is regarded as a high dimensional
periodic lattice projected onto a 3D space. There is an association between the high-dimen-
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sional space and the number of independent reciprocal vectors G;s. If a (v+1)-dimensional
space contains an N-fold symmetric periodic lattice, the smallest number vis given by the Euler
totient function (Rabson et al. 1991)

(r—-1) (p,-1)

R T

where p; s are distinct prime factors of N. Here we found that N-fold symmetry quasi-crystal

does not need the same number of beams. For example, an 8-fold symmetry with the prime
factor of 2, we have v +1 = 8§(1-1/2)+1 = 5, that means we just need 5 beams to form an 8-fold
photonic quasi-crystal. Furthermore, 10- and 12-fold symmetry quasi-crystals also only need
5beams. The arrangement of interference beams and simulation of the interference pattern are
illustrated in Fig. 21.

4

é Photoresist
\

Figure 21. a) The arrangement of 5 beams in 4 space for eight fold symmetrical interference pattern, where a=26.3°
and B=45°. (b) Simulated interference pattern of the special five beams.

3.2. Fabrication of micro- and nano-structures by holographic lithography

3.2.1. Specially designed prism

Generally speaking, the geometry structure of the five coherent beams as shown in Fig. 21 can
be configured by beam splitters and mirrors. But this type of conventional setup is subjected
to critical alignment and sensitivity to slight positional deviation and minor phase shift, which
lead to instability of final interference pattern. The specially configured prism of Fig. 22 can
directly split an incident laser beam into five laser beams almost without relative phase shift
and difference in optical path length, and overlap in the bottom of the prism. Figure 22(a)
illustrates our designed prism with a 45° angle between the side surface and the bottom. For
refractive index n=1.51, the emergent laser beams from bottom will illuminate the photoresist
with an angle of 26.3°. The specially configured prism consists of two parts — cone and cylinder.
The diameter of the bottom is 25.4 mm and the heights of the cone and cylinder are 12.7 mm
and 5 mm, respectively.
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Figure 22. a) Specially configured prism for holographic eight-fold photonic quasi-crystal with only five continuous
surfaces out of symmetrical eight side surfaces. Here ® = 254 mm, H, = 12.7 mm, H, = 5 mm, and a= 45°. (b) Optical
setup showing incident laser beam, the prism, and the photoresist.

A unique feature of this specially designed prism is that it has only five continuous surfaces
out of symmetrical eight surfaces of the prism. Compared with eight beams from eight side
surfaces to form eight-fold symmetric quasi-periodicity, this design of using only five contin-
uous surfaces will dramatically improve the contrast of interference.

3.2.2. Prism-assisted fabrication of 8-fold quasi-crystals with 5 beams

In experiments, the photoresist solution was prepared by mixing 1.0 wt% of a photoinitiator,
Cyclopentadienyl(fluorene)iron(Il) hexafluorophosphate (Aldrich), in an SU-8 solution
(Micro-Chem, SU-8 3010 diluted by SU-8 thinner (3:2) ), that is sensitive to green light including
the 532 nm wavelength. This photoresist was spin coated (4000 rpm for 30s) on glass plates
and pre-baked at ~91°C for about 1 h. A 532 nm linearly polarized laser beam from a diode
pumped solid state laser (Crystalaser) with output power of 60 mW was expanded by spatial
tilter and collimated by a collimation lens. The expanded laser beam was incident from the top
side of the prism and recombined at the bottom of the prism, or the plane of photoresist. After
about 10s of exposure, the sample was post-baked at ~93 °C for about 1 h to complete poly-
merization and developed in SU-8 developer (Micro-Chem) for 1 h, followed by rinse in
isopropanol. The surface morphologies were investigated by scanning electron microscopy
(SEM; JEOL JSM-7000F).

Fig. 23 exhibits four SEM images of holographic eight-fold quasi-crystals. For an appropriate
exposure time, an obtained eight-fold quasi-crystal with clear features is shown in Fig. 23(a)
and (b). Fig. 23(b) is a magnified image of the same structure of (a), showing more details.
When over exposed, the dots will connect with each other as shown in Fig. 23(c) and (d), due
to the degree of over exposures, but still revealing eight-fold symmetry. Therefore, eight-fold
quasi-crystals can be fabricated by prism assist five beam single-exposure holographic
lithography instead of usual eight beams. Additionally, if only use three continuous surfaces,
we can get some novel patterns, such as bias short line hexagonal arrangement, as shown in
Fig. 24.
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Figure 23. a) After an appropriate exposure time, we get clear picture of eight fold quasi-periodic pattern and (b) its
local magnified picture with more details. (c) and (d) show the quasi-periodic patterns realized by slightly and highly
over exposures, respectively.
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Figure 24. Simulation (a) and SEM picture (b) of three continuous side surfaces interference of this special prism.

4. Application of micro- and nano-structures

Many practical applications of 3D micro- and nano-structures have been reported, such as V-
grooves for fiber holder (Ling & Lian, 2007), mesh structures for microfilter (Sato et al., 2004),
inclined surfaces for the optical pick-up head (Huang et al., 2004), pyramid array for optical
display (Yoon et al., 2006; Shieh et al., 2005), some complex microstructures for micromixer
(Baek et al., 2011; Sato et al., 2006) and drug delivery (Han et al., 2007; Yoon et al., 2011), and
periodic array for photonic crystal. In this section, we will demonstrate our exploitation of
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micro- and nano-structures applications on 45° inclined mirrors and microfilter system,
fabricated by the prism-assisted photolithography.

4.1. 45° inclined mirrors for card-to-backplane optical interconnect

Optical interconnects have been extensively researched for high-speed computing systems
because of the speed limitations and drawbacks of electrical routing on boards (Doany et al.,
2009). Polymer waveguides with 45° inclined mirrors are important components in optical
interconnect (Lee et al., 2009; Wang et al., 2005; Wang et al., 2008; Glebov et al., 2005). We
fabricated 45° inclined mirror structures in the master photoresist by prism-assisted UV
lithography (Jiang et al., 2012c). Sample surface reflected UV light was utilized to eliminate
undercut structures and to accomplish the inclined mirror surfaces on both ends of the straight
waveguide segments by one-step UV exposure, as shown in Fig. 25. High quality microfluidic
channels are then transferred to a PDMS mold. The vacuum assisted microfluidic soft lithog-
raphy fabrication (Flores et al., 2008) using UV curable core waveguide resin yield the polymer
waveguides with 45° inclined surfaces. Fig. 26 illustrates the SEM image of imprinted polymer
waveguide before aluminum local coating. After aluminum local coating on the slanted
surfaces followed by lower index cladding layer over coating it results in embedded polymer
waveguides for optical interconnection. Surface normal optical coupling from the waveguide
has been demonstrated supporting the card-to-backplane optical interconnects.

Figure 25. Schematic diagram of fabricating 45° inclined mirror surfaces on both ends of the straight waveguide.
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Figure 26. SEM images of imprinted polymer waveguide before aluminum local coating.

4.2. Mesh structures for microfilter system

A right angle prism (refractive index 1.53 at 365 nm) was ultilized for the one-step fabrication
of micromesh structures in our experiment, as shown in Fig. 27. Fig. 28 (a) and (c) illustrates
the fabricated micromesh structures with different mesh size of 20 um and 10 pm respectively,
which can be easily found from their enlarge parts in Fig. 28(b) and (d). The mesh size can be
easily adjusted by changing the distance between rectangles on photomask. We can increase
number of the mesh layers by enlarging the height of structure or decreasing the period of the
rectangle array. After the fabrication of the micromesh structures, a PDMS mode with
microfluidic channel on the bottom is placed on the top of the mesh structures for the micro-
filter system. This microfluidic channel should own the same width and height as these mesh
structures.

=l

Figure 27. Schematic diagram of fabrication of mesh structures by a right angle prism.
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Figure 28. SEM images of micromesh structures with different mesh size.

5. Conclusion

In this chapter, the prism-assisted UV lithography and holographic lithography are introduced
for the fabrication of 3D micro- and nano-structures. For prism-assisted inclined UV lithogra-
phy, a prism is used as a refractor to deflect the incident UV light and control the exposure
beams directions in the resist. Slanted structures with exposure angles ranging from 0° to 60°
can be easily achieved. The sample internal surface reflection of the exposing UV light can be
further utilized for the fabrication of symmetric structures. The fabrication of multi-directional
slanted structures can be simplified by one-step UV exposure using a prism with multi-
directional side surfaces. For holographic lithography, a prism is used to simply the process
in conventional HL and at the same time improve the system stability. The prism-assisted HL
is advantageous for realization of periodic sub-micro and nano structures over a large area.
Some practical applications of our fabricated structures, such as 45° inclined mirrors and
microfilter system, are also discussed. With setup simplicity, cost effectiveness and fabrication
flexibility, the prism-assisted UV and holographic lithography techniques should aid in the
fabrication of various 3D micro- and nano-structures.
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