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1. Introduction

Due to the highly complex nature of both human and physical systems, the ability to com‐
prehend them and model future conditions using a watershed approach has taken a geo‐
graphic dimension. Satellite remote sensing and Geographic Information Systems (GIS)
technology have played a critical role in all aspects of watershed management, from assess‐
ing watershed conditions through modeling impacts of human activities to visualizing im‐
pacts of alternative scenarios (Tim & Mallavaram, 2003).

The extreme weather phenomena and global warming noted in recent years has demonstrat‐
ed the necessity for effective flood risk management models. According to this paradigm, a
considerable shift has been observed from structural defense against floods to a more com‐
prehensive approach, including appropriate land use, agricultural and forest practices
(Alexakis et al., 2013a, 2013b; Barredo & Engelen, 2010; Lilesand & Kiefer, 2010; Michaelides
et al., 2009). Land cover changes may be used to describe the dynamics of urban settlements
and vegetation patterns as important indicators of urban ecological environments (Yinxin &
Linlin, 2010). Satellite remote sensing provides an excellent source of data from which up‐
dated land use / land cover (LULC) changes can be extracted and analysed in an efficient
way. In addition, effective monitoring and simulating of the urban sprawl phenomenon and
its effects on land-use patterns and hydrological processes within the spatial limits of a wa‐
tershed are essential for effective land-use and water resource planning and management
(Hongga et al., 2010; Hadjimitsis et al., 2004a, 2010a, 2010b). Several techniques have been
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reported in order to improve classification results in terms of land use discrimination and
accuracy of resulting classes in the processing of remotely sensed data (Agapiou et al., 2011).
As a result of Very High Resolution (VHR) imagery, real world objects that were previously
represented by very few pixels, are now represented by many pixels. Thus, techniques that
take into account the spatial properties of an image region need to be developed and ap‐
plied. One such technique is texture analysis (Zhang & Zhu, 2011). Moreover, during the last
years, spatial metrics have been largely used in landscape studies. According to Haralick et
al. (1973), landscape metrics capture the inherent spatial structure of the environment and
are used to enhance interpretation of spatial pattern of the landscape.

Several techniques have been reported to improve classification results in terms of land use
discrimination and accuracy of resulting classes (Eiumnoh & Shrestha, 2000). However, the
multispectral images acquired from different satellite sensors suffer from serious problems
and errors, such as radiometric distortions, areas with low illumination, physical changes of
the environment, etc. Recent studies have found that the accuracy of classification of remote
sensing imagery does not increase by improving the applied algorithms, since classification
mainly depends upon the physical and chemical parameters of the objects on the ground
(Rongqun & Daolin, 2011).

Soil erosion is considered to be a major environmental problem, as it seriously threatens natu‐
ral resources, agriculture and the environment in a catchment area. Spatial and quantitative
information of soil erosion contributes significantly to the soil conservation management, ero‐
sion control and general catchment area management (Prasannakumar et al., 2011). In recent
years, there has been a growing awareness of the importance of problems directly related to
erosion in the broader Mediterranean region. The widespread occurrence and importance of
accelerated erosion in the Mediterranean region has driven to the development of models at
scales ranging from individual farm fields to vast catchment areas and different types of ad‐
ministrative areas (Bou Kheir et al., 2008). In some parts of the Mediterranean region, erosion
has reached a stage of irreversibility, while in some places there is no more soil left (Kouli et
al., 2009). Although soil erosion is characterized as a natural phenomenon, human activities
such as agriculture can accelerate it further (Karydas et al., 2009).

Recently, space-born microwave active remote sensing, especially Synthetic Aperture Radar
(SAR) with its all-weather capability, can provide useful spatially distributed flood informa‐
tion that may be integrated with flood predictive models in the construction of an effective
watershed management. Radar imagery is useful for the identification, mapping and meas‐
urement of streams, lakes and inundated areas. Most surface water features are detectable
on radar imagery due to the contrast between the smooth water surface and the rough land
surface (Lewis, 1998). The amount of moisture stored in the upper soil layer changes the die‐
lectric constant of the material and thus affects the SAR return. Because the dielectric con‐
stant of water is at least 10 times bigger than that of the dry soil, the presence of water in the
top few centimeters of bare soil can easily be detected through the use of SAR imagery (Lil‐
lesand & Kiefer, 2000). In addition, the differences in the values between the dielectric con‐
stant of water and of dry soil at the microwave part of the spectrum plays a major role in the
soil moisture estimation through the use of microwaves.
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The main aim of this chapter is to integrate all the individual remote sensing methodologies
related to watershed monitoring and management in a holistic approach. Specifically, differ‐
ent approaches such as development of erosion models, use of radar imagery for the detec‐
tion of areas prone to inundation phenomena, construction of Land Use /Land Cover (LULC)
maps, optimization of classification methodologies and calculation of landscape metrics for
the recording of urban sprawl will be presented thoroughly and will highlight the contribu‐
tion of satellite remote sensing to the sustainable management of a catchment area.

2. Study area

Located in the central part of the island of Cyprus, the Yialias basin is about 110 km2 in size
(Fig. 1). This study area is situated between longitudes 33°11´24.28´´ and 33°26´31.52´´ and
latitudes 34°54´36.74´´ and 35°2´52.16´´. Cyprus is located in the Northeastern corner of the
Mediterranean Sea and, therefore, has a typical eastern Mediterranean climate: the com‐
bined temperature–rainfall regime is characterized by cool-to-mild wet winters and warm-
to-hot dry summers (see Michaelides et al., 2009).

Figure 1. The study area
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3. Development of methodology for the optimization of classification
accuracy of Landsat TM/ETM+ imagery in a catchment area in Cyprus

3.1. Introduction

An important tool for the detection and quantification of land cover changes across catch‐
ment areas is the classification of multispectral satellite imagery, as such results are very im‐
portant for hydrological analysis and flood scenarios.

This study aimed at  testing different material  samples in the Yialias region (central  Cy‐
prus)  in  order  to  examine:  a)  their  spectral  behavior  under  different  precipitation  rates
and b) to introduce an alternative methodology to optimize the classification results de‐
rived from single satellite imagery with the combined use of satellite, spectroradiometric
and precipitation data.

3.2. Data and methodology

3.2.1. Ground sample

According to preliminary classification results (Alexakis et al.,  2011),  spectral mixing be‐
tween urban areas and specific geological formations was observed. Thus, samples of re‐
golith  and  construction  material  were  collected  and  tested  for  their  spectral  response
under different conditions of humidity with the use of spectroradiometer in the premises
of  the  Remote  Sensing  and  Geomatics  Laboratory  of  Cyprus  University  of  Technology
(Alexakis et al., 2012).

3.2.2. Satellite and precipitation data

For the purposes of the study, specific tools and data were incorporated:

• Four Landsat TM/ ETM+ multispectral images of medium resolution (30x30 m2 pixel size).

• Precipitation data obtained from the Meteorological Service of Cyprus (Pera Chorio Mete‐
orological Station : Lon - 35° 01’, Latitude - 33° 23’). All of these data were compared with
the satellite imagery data. Selected satellite imagery was retrieved a day after the record‐
ing of substantial scaling amount of precipitation from the Pera-Chorio Metereological
Station.

• Data derived from spectroradiometric field campaigns. For this reason a GER 1500 spec‐
troradiometer was used. This instrument can record electromagnetic radiation between
350 nm up to 1050 nm (Fig. 2).

In order to investigate the different spectral response of each sample under different mois‐
ture conditions, all samples were immersed in water in a step-by-step process and measured
for the rate of their humidity with a soil moisture meter. The specific hand-held instrument
used in this study was able to measure moisture values from 0 to 50% within an accuracy of
0.1%. The final under investigation regolith samples were divided in four different catego‐

Remote Sensing of Environment: Integrated Approaches100



ries, according to their level of humidity: 0% (dry sample); 25%; 50%; > 50%. With regard to
tile and roof specimens, the results were divided into “dry” or “humid” categories due to
the difficulty to measure the scaling levels of humidity in those kinds of materials.

 

Figure 2. Collection of soil data (left). Spectroradiometric measurements of material samples at the premises of the
Remote Sensing and Geomatics Laboratory of CUT (right)

Based on the results of the scatter-plots, it was found that in the case of dry samples there is
a strong spectral confusion between the chalk A response and the urban fabric (roof and tile)
materials. The “moisture” scatter plot (humidity > 50%) highlights the different spectral re‐
sponse between artificial materials (roof and tile) and natural materials (chalk A, B, C). In
this plot, the spectral difference between different samples is increased and two major clus‐
ters are created with complete contrary spectral response (increase of chalk A spectral re‐
sponse and substantial decrease of tile and house roof -constructed from clay and cement
consecutively- spectral response, see Fig.3).

The results highlighted the different spectral response of materials under different humidity
levels. Specifically, reflectance values of chalk samples (samples A and C) tend to be separat‐
ed from those of urban samples (tile and roof) as humidity increases.

Figure 3. Scatter-plots of the different targets examined in this study for Band 1 – Band 4 (humidity 0%) (left) and
Band 1 - Band 4 of Landsat (humidity > 50%) (right)
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3.2.3. Satellite imagery data

After the application of all necessary pre-processing steps (radiometric, atmospheric and
geometric corrections,) spectral signature profiles were extracted for all of the different ma‐
terials during the acquisition dates of each satellite imagery (Fig. 4).

Figure 4. Scatter-plots of the different targets examined in this study for Band 1 – Band 4 (left) and Band 3 - Band 4 of
Landsat (right)

The results  of  the  scatter  plots  denoted the  scaling optimization of  spectral  separability
of satellite imagery data, from 0 to 23.7 mm of precipitation. Specifically, concerning the
0 mm precipitation case, a spectral confusion was indicated between the “urban” targets
(roof and tile) and chalk A and C targets.  This conflict was outreached gradually as the
precipitation  level  increased.  The  samples  started  to  have  different  spectral  behaviour,
with the chalk samples (except chalk B) standing gradually away from the “urban” sam‐
ples cluster in the scatter-plot.  It  is  important to mention the quite different spectral  re‐
sponse of chalk C sample in satellite images compared to its  response in the laboratory
specimens.  This  problem occurred due to the medium spatial  resolution of  Landsat  im‐
ages  (30x30  m2  pixel  size)  which  increases  the  likelihood  of  the  common  mixing  pixel
phenomenon.

3.3. Results and verification

The  results  from the  laboratory  and  satellite  imagery  analysis  methods  highlighted  the
different  spectral  response  of  materials  to  different  levels  of  humidity.  For  the  direct
comparison of  the classification accuracy between images,  where different  levels  of  pre‐
cipitation have been recorded, two Landsat TM/ETM+ images acquired on 2 June 2005 (0
mm precipitation – “dry”) and 23 July 2009 (23.7 mm precipitation – “rainy”) were clas‐
sified  and  compared  (Fig.  5).  Both  unsupervised  (ISODATA)  and  supervised  classifica‐
tion  algorithms  (Maximum  Likelihood  -  ML)  were  used.  Initially,  the  ISODATA
classification  technique  was  applied  to  both  images  with  95%  convergence  threshold.
The following 5 classes were used for both the supervised and unsupervised algorithms:
1) urban Fabric, 2) marl - chalk formations, 3) vegetation, 4) bare soil and 5) forest.
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Figure 5. Detail of the “rainy” satellite image after the application of supervised classification algorithm

On the one hand, the results of the unsupervised algorithm performance for both dry and
humid acquisition days could be described as poor and were not considered for further
evaluation (Kappa coefficient of classification accuracy - (Kc) < 60%). On the other hand, the
application of supervised algorithm to “rainy” image provided better accuracy results (Kc =
0.75). The product of “dry” image was substantially better than that of unsupervised case
but with insufficient accuracy to be considered as credential.

3.4. Conclusions

The results noted the importance of imagery acquisition date for optimization of classifi‐
cation results.  Specifically,  the overall  accuracy of classification product was substantial‐
ly increased (more than 30% for supervised classification), especially for urban and marl/
chalk  areas,  during  days  where  high  precipitation  measurements  were  recorded  in  the
broader study area. The results were established either by laboratory or satellite imagery
analysis.
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4. Assessing soil erosion rate in a catchment area in Cyprus using remote
sensing and GIS techniques

4.1. Introduction

The objective of this work was to develop and evaluate two different erosion models in the
catchment area of Yialias in Cyprus. The first was an empirical multi-parametric model
which is mainly based on expert’s knowledge (Analytical Hierarchical Process - AHP) and
the second (Revised Universal Soil Loss Equation - RUSLE) was the model which is consid‐
ered to be a contemporary simple and widely used approach of soil loss assessment.

4.2. Methodology

4.2.1. RUSLE methodology

The RUSLE equation incorporates five different factors concerning rainfall (R), soil erodibili‐
ty (K), slope length and steepness (L and S. respectively), support practice (P) and cover
management (C):

A=R K L S P C* * * * * (1)

AHP allows interdependences between decision factors to be taken into account and uses
expert opinions as inputs for evaluating decision factors. The final weight of significance for
each factor can be defined by using the eigen-vectors of a square reciprocal matrix of pair‐
wise comparisons between the different factors. Moreover, a specific grade is assigned to all
the different pairs from 1/9, when the factor is “not important at all”, to 9, when the factor is
“extremely important”.

4.2.1.1. Rainfall (R) factor

The rainfall factor R is a measure of the erosive force of a specific rainfall value. For the cal‐
culation of the R factor with the use of the Modified Fournier Index (MFI), the following two
different approaches suggested by Ferro et al. (1991) and Renard & Freimund (1994) for the
areas of Sicily and Morocco were used respectively :

1.56
1R = 0.612 MFI (2)

1.50
2R = 0.264 MFI (3)

According to Kouli et al. (2009), MFI is well correlated with the rainfall erosivity. The specif‐
ic index is considered as an effective estimator of R because it takes into account the rainfall
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seasonal distribution. Therefore the MFI was applied to take into account the monthly rain‐
fall distribution during each year for a period of 20 years, as follows:

N N 12
j ij

f
J=1 J=1 I=1 i

Fa 1 PF = =
N N På åå (4)

where, Ff is the MFI index, pij is the rainfall depth in month / (mm) of the year j and P is the
rainfall total for the same year. After the calculation of R, a continuous surface was pro‐
duced using the ordinary Kriging method based on Gaussian function, which was found to
be the most effective for the production of the final iso-erosivity map. The mean values of R
range from 267 MJ mm ha year-1 in the most flat areas in Yialias watershed to 694 MJ mm ha
year-1 in the mountainous and generally steep areas.

4.2.1.2. Soil erodibility (K)

The soil erodibility factor (K) refers to the average long-term soil and soil profile response to
the erosive power associated with rainfall and runoff. It is also considered to represent the
rate of soil loss per unit of rainfall erosion index for a specific soil.

A digital soil map of the study area was used and the main soil formations were categorized
in three different major classes: coarse sandy loam, sandy loam and silty clay. According to
Prasannakumar et al. (2011) the estimated K values for the textural groups vary from 0.07 t
ha h ha-1 MJ-1 mm-1 for coarse sandy loam, 0.13 t ha h ha-1 MJ-1 mm-1 for sandy loam and 0.26
t ha h ha-1 MJ-1 mm-1 for silty clay.

4.2.1.3. Topographic factor (LS)

The topographic factor is related to the slope steepness factor (S) and slope length factor (L)
and is considered to be a crucial factor for the quantification of erosion due to surface run–off.

The combined topograpfic factor was calculated by means of ArcGIS spatial analyst and Hy‐
drotools extension tools. In this study, the equation derived from Moore & Burch (1986) has
been adoped:

1.30.4.Flow Accumulation CellSize . sin(Slope)LS=
22.13 0.0896

æ öé ùë û æ öç ÷ ç ÷ç ÷
è ø è ø

(5)

4.2.1.4. Practice factor (P)

The practice factor (P) is defined as the ratio of soil loss after a specific support practice to the cor‐
responding soil loss after up and down cultivation. In order to delineate areas with terracing
practices, the two GeoEye-1 satellite images were used and the delineation was accomplished in
GIS environment with extensive monitoring of the study area. Areas with no support practice
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were assigned with a P factor equal to 1. However, the terrace areas which are considered to be
less prone to erosion were assigned a 0.55 value, according to expert’s opinion.

4.2.1.5. Cover management factor (C)

According to Prasannakumar et al. (2011), the C factor represents the effect of soil-disturb‐
ing activities, plants, crop sequence and productivity level, soil cover and subsurface bio-
mass on soil erosion.

The NDVI (Normalised Difference Vegetation Index) extracted from the study area (applied
to GeoEye-1 image) has values that range from -0.65 to 0.99. The NDVI is used along with
the Equation 6 in order to calculate the C factor values of the study area in GIS environment.

NDVIC=exp -a
(b-NDVI)

é ù
ê ú
ë û

(6)

where, a and b are non-dimensional parameters that determine the shape of the curve relat‐
ing to NDVI and C factor.

According to the final results, C factor values ranged from 0 to 2.7.

4.2.1.6. Application of RUSLE methodology for soil loss estimation

The annual soil loss was calculated in a GIS environment (Fig. 6), according to Eq. 1. Ac‐
cording to the final results, the estimated soil loss ranges from 0 to 6394 t ha-1 yr-1 with a
mean value of 20.95 t ha-1 yr-1. The maximum value of 6394 t ha-1 yr-1 cannot be considered as
appreciable due to the fact that only one pixel in a total of 1199 was attributed with this val‐
ue. However, the mean value of 20.95 t ha-1 yr-1 is representative of the current soil loss re‐
gime of the basin.

4.3. AHP methodology

In the AHP methodology, interdependencies and feedback between the factors were consid‐
ered. The factors used in this methodology were: rainfall (R), soil erodibility (K), slope
length and steepness (LS), cover management (C), support practice (P) and stream proximi‐
ty. Six out of seven factors had already been analyzed in the RUSLE methodology. The addi‐
tional agent to be analyzed was the proximity to rivers and streams.

4.3.1. Proximity to rivers and streams

According to Nekhay et al. (2009), an area of 50 m around rivers and streams was consid‐
ered to be prone to flooding and, consequently, to the detachment of particles of soil by
floodwaters. Thus, initially with the use of ArcGIS 10 Hydrotools module, the drainage net‐
work of the basin was automatically extracted from the hydrological corrected DEM (Digital
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Elevation Model). Next, a buffer zone of 50m was constructed around each drainage net‐
work segment.

Figure 6. Map of the spatial distribution of soil loss after the application of RUSLE methodology in Yialias catchment
area

According to AHP methodology, a pair-wise comparison of the contribution of each factor
was established. Specifically, answers of several experts were collected on the reciprocal ma‐
trix, and the appropriate eigenvector solution method is then employed to calculate the fac‐
tor weights.

The final soil erosion risk map (Fig. 7) was constructed by summing up (through Boolean
operators)  the product of  each category (that had already been rated accordingly for its
subcategories)  with the corresponding weight  of  significance according to  the  following
equation:

LS=F1 0.025+F2 0.09+F3 0.146+F4 0.059+F5 0.38+F6 0.3* * * * * * (7)

Where F1, F2,..., FN are the different factors incorporated in the model.

The final erosion risk assessment map was reclassified to three soil erosion severity classes
separated as low (pixel value 1), moderate (pixel value 2) and high risk (pixel value 3). The
results denoted that 77.5% of the study area was classified as low potential erosion risk,
17.5% as moderate potential risk and only a 5% as high risk.
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Figure 7. Final erosion risk map constructed with AHP method

Figure 8. Image indicating the soil erosion severity class differences between AHP and RUSLE method
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4.3.2. Evaluation of AHP and RUSLE

In the same way that the AHP risk assessment map was reclassified, the estimated soil loss
percentage map was separated in 3 different classes according to experts opinion (1st class
0-20 t ha-1 yr-1 for pixel value 1, 2nd class 20-100 t ha-1 yr-1 for pixel value 2, 3rd class 100-6391 t
ha-1 yr-1 for pixel value 3). The two grid images were subtracted in GIS environment. A close
look at the extracted grid image, it is obvious that there is a considerable similarity between
the two methodologies (Fig. 8).

4.4. Conclusions

This research demonstrated the potential for the integration of RS, GIS and precipitation da‐
ta to model soil erosion. The current research found that both RUSLE and AHP methodolo‐
gies can be efficiently applied at a basin scale with quite modest data requirements in a
Mediterranean environment such as Cyprus, providing the end users with reliable quantita‐
tive and spatial information concerning soil loss and erosion risk in general.

5. Flood mapping of Yialias river catchment area in Cyprus using ALOS
PALSAR radar images

5.1. Introduction

ALOS (Advanced Land Observing Satellite) PALSAR data can be used to detect the water sur‐
face due to the L-band wave length. All SAR instruments share the advantages of day-night
operability (as active sensors), cloud penetration, and the ability to calibrate without perform‐
ing atmospheric corrections. The longer L-band (~23.5 cm) SAR wavelength, and, to a certain
extent, the C-band (~5.5 cm), have the ability to penetrate vegetation canopies to various de‐
grees depending on vegetation density and height, dielectric constant (primarily a function of
water content), and SAR incidence angle. Variations in backscattering allow discrimination
among non-vegetated areas (very low to low returns), herbaceous vegetation (low to moder‐
ate returns), and forest (moderate to high returns), and to some degree among different forest
structures and regrowth stages. Where water is present beneath a forest canopy, enhanced re‐
turns caused by specular “double bounce” scattering between water surface and tree trunks
makes it possible to distinguish between flooded and non-flooded forest.

5.2. Data and methodology

5.2.1. Data and methodology

The purpose of this study is to explore the potential of ALOS-PALSAR imagery for observing
flood inundation phenomena in the Yialias catchment area in Cyprus. Two PALSAR images
(polarity: HH, pixel size 50 m) covering the study area before and after an extreme precipita‐
tion incident in 2009 were used (Table 1). A LULC map was also constructed with the use of
high resolution images such as GeoEye -1 covering the study area. To analyze Radar backscat‐
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ter behavior for different land cover types, several regions of interest were selected based on
the land cover classes. A number of land cover classes were found to be sensitive to flooding,
whereas in some other classes backscatter signatures remained almost unchanged.

5.2.2. Data

For the purposes of the study, the following satellite and digital spatial data were incorporated:

• 2 ALOS PALSAR images.

• 2 GeoEye -1 images

• A Digital Elevation Model (DEM) of 25m pixel size provided by the Department of Land
and Surveys of Cyprus, created with the use of orthorectified stereopairs of aerial photos
covering the study area.

The ALOS images were acquired on 30 November 2009 and 6 December 2009 (Fig. 9a). PAL‐
SAR is a fully polarimetric instrument, operating at L-Band with 1270 MHz (23.6 cm) centre
frequency and 28 MHz, alternatively 14 MHz, bandwidth. The antenna consists of 80 trans‐
mit /receive (T/R) modules on four panel segments, with a total size of 3.1 by 8.9m (Table 1).
The two ALOS images were acquired after thorough indexing of Cyprus Meteorological
Service archives of precipitation data. Specifically, the research team searched the precipita‐
tion archives of all the meteorological and climatological gauge stations within the study
area (Analiontas, Pera Chorio, Lythrodontas, Mantra tou Kampiou, Kionia, Mathiatis), as
they are indicated and spatially distributed in Fig. 10. Due to the lack of ALOS imagery data
acquired during recorded flood inundation events, the research team tried to acquire images
before and after extreme precipitation events in order to examine the potential of the image‐
ry to detect soil moisture and flood inundation trends. Thus, the image for 30 November
2009 corresponded to a day where no precipitation had been recorded, while the image for 6
December 2009 corresponded to a day when a mean value of 25mm of precipitation had
been recorded in the rain gauge stations within the study area.

 

(a) (b) 

Figure 9. (a) ALOS PALSAR image (30 November 2009) and the study area. (b) Mosaic of the two GeoEye -1 images of
the study area (RGB - 321)
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The GeoEye-1 images were used for the land use monitoring of the upstream and down‐
stream of the basin; the two images refer to 12 March 2011 and 11 December 2011, respec‐
tively. GeoEye-1 is a multispectral sensor with four spectral bands. Its spectral range is:
450-510 nm (blue), 510-580 nm (green), 655-690 nm (red) and 780-920 nm (near infrared),
while its spatial resolution is approximately 1.65 m.

Figure 10. Rain gauge stations within the study area or in close vicinity with it and drainage network

ScanSar (WB1)

Resolution 50m

Swath Width 35 km

Polarization HH

Off Nadir –Angle (deg) 18.0-43.3

Incidence Angle (deg) 20.1-36.5

Processing level 4.2

Data Rate (Mbps) 120

Bit quantization (bits) 5

Projection UTM Zone 36 North

Table 1. Technical specifications of ALOS PALSAR images
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5.3. Pre-processing techniques

Initially, geometric corrections were carried out to ALOS PALSAR images using standard
techniques with ground control points and a first order polynomial fit  so asthe two im‐
ages to be co-registered. For this purpose, topographical maps were used to track the po‐
sition  of  ground  control  points  in  conjunction  with  the  digital  shoreline  of  Cyprus
extracted  from  the  provided  DEM.  There  are  ascending  and  descending  observation
modes of PALSAR images and differences in backscattering values,  therefore,  the image
calibration is  an essential  task.  Different  factors  influence backscatter  strength signal  in‐
cluding satellite ground track, incidence angle, radar polarization, surface roughness and
the  surface’s  dielectric  properties  (Yingxin  &  Linlin,  2010).  Different  objects  having  the
same  digital  number  which  may  correspond  to  different  backscatter  values.  Thus,  the
ALOS scenes were subsequently converted from amplitude data format to normalized ra‐
dar cross section (σ°) according to Equation 8:

2
10σ° = 10 log DN  + CF,é ù
ë û (8)

where, DN is Digital Number and CF is a calibration factor (CF = - 83.0 dB).

In SAR image, the speckle noise is one of obstacles to overcome in data processing, so it
is necessary to take effective steps to filter the image. Several filter algorithms were tried;
the Lee filter  was applied to reduce speckle noise.  This  filter  is  based on the minimum
mean square  root  (MMSE)  and geometric  aspects.  This  is  a  statistical  filter  designed to
eliminate noise, while still maintaining the quality of pixel points and borders of the im‐
age (Hongga et al., 2010).

Atmospheric and geometric corrections were carried out on the GeoEye-1 images. Atmos‐
pheric correction is considered to be one of the most complicated techniques since the distri‐
butions and intensities of these effects are often inadequately known. Despite the variety of
techniques used to estimate the atmospheric effect, the atmospheric correction remains a dif‐
ficult task in the pre-processing of image data. As it is shown by several studies (Hadjimitsis
et al. 2004b, 2010a, 2010b; Agapiou et al., 2011), the darkest pixel (DP) atmospheric correc‐
tion methodology can easily be applied either by using dark targets located in the image or
by conducting in situ measurements.

After  the application of  atmospheric  and geometric  corrections to  GeoEye-1 images,  the
research  team proceeded in  the  construction  of  an  overall  image  mosaic  by  integrating
the  two  individual  images  covering  the  up-  and  down-stream  of  the  watershed  basin
(Fig. 9b).  For this purpose, a histogram matching technique was applied to the common
covered area of the two images in order to secure the radiometric correctness of the final
extracted mosaic. Finally, the research team removed the cloud cover from the mosaic im‐
age in GIS environment.
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5.4. GeoEye-1 Imagery classification and ALOS PALSAR texture analysis

5.4.1. GeoEye-1 Imagery classification technique

After the application of preprocessing techniques to GeoEye-1 images and the development
of an image mosaic, the Maximum Likelihood (ML) algorithm was applied to create a de‐
tailed LULC map of the study area. For this reason 7 major classes were defined (Bare rock,
Forest, Marl, Soil, Trees, Urban Fabric, Agricultural Areas) (Fig. 11). The statistics of the land
use regime of the study area are shown in Table 2. From these statistics, it is clearly seen that
the main part of the catchment area is covered by soil and olive trees.

Classes Area (km2)

Bare Rock 2.52

Forest 3.99

Marl 0.33

Soil 43.86

Trees (mainly olive trees) 47.99

Urban Fabric 8.21

Agricultural Areas 2.99

Table 2. Statistics of the LULC thematic map

Figure 11. LULC map of the study area after the application of ML classification algorithm to GeoEye-1 mosaic
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5.4.2. ALOS PALSAR texture analysis

According to Zhang & Zhu et al. (2011) texture is defined as the spatial variation in gray
value  and is  independent  of  color  or  luminance.  Texture  measures  smoothness,  coarse‐
ness  and regularity  of  a  region  in  an  image.  For  the  description  of  texture  histograms,
gray level co-occurrence matrix (GLCM), local statistics and characteristics of the frequen‐
cy spectrum are used. The GCLM mainly operates by calculating a matrix that is  based
on quantifying the difference between the grey levels of neighboring pixels in an image
window. The main aim of  this  matrix is  the quantification of  the spatial  pixel  structure
within  this  window.  It  was  initially  suggested  as  a  mechanism  for  extracting  texture
measures (Haralick et al., 1973).

In the specific study, through the use of ENVI 4.7 software, 7 different statistical indica‐
tors of texture such as contrast,  angular second moment, homogeneity, entropy, dissimi‐
larity, mean and variance were applied for carrying out the statistical texture analysis of
all  the  typical  ground objects.  From those  textural  indicators,  multiple  RGB composites
were constructed to improve the visual monitoring and interpretation of moisture affect‐
ed areas.

5.5. Results and discussions

As it  is  clearly seen in Figure 12,  in the downward of the catchment area (northeastern
part)  certain  patches  were  inundated  with  water.  Those  patches  are  clearly  observed
with  the  low  backscattering  values  and  their  corresponding  dark  pixels.  However,  in
most  of  the  cases  the  backscattering  values  were  increased  mainly  because  of  volume
scattering due to  the  moisture  effect  in  the  vegetation and plant  cover.  Concerning the
southwestern  part  of  the  watershed where  the  most  forested areas  are  established,  due
to  the  corresponding increase  of  the  moisture  after  the  extreme precipitation event,  the
backscatter values were generally increased due to the effect of double reflection by wa‐
ter (moisture) and tree trunks. Thus, generally the SAR backscattering intensity in forest
areas changes to be higher in cases of inundation events. In addition, in certain areas of
the  southwestern  part  of  the  catchment  area  where  there  are  more  bare  rock  and  soil
patterns,  the  backscattering  values  were  decreased  due  to  the  corresponding  moisture
effect.

The values of radar backscatter coefficient for the different land cover classes as they were
extracted from GeoEye-1 images, are tabulated in Table 3. The results were extracted in GIS
environment (ArcGIS 10 software) through the use of zonal statistics application. According
to Table 3, the backscatter coefficient in most of the classes increased after the precipitation
event. The reason for this phenomenon was the overall moisture increase in the area. The
backscatter of forest and urban areas was significantly increased (4.57 and 6.67dB) after the
precipitation event due to the double reflection phenomenon. On the other hand, in other
classes such as soil and bare rock, dB values declined due to water accumulation and the
corresponding surface scattering effect. In agricultural areas of low vegetation, such as alfafa
or barley crops, the db were slightly increased.
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(a) 

(b) 

Figure 12. (a) The catchment area before the precipitation event. (b) The catchment area after the precipitation event

Class Name

Radar Backscatter (dB)

Before Precipitation Event
After

Precipitation Event
Difference

1 Bare Rock -18.83 -24.31 5.48

2 Forest -23.04 -18.13 4.91

3 Soil -25.46 -27.94 1.47

4 Trees -27.94 -22.68 5.26

5 Urban -23.16 -16.49 6.67

6 Vegetation -26.84 -26.34 0.50

7 Marl -31.51 -24.95 6.56

Table 3. Radar Backscatter of ALOS PALSAR images for different land cover types and days
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In order to improve image interpretation for water affected areas, several RGB composites
were constructed, including microwave and textural bands. The optimum ones improved
remarkably the final RGB composites and contributed to the delineation of the moisture af‐
fected areas, as shown in Fig. 13. Specifically, in Fig. 13a, the moisture affected areas are in‐
dicated in green tones. In Fig. 13b where only texture indicators were used the moisture
affected areas are in light cyan color. On the one hand, the combination of speckle reducing
Lee filter band and texture indicators in Fig. 13c, resulted in whitish color for flood prone
areas. On the other hand, concerning the composite Fig. 13d, the combination of Mean, Var‐
iance and Homogeneity bands resulted in a light yellowish color for the moisture affected
areas.

 

(a) 

(
b
) 

(
c
) 

(b) 

(c) (d) 

Figure 13. a) RGB composite of the catchment area with the ALOS images before and after the precipitation event (R:
Filtered image before precipitation, G: Filtered image after precipitation, B: Filtered image before precipitation - with
green colors the areas where backscattering values were increased due to moisture effect are indicated). (b) Texture
indicators RGB composite (R: Homogeneity, G: Contrast, B: Dissimilarity) (c). Combination of microwave bands and tex‐
tural bands (R: Filtered image before precipitation, G: Filtered image after precipitation, B: Mean). (d) Texture indica‐
tors RGB composite (R: Mean, G: Variance, B: Homogeneity)

5.6. Conclusions

In this study, ALOS PALSAR imagery data (acquired before and after a certain precipitation
event) proved to be useful for evaluating their potential to detect increased land moisture
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values and to delineate flood prone areas within a catchment area. In the first approach, sig‐
nal intensity statistics (backscattering values) were extracted to correlate moisture values
with certain land cover classes. For this purpose, two high spatial resolution GeoEye-1 im‐
ages were used to create a LULC map to be used as a reference thematic map.

In addition, texture analysis was employed to ALOS PALSAR images for the detection of
flood prone areas. This method is based on the multi-temporal evaluation of the changes
that occur between two ALOS PALSAR overpasses before and after the extreme precipita‐
tion event. The specific approach aims to highlight the changes and separate this informa‐
tion from unchanged backscatter signals. Moreover, the specific approach is used in order to
improve the visual interpretation of SAR images. The visual inspection of filtered ALOS im‐
ages proved that there is a considerable change in radar backscattering when moisture af‐
fects land cover classes. Relative radar backscatter levels sampled in regions of interest and a
LULC cover map indicated that different land cover classes yield different backscatter re‐
turns in response to moisture/flooding.

The results are useful for examining the potential of ALOS PALSAR images in recording soil
moisture regime of an inundated area. However, the research team will continue observa‐
tion in longer time in case of flooding with the use of radar images. Such information is
needed to understand flood mechanism and to better develop water discharge and flood
prevention system.

6. Monitoring urban land cover with the use of satellite remote sensing
techniques as a means of flood risk assessment in Cyprus.

6.1. Introduction

This study uses an integrated approach that combines record of urban sprawl, land use and
landscape metrics. Specifically, a remote sensing approach is applied to Aster satellite im‐
ages to analyze and identify patterns of urban changes within the spatial limits of Yialias
watershed basin in the island of Cyprus. Moreover, there is an effort to optimize the classifi‐
cation products by combining spectral and texture data to the final.

6.2. Data and methodology

6.2.1. Methodology

Αn innovative methodology was developed for improving the classification accuracy of As‐
ter images concerning multi-temporal (2000 – 2010) record of urban land cover within the
spatial limits of Yialias watershed basin in Cyprus. The phenomenon of spectral similarity of
the spectral signatures of urban and marl/chalk formations, identified in the study area,
stimulated the calculation of texture measurements in order to improve the traditional clas‐
sification products derived from spectral bands. Thus, with the use of ENVI 4.7 software 7
indicators of texture information were extracted for the images of 2000 and 2010. These indi‐
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cators were evaluated for their separability concerning urban and marl / chalk and the opti‐
mum ones were used either individually or in combination with spectral bands in order to
improve the land use / land cover (LULC) classification accuracy. The Kappa coefficient was
used in order to evaluate the reliability of the classified products. In the final stage, the opti‐
mum LULC products were incorporated in Fragstats tool in order to record the changes in
urban cover structures during the last decade with the use of sophisticated spatial metrics.

6.2.2. Data

For the purposes of the study, the following satellite and digital spatial data were incorporated:

• 2 ASTER Images

• A Digital Elevation Model (DEM) of 25m pixel size provided by the Department of Land
and Surveys of Cyprus and created with the use of orthorectified stereopairs of airphotos
covering the study area.

The acquired ASTER images have a 10 year time interval in order the multi-temporal moni‐
toring of urban sprawl to be guaranteed. For this study, the first three spectral bands were
used (VNIR and SWIR) with spatial resolution of 15 m. The exact acquisition dates of the
images were: 12 May 2000 and 06 April 2010.

6.3. Pre-processing techniques

Geometric corrections were carried out using standard techniques with ground control
points and a first order polynomial fit. For this purpose, topographical maps were used to
track the position of ground control points in conjunction with the digital shoreline of Cy‐
prus extracted from the provided DEM. in the following, the DN values were converted to
radiance values. For both images, the at-satellite radiance values were converted to at–satel‐
lite reflectance values. Finally, the darkest pixel atmospheric correction method was applied
to every image (Hadjimitisis et al., 2004b). It has been found that atmospheric effects contrib‐
ute significantly to the classification technique.

6.4. Image classification

In this study, the Iterative Self-Organizing Data Analysis Technique (ISODATA) method
was used. The ISODATA algorithm operates as k-means clustering algorithm by merging
the clusters if the separation distance in a multispectral feature is less than a value specified
by the user and certain rules for splitting a certain cluster into two clusters. Accuracy assess‐
ment, which is an integral part of any image classification process, was calculated to esti‐
mate the accuracy of different methodologies of land cover classifications. An important
statistic generated from the error matrix is the Kappa coefficient that is well suited for accu‐
racy assessment of LULC maps (Vliet, 2009). This statistic takes into account all the values in
the matrix and produces an index that indicates the rate of improvement compared to ran‐
domly allocating pixels to different classes (Congalton & Green, 2008).
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The major issue that this study had to deal with was the similarity of spectral signature re‐
sponse mainly between urban, marl/ chalk and soil features in the Aster images of 2000 and
2010. This problem is clearly denoted in Fig. 14. For this reason different kind of classifica‐
tion methods were used in order to optimize the final results and provide an alternative
way of creating efficient LULC cover maps.

Figure 14. Spectral response curve of typical ground objects

6.4.1. Multispectral image classification

The pixel-based classification is considered to be the most classic way of classifying satellite
imagery. For this reason, the first three bands of Aster image were used covering a spectral
range from visible to near infrared part of spectrum. This process was accomplished in or‐
der to form a standard of comparison with the other classification products such as those of
texture or combination of texture and spectral bands. After proceeding with evaluation ac‐
curacy, it was resulted that the Kappa coefficient for image acquired for 2000 was 0.684 and
for 2010 was 0.695. These accuracies can be described as moderate and were ascribed to ur‐
ban and marl/chalk spectral conflict.

6.4.2. Texture classification

According to Zhang & Zhu (2011), texture is defined as the spatial variation in gray value
and is independent of color or luminance. Texture measures smoothness, coarseness and
regularity of a region in an image (Gonzalez & Woods, 1992). Concerning satellite digital
imagery texture quantifies the way two neighboring pixels relate each other within a small
window centered on one of the pixels. It is generally used to describe the visual homogenei‐
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ty of images and is considered to be a common intrinsic property of all ground objects. For
the description of texture histograms, gray level co-occurrence matrix (GLCM), local statis‐
tics and characteristics of the frequency spectrum are used. The GCLM mainly operates by
calculating a matrix that is based on quantifying the difference between the grey levels of
neighboring pixels in an image window. The main aim of this matrix is the quantification of
the spatial pixel structure within this window. It was initially suggested as a mechanism for
extracting texture measures (Haralick et al., 1973).

Texture Descriptor Equation Description

Contrast ∑
i=0

Ng−1

∑
j=0

Ng−1

(i-j)2 g2 (i,j)

Contrast measures the difference

between the highest and lowest values

of a contiguous set of pixels. Thus, low

contrast image features means low

spatial frequencies.

Homogeneity ∑
i=0

Ng−1

∑
j=0

Ng−1 1
1 + (i + j)2 g(i,j)

Image homogeneity is sensitive to the

presence if near diagonal elements in

GLCM.

Entropy ∑
i=0

Ng−1

∑
j=0

Ng−1

g2(i, j)log(g(i,j))

Calculates the disorder of an image and

gives high values when an image is not

texturally uniform

Angular Second Moment (ASM) ∑
i=0

Ng−1

∑
j=0

Ng−1

g (i, j)2

ASM measures texture uniformity. High

ASM values occur when the distribution

of gray levels values is constant.

Dissimilarity ∑
i=0

Ng−1

∑
j=0

Ng−1

g (i, j) | i − j |

Dissimilarity is similar to Contrast.

However it weights increase linearly

rather than weighting the diagonal

exponentially.

Mean ∑
i=0

Ng−1

∑
j=0

Ng−1

g (i, j)

Measure of similarity in pixel values

(mean pixel value) of the neighborhood

resolution cells in an image block.

Variance ∑
i=0

Ng−1

∑
j=0

Ng−1

(i-u)2 g (i, j)

Variance measures homogeneity and

increases when the grey level values

differ from their mean.

Ng is the number of gray levels, entry (i, j) in the GLCM and u = ∑
i=0

Ng−1

∑
j=0

Ng−1

 g(i, j)

Table 4. Description of the texture parameters

Initially, principal component analysis was applied to both satellite images in order to ex‐
tract the first principal component from each image which would subsequently be used for
texture analysis. Thus, the first component of the two images was imported in ENVI 4.7 soft‐
ware and 7 different statistical indicators of texture such as contrast, angular second mo‐

Remote Sensing of Environment: Integrated Approaches120



ment, homogeneity, entropy, dissimilarity, mean and variance were used for carrying out
the statistical texture analysis of all the typical ground objects (Tables 4, 5 and 6).

Contrast Homogeneity Entropy

Angular

Second

Moment

Dissimilarity Mean Variance

1 Urban 12.186 0.2841 2.082 0.129 2.779 35.591 4.662

2 Vegetation 1 0.5181 0.778 1.138 0.398 0.455 24.828 0

3 Vegetation 2 2.568 0.560 1.538 0.241 1.123 30.604 0.778

4 Forest 1.083 0.694 1.303 0.318 0.690 19.236 0.220

5 Marl/Chalk 24.808 0.198 2.049 0.137 3.882 49.939 3.759

6 Bare Soil 1.139 0.6605 1.269 0.344 0.755 25.799 0.316

Table 5. Analysis of texture features of basic objects for satellite image corresponding to 2010

Contrast Homogeneity Entropy

Angular

Second

Moment

Dissimilarity Mean Variance

1 Urban 6.856 0.422 1.948 0.151 1.875 28.594 2.606

2 Vegetation 1 3.319 0.533 1.528 0.254 1.284 17.77 0.906

3 Vegetation 2 1.867 0.688 1.398 0.299 0.801 26.178 0.948

4 Forest 0.612 0.723 1.223 0.328 0.562 13.248 0.199

5 Marl/Chalk 7.540 0.380 2.114 0.125 2.057 41.463 4.367

6 Bare Soil 0.337 0.831 0.892 0.485 0.337 18.45 0.160

Table 6. Analysis of texture features of basic objects for satellite image corresponding to 2000

It is clearly shown in Table 5 that marl formations and urban classes which cannot be differ‐
entiated (based on spectral features) vary in the means of contrast, homogeneity, dissimilari‐
ty and mean texture regarding the image corresponding to 2010 (Fig. 14). Concerning the
texture bands of 2000 (Table 6) the greatest differences in values between marl and urban
classes are indicated at mean and variance texture classes.

Texture-based classification methodologies give the opportunity to end users to extend the
traditional-based classifiers by incorporating the texture bands into the multispectral bands,
in order to coalesce the spectral and spatial information in the final product. The ISODATA
algorithm was applied to different texture products. Specifically, the algorithm was applied
to the multiband texture images of 2000 and 2010 and to the PCA products (three first com‐
ponents) of 2000 and 2010 with corresponding Kappa coefficients of 0.694, 0.685, 0.710, 0.715
and 0.723.
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Figure 15. Urban and marl/chalk features as indicated in Angular Second Moment texture indicator (left). Urban and
marl/chalk features as indicated in Contrast texture indicator (right)

6.4.3. Combined spectral and texture methodology

The combined use of spectral and texture methodology function by combining spectral and
texture bands (either original bands or PCA components) and creating a final integrated im‐
age. For this study, the following two combinations were accomplished and the ISODATA
classifier was applied to them:

• Use of all multispectral and texture bands

• Use of all multispectral bands and the first three components after the application of PCA
to texture bands.

The overall accuracy of the methodology was considered as promising compared to the re‐
sults of the previous classification products derived from individual either spectral or tex‐
ture bands. Specifically, the Kappa coefficient values for the 1st category of combined
classification for 2000 and 2010 was 0.702 and 0.732, respectively. In addition, the Kappa co‐
efficient values for the second category were 0.765 and 0.775 concerning 2000 and 2010 im‐
ages. These results led the research team to select these two final LULC cover maps
concerning the period 2000 and 2010 for applying spatial landscape metrics.

6.5. Landscape metrics

Spatial landscape metrics are used in sustainable landscape planning and analysis of urban land
use change (Botequilha et al., 2002). These metrics typically measure spatial configuration of
landscapes, and can be used to enhance the understanding of relationships between spatial pat‐
terns and spatial processes (Herold et al., 2005). In this study, the FRAGSTATS tool was used in
order to measure and analyze the diachronic changes of LULC regime of the study area and re‐
cord the urban sprawl phenomenon within the watershed. Specifically, seven spatial individu‐
al metrics were used for analyzing urban land cover changes and these were (Edge Density,
Largest Patch Index, Class Area, Number of Patches, Area weighted mean patch fractal dimen‐
sion, Euclidean nearest neighbor distance and Contagion) (Table 7).
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As investigated by O’Neil et al. (1988) due to correlation and overlap between landscape
metrics, it is not necessary to calculate all landscape metrics. The specific metrics were se‐
lected because of their simplicity and effectiveness in depicting urban forms evolution (Al‐
berti & Waddel, 2002; Herold et al., 2002). It was found that there was an increase in built up
areas during the period 2000 to 2010. The number of patches used in landscape analysis in‐
dicate the aggregation or disaggregation in the landscape. The considerable increase of the
specific index during the time span 2000 - 2010 suggests urbanization in the study area char‐
acterized by dispersion. Moreover, a development of a number of isolated and fragmented
built up areas occurred at the end of this period. Regarding largest patch index, the small
increase between 2000 and 2010 indicates a corresponding small urban core increase. The in‐
creased urbanization rate is characterized by the appearance of new, dispersed settlements.

No
Landscape

Metrics
Description Comments

1 Edge Density (ED)

Equals the sum of the

lengths of all edge segments

divided by total landscape

area

It is an absolute measure of total edge length on a

per unit area bases that facilitates comparison

among landscapes of different sizes

2 Largest Patch Index

Equals the area of the largest

patch of the corresponding

patch type divided by total

landscape area and

multiplied by 100.

Quantifies the percentage of total landscape area

comprised by the largest patch

3 Class Area

Equals the sum of the areas

of all patches of the

corresponding patch type

Is a measure of landscape composition and

calculates how much of the landscape is comprised

of a particular landscape.

4 Number of Patches

Equals the number of

patches of the corresponding

class

Measurement of the extent of subdivision or

fragmentation of the patch type.

5
Euclidean Nearest Neighbor

Distance

Equals the distance to the

nearest neighboring patch of

the same type

Simple measure of patch context. It is extensively

used for quantification of patch isolation

6 Contagion
Describes the heterogeneity

of a landscape

Measures the extent to which landscapes are

aggregated or clumped

7
Area weighted mean patch

fractal dimension

Area weighted mean value

of the fractal dimension

values of all the patches

It reflects shape complexity across a range of spatial

scales

Table 7. Properties of spatial metrics used in this study

Thus, the increase of edge density value by indicates an increase in the total length of the
edge of the urban patches due to urban land use fragmentation. This finding is also en‐
hanced by the increase in weighted mean patch fractal dimension value indicating the urban
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sprawl phenomenon in the study area. Moreover, the fractal shape dimension value was al‐
ways slightly higher than 1, indicating a moderate shape complexity. In addition, the de‐
crease in Euclidean Nearest Neighbor Distance metric between 2000 and 2010 denoted a
reduction in the distance between the built-up patches, suggesting coalescence (Table 8).

Year

No Metrics 2000 2010

1 Edge Density 0.7014 2.8892

2 Largest Patch Index 0.0003 0.0005

3 Class Area (km2) 6.042 18.123

4 Number of Patches 1794 7894

5 Euclidean Nearest Neighbour Distance 1886.36 593.2545

6 Contagion 54.845 47.8295

7 Area weighted mean patch fractal dimension 1.0021 1.0061

Table 8. Landscape indices

However, it is important to mention that the landscape metrics results can be used as gener‐
al indicators and do not provide the users with absolute answers.

6.6. Results

The impacts of changes in land use patterns on hydrology due to extensive urbanization in
the spatial limits of watershed is a critical issue in water resource management and water‐
shed land use planning. Land use and land cover maps of the study area for the years 2000
and 2010 were obtained using spectral bands, texture bands or combination of both of them.
The major motivation for the use of alternative classification methodologies was the exis‐
tence of similar spectral signatures for urban and marl/chalk geologic formations located in
the study area. These methodologies were evaluated for their accuracy and the optimum
classification products were selected in order to be used to the research of urban land use
regime evolution during the last decade. In both cases (2000 and 2010) the combination of
three spectral bands with the first three principal components extracted from texture bands
led to more accurate and reliable results. In the next stage, landscape spatial metrics were
used to measure the urban sprawl phenomenon in the study area and its changes through
time. Specifically, seven metrics were applied to the two final classified images. The results
from the vast majority of the metrics, besides Euclidean distance measurement, denoted a
steady dispersion of urban settlements within the area of watershed. Although there was
not a significant total urban area increase during this period, a considerable urban sprawl
phenomenon was recorded.

This study denoted that spatial measures, such as texture, can play an important role in the
analysis of satellite imagery. The overall improvement of classification accuracy products
derived from images of medium spatial resolution such as those of Aster highlights the po‐
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tential of use of texture bands in combination with multispectral imagery. Moreover, the ur‐
ban sprawl phenomenon was recorded in detail with the use of landscape metrics
emphasizing to the flood inundation danger in an already flood prone watershed basin such
as Yialias. The research team will continue the specific research by incorporating images of
higher spatial resolution to the classification model.

7. Overall conclusions

This study revealed that the integrated use of satellite remote sensing and GIS technology
can contribute substantially to the sustainable management of a watershed basin. Interpreta‐
tion of multi-spectral satellite sensor data proved to be of great help in the development of
updated LULC maps and record of the LULC regime and urban sprawl phenomenon in a
catchment area. Moreover, a soil erosion model such as RUSLE was found to be efficiently
applied at basin scale with quite modest data requirements in a Mediterranean environ‐
ment. The RUSLE model provides the end users with reliable quantitative and spatial infor‐
mation concerning soil erosion and erosion risk in general. Following, the results denoted
the potential of Radar imagery in recording soil moisture regime of an inundated area as
well its potential to improve classification accuracy.

The overall results pointed out the substantial contribution of satellite remote sensing to the
sustainable management of a catchment area.

Acknowledgements

The project results reported here reports are based on findings of the SATFLOOD project
(ΠΡΟΣΕΛΚΥΣΗ/ΝΕΟΣ/0609) that has been funded by the Cyprus Research Promotion
Foundation. Thanks are also given to the Remote Sensing and Geo-Environment Laboratory
of the Department of Civil Engineering & Geomatics at the Cyprus University of Technolo‐
gy for its continuous support (http://www.cut.ac.cy).

Author details

Diofantos G. Hadjimitsis1, Dimitrios D. Alexakis1, Athos Agapiou1,
Kyriacos Themistocleous1, Silas Michaelides2 and Adrianos Retalis3

1 Cyprus University of Technology, Faculty of Engineering and Technology, Department of
Civil Engineering and Geomatics, Remote Sensing and Geo-Environment Lab, Cyprus

2 Meteorological Service of Cyprus, Cyprus

3 National Observatory of Athens, Greece

Integrated Remote Sensing and GIS Applications for Sustainable Watershed Management: A Case Study from Cyprus 125



References

[1] Agapiou, A. & Hadjimitsis, D.G. (2011). Vegetation indices and field spectroradio‐
metric measurements for validation of buried architectural remains: verification un‐
der area surveyed with geophysical campaigns, Journal of Applied Remote Sensing, Vol.
5, doi:10.1117/1.3645590

[2] Alberti, M. & Waddel, P. (2000). An integrated urban development and ecological
simulation model, Integrated Assessment, Vol 1, pp. 215-227

[3] Alexakis, D.D; Hadjimitsis, D.G.; Agapiou, A., Themistocleous K. & Retalis, A.
(2011). Contribution of Earth Observation to flood risk assessment in Cyprus: the
Yialias catchment area in Nicosia, Proceedings of VI EWRA International Symposium -
Water Engineering and Management in a Changing Environment, Catania, Italy, June 29 -
July 2, 2011

[4] Alexakis, D.D.; Hadjimitsis, D.G.; Agapiou, A. & Retalis, A. (2012). Optimizing statis‐
tical classification accuracy of satellite remotely sensed imagery for supporting fast
flood hydrological analysis, Acta Geophysica, Vol 60(3), pp 959-984, doi: 10.2478/
s11600-012-0025-9

[5] Alexakis, D.D.; Hadjimitsis, D.G. & Agapiou, A. (2013a). Estimating Flash Flood Dis‐
charge in a Catchment Area with the Use of Hydraulic Model and Terrestrial Laser
Scanner, Advances in Meteorology, Climatology and Atmospheric Physics Springer Atmos‐
pheric Sciences, pp 9-14, doi: 10.1007/978-3-642-29172-2_2

[6] Alexakis, D.D.; Hadjimitsis, D.G.; Michaelides, S.; Tsanis I.; Retalis, A.; Demetriou,
A.; Agapiou A.; Themistocleous K.; Pashiardis S.; Aristeidou, K. & Tymvios F.
(2013b). Application of GIS and Remote Sensing Techniques for Flood Risk Assess‐
ment in Cyprus, Advances in Meteorology, Climatology and Atmospheric Physics Springer
Atmospheric Sciences, pp. 9-14. doi: 10.1007/978-3-642-29172-2_1

[7] Barredo, J. & Engelen, G. (2010). Land Use Scenario Modeling for Flood Risk Mitiga‐
tion. Sustainability, pp.1327-1344; doi:10.3390/su2051327

[8] Bou Kheir R; Abdallah, C & Khawlie, M. (2008). Assessing soil erosion in Mediterra‐
nean karst landscapes of Lebanon using remote sensing and GIS, Engineering Geology,
Vol 99, pp. 239–254

[9] Eiumnoh, A. & Shrestha, R. (2000). Application of DEM data to Landsat image classi‐
fication: Evaluation in a tropical wet-dry landscape of Thailand, Photogrammetric En‐
gineering and Remote Sensing, Vol 66, pp. 297-1304

[10] Ferro, V; Giordano, G. & Lovino, M. (1991). Isoerosivity and erosion risk map for Si‐
cily, Hydrological Sciences Journal, Vol 36(6), pp.549–564

[11] Hadjimitsis, D.G.; Retalis, A. & Clayton, C. (2004a). Satellite remote sensing and GIS
for sustainable development in Skiathos Island, Greece, In: Proceedings SPIE, Vol.63,
5239 doi:10.1117/12.511522

Remote Sensing of Environment: Integrated Approaches126



[12] Hadjimitsis, D.G.; Clayton, C.R.I. & Hope, V.S. (2004b). An assessment of the effec‐
tiveness of atmospheric correction algorithms through the remote sensing of some
reservoirs, International Journal of Remote Sensing, Vol. 25, pp. 3651-3674

[13] Hadjimitsis, D.G. (2007) The use of satellite remote sensing and GIS for assisting
flood risk assessment: a case study of the Agriokalamin Catchment area in Paphos-
Cyprus, In: Proceedings SPIE, 6742, 67420Z ; doi:10.1117/12.751855

[14] Hadjimitsis, D.G. (2010). The importance of monitoring urban growth and land-cover
changes in catchment areas in Cyprus using multi-temporal remotely sensed data,
Natural Hazards and Earth System Sciences Journal, Vol.10, pp. 2235-2240, doi:10.5194/
nhess-10-2235-2010

[15] Hadjimitsis, D.G., Clayton, C. & Toulios, L., (2010a). Retrieving visibility values us‐
ing satellite remote sensing data, Physics and Chemistry of the Earth, Parts A/B/C, 35
(1–2), pp. 121-124, doi: 10.1016/j.pce.2010.03.002

[16] Hadjimitsis, D.G.; Perdikou S. & Themistocleous, K. (2010b). Overview of remote
sensing applications for assessing and monitoring natural hazards in Cyprus, In: Pro‐
ceedings SPIE, 7826, 78262B

[17] Haralick, R.M.; Shanmugam, K. & Dinstein, I. (1973). Textural features for image
classification, IEEE Transactions on Systems, Man, and Cybernetics SMC-3, Vol. 3, pp.
610–621

[18] Herold, M.; Scepan, J. & Clarke, C. (2002). The use of remote sensing and landscape
metrics to describe structures and changes in urban land uses, Environmental Plan‐
ning Journal., Vol.34, pp. 1443-1458

[19] Herold, M.; Couclelis, H. & Clarke, K.C. (2005). The role of spatial metrics in the anal‐
ysis and modeling of urban land use change, Computers. Environment and Urban Sys‐
tems, Vol.29, pp. 369-399

[20] Hongga, Li.; Huang., B. & Xiaoxia Huang, X., (2010). A Level Set Filter for Speckle
Reduction in SAR Images. EURASIP Journal on Advances in Signal Processing, Vol.
2010, doi : 10.1155/2010/745129

[21] Kouli, M.; P Soupios, P. & Vallianatos, F. (2009). Soil erosion prediction using the Re‐
vised Universal Soil Loss Equation (RUSLE) in a GIS framework, Chania, Northwest‐
ern Crete, Greece, Environmental Geology , Vol.57, 483–497

[22] Karydas, C.; Sekuloska T. & Silleos, G. (2009). Quantification and site-specification of
the support practice factor when mapping soil erosion risk associated with olive
plantations in the Mediterranean island of Crete, Environmental Monitoring and As‐
sessment., Vol. 149, pp. 19–28, doi: 10.1007/s10661-008-0179-8

[23] Lewis, A.J. (1998). Geomorphic and hydrologic applications of active microwave re‐
mote sensing in 5 principles and application of imaging radar, Manual of Remote Sens‐
ing, Vol 2, John Wiley & Sons Inc., New York, pp. 567–618

Integrated Remote Sensing and GIS Applications for Sustainable Watershed Management: A Case Study from Cyprus 127



[24] Lillesand, T.,M. & Kiefer, R.W. (2000). Remote Sensing and Image ınterpretation. Fourth
edition. John Wiley & Sons, Inc., Toronto. ISBN:0-471 25525-7

[25] Lin, Y.P.; Lin, Y.B.; Wang, Y.T. & Hong, N.M. (2008). Monitoring and prediction
land-use changes and the hydrology of urbanized Paochiao Watershed in Taiwan us‐
ing remote sensing data urban growth models and a hydrological model, Sensors,
Vol.8, pp. 680–685

[26] Michaelides, S.; Tymvios, F. & Michaelidou, T. (2009). Spatial and temporal charac‐
teristics of the annual rainfall frequency distribution in Cyprus, Atmospheric Research,
Vol.94, pp. 606–615

[27] Moore, I. D. & Burch, F.J. (1986). Physical basic of the length–slope factor in the Uni‐
versal Soil Loss Equation. Soil Science Society of America Journal, Vol. 50, pp. 1294–1298

[28] Murray, H.; Lucieer, A. & Williams, R. (2010). Texture-based classification of sub-
Antarctic vegetation communities on Heard Island, International Journal of Applied
Earth Observation and Geoinformation, Vol.12, pp. 138–149

[29] Nekhay, O.; Arriaza, M. & Boerboom, L. (2009). Evaluation of soil erosion risk using
Analytic Network Process and GIS: A case study from Spanish mountain olive plan‐
tations, Journal of Environmental Management, Vol.90, pp. 3091 – 3104

[30] O’Neill, R.V.; Krummel, J.R.; Gardner, R.H.; Sugihara, G.; Jackson, B.; Deangelis,
D.L.; Milne, B.T.; Turner, B.T.; Zygmunt, B.; Christensen, S.W.; Dale, V.H. & Graham,
R.L. (1988). Indices of landscape pattern, Landscape Ecology, Vol.1, pp. 153–162

[31] Peijun, D.; Xingli, L.; Wen, C.; Yan, L. & Huapeng, Z. (2010). Monitoring urban land
cover and vegetation change by multi-temporal remote sensing information. Mining
Science and Technology, Vol.20, pp. 0922–0932

[32] Prasannakumar, V.; Vijith, H. & Geetha, N. (2011). Estimation of soil erosion risk
within a small mountainous sub-watershed in Kerala, India, using Revised Universal
Soil Loss Equation (RUSLE) and geo-information technology, Geoscience Frontiers,
doi:10.1016/j.gsf.2011.11.003

[33] Renard, K.G. & Freimund, J.R. (1994). Using monthly precipitation data to estimate
the R factor in the revised USLE, Journal of Hydrology, Vol.157, pp. 287–306

[34] Rongqun, Z. & Daolin, Z. (2011). Study of land cover classification based on knowl‐
edge rules using high-resolution remote sensing images, Expert Systems with Applica‐
tions. Vol.38, pp. 3647–3652

[35] Tim, S. & Mallavaram, S. (2003). Application of GIS Technology in Watershed-based
Management and Decision Making, Watershed Update, Vol.1, pp.1-6

[36] Yingxin, Z.; Linlin, G. (2010). Using passive and active remote sensing in combina‐
tion with GIS for bushfire detection, In Proceedings 15th Australasian Remote Sensing &
Photogrammetry Conference, Alice Springs, 13-17 September

Remote Sensing of Environment: Integrated Approaches128



[37] Zhang R. & Zhu D. (2011). Study of land cover classification based on knowledge
rules using high-resolution remote sensing images, Expert Systems with Applications,
Vol.38, pp. 3647-3652

Integrated Remote Sensing and GIS Applications for Sustainable Watershed Management: A Case Study from Cyprus 129




