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1. Introduction

Soon after the discovery of x-rays, physicians recognized the importance of using imaging to
guide interventional procedures. As imaging technology became more advanced with the
development of fluoroscopic, CT, MR and ultrasound systems, image-guided interventions
have become a critical tool for physicians in dealing with complex interventional and surgical
procedures. Today, image-guided procedures make use of computer-based systems to provide
real-time three-dimensional (3D) information of the anatomy of the patient being treated. The
information is presented in various ways, such as virtual graphical image overlays, or multi-
screen approaches to help the physician precisely visualize and target the anatomical site.

Since the development of Computed Tomography (CT) in the early 1970s, the availability of
3D anatomical information has revolutionized diagnostic radiology by providing physicians
with 3D images of anatomical structures. The pace of development has continued with the
development of 3D magnetic resonance imaging (MRI), positron Emission Tomography (PET),
and multi-slice and cone beam CT imaging. These imaging modalities have stimulated the
development of a wide variety of image-guided interventional procedures.

Although 2D ultrasound (2D US) imaging has been used extensively for interventional
procedures, such as biopsy and guidance of ablation procedures, 3D ultrasound is slowly
growing in clinical applications [1]. Today, the majority of US-based diagnostic and interven‐
tional procedures are still performed using conventional 2D imaging. Over the past two
decades, university-based investigators and commercial companies have utilized both 1D and
2D arrays while developing 3D ultrasound (3D US) imaging techniques. 3D US techniques
have been increasingly used in diagnosis, minimally invasive image-guided interventions and
intra-operative use of imaging [2-4]. Today, most US system manufacturers provide 3D US
imaging capability as part of the systems. Advances in 3D US imaging technology have
resulted in high quality 3D images of complex anatomical structures and pathology, which are
used in diagnosis of disease and to guide interventional and surgical procedures [5-9].
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In this chapter we focus on the recent development of 3D US imaging as it applies to image-
guided interventions. The chapter will briefly review how 3D US images are obtained and then
will provide two examples of recent development of 3D US- guided interventional procedures.

2. 3D ultrasound imaging systems

2.1. Benefits of 3D ultrasound imaging

Conventional 2D US imaging systems making use of 1D transducer arrays allow users to
manipulate the hand-held US transducer freely over the body in order to generate images of
organs and pathology. While this capability is sufficient for many interventional procedures
such as breast biopsy, some interventional procedures require 3D image visualization, which
3D US imaging attempts to provide. More specifically:

• Freely manipulating the conventional US transducer during the interventional procedure
over the anatomy to generate 2D US images requires that users mentally integrate many 2D
images to form an impression of the anatomy and pathology in 3D. In cases of interventions
of complex anatomy or pathology, this approach leads to longer procedures and may result
in variability in guidance of the interventional procedures.

• Since the conventional 2D US imaging transducer is held and manipulated manually, it is
difficult to relocate the 2D US image at the exact location and orientation in the body at a
later time. Since monitoring the progression of the interventional procedure often requires
imaging of the same location (plane) of the anatomy, manual manipulation of a 2D US image
is suboptimal.

• Conventional 2D US imaging does not permit viewing of planes parallel to the skin – often
called C-mode. This approach is, at times, suboptimal since interventional procedures
sometimes require an arbitrary selection of the image plane for optimal viewing of the
pathology and guiding the interventional procedure.

• Planning the interventional procedure and therapy monitoring often require accurate lesion
volume measurements. Since conventional 2D US imaging only provides a cross-section of
the lesion, measurements of organ or lesion volume is variable and at times inaccurate.

The following sections review approaches used in generation of 3D US images based on 1D.
An emphasis is placed on the geometric accuracy of the generated 3D images as well as the
use of this technology in interventional and quantitative monitoring applications.

2.2. Mechanical 3D US scanning systems

Mechanical 3D US systems make use of mechanisms using motors to translate, tilt, or rotate a
conventional 2D US transducer. A sequential digitized series of 2D US images and their relative
positions and orientation are acquired rapidly by a computer as the 2D US transducer is moved,
while the 3D US image is reconstructed. Since the scanning geometry in mechanical 3D US
systems is predefined and precisely controlled by a mechanical motorized system, the relative
position and orientation of the acquired 2D US images are known accurately and precisely.

Advancements and Breakthroughs in Ultrasound Imaging2



These mechanical 3D scanning systems allow the user to optimize the image resolution by
adjusting the angular or spatial interval between the acquired 2D image [10].

Two approaches have been used in the development of mechanical 3D US scanning systems:
integrated 3D US transducers with the scanning mechanism within the transducer housing;
and external mechanical fixtures that hold the housing of a conventional 2D US transducers.
Both approaches have been successfully used for a variety of clinical applications including
interventional applications.

2.2.1. Wobbling or tilting mechanical 3D US scanners

Most US system manufacturers offer integrated 3D US transducers that are based on a
mechanically-swept transducer or “wobbler”. In these systems a 1D US array is wobbled or
swept back and forth inside the 3D transducer housing. Digital 2D US images that are
generated while the 1D US array is wobbled, which are used in the 3D US image reconstruction.
These 3D transducers are larger than conventional 2D US transducers. These types of 3D US
transducers are convenient to use but require a special US machine that can control the 3D
scanning and reconstruct the acquired 2D images into a 3D image.

Many interventional 3D US-guided interventional systems are currently using external
fixtures for mechanical 3D scanning since researchers typically do not get access to the control
of the US system for development of novel interventional systems. In this approach, a
motorized custom made fixture is used to house the conventional 2D US transducer. A
computer is used to control the motor to cause the US transducer to tilt or “wobble”. The video
stream from the US machine is digitized using an analogue or digital frame grabber. Since the
relative angle between the acquired 2D images is known, a 3D image can be reconstructed as
the 2D images are acquired.

Although the external mechanical 3D scanning fixtures are bulkier than integrated 3D
transducers, they can be used with any US manufacturer’s transducer, obviating the need to
purchase a special 3D US machine. In addition, the external fixture approach can take advant‐
age of improvements in the US machine (e.g., image compounding, contrast agent imaging)
and flow information (e.g., Doppler imaging) without any changes in the scanning mechanism.

Both approaches used in mechanical 3D US scanning allow short imaging times, ranging from
about 3 to 0.2 3D images/s. The 3D images are of high quality and also include B-mode and
Doppler information.

Figure 1a is a diagram of the mechanical tilt approach of a conventional 1D array US transducer
about an axis parallel to the face of the transducer, and 1b shows the tilting axis away from the
face of the transducer. The latter approach is typically used in integrated 3D scanning mech‐
anisms. In both approaches, the acquired 2D US images are arranged as a fan with an adjustable
angular spacing, e.g., 1.0°. To generate a 3D image, the housing of the 3D probe or external
fixture remains fixed on the skin of the patient while the US transducer is wobbled. The time
required to generate a 3D US image depends on the 2D US image update rate and the number
of 2D images needed to generate the 3D image. The 2D US image update rate depends on the
US machine settings (i.e., depth setting and number of focal zones) and number of acquired
2D US images is determined by the chosen angular separation between the acquired 2D images,

3D Ultrasound Imaging in Image-Guided Intervention
http://dx.doi.org/10.5772/55230

3



and the total scan angle needed to cover the desired anatomy. Typically, these parameters can
be adjusted to optimize scanning time, image quality and the size of the volume imaged
[11-16]. The most common integrated 3D transducers using the wobbling technique are used
for abdominal and obstetrical imaging [17-19].

The 3D image resolution will not be isotropic. The resolution in the 3D US image will degrade
in the axial direction away from the transducer due to the increasing US beam spread in the
lateral and elevational directions of the acquired 2D US images. Since the acquired 2D images
used to generate a 3D image are arranged as a fan, the distance between the acquired US images
increases with increasing axial distance. Increasing axial distances result in decreasing spatial
sampling resulting in further loss of spatial resolution in the elevational direction of the
acquired 2D US images of the reconstructed 3D image [20].

Figure	1	

(a)	

(c)	

(b)	

			 		
		

	 	 	
	

(d)	

Figure 1. Schematic diagrams of 3D US mechanical scanning methods. (a) A side-firing TRUS transducer is mechanical‐
ly rotated and the acquired images have equal angular spacing. The same approach is used in a mechanically-wob‐
bled transducer. (b) A rotational scanning mechanism using an end-firing transducer, typically used in 3D TRUS guided
prostate biopsy. The acquired images have equal angular spacing. (c) A linear mechanical scanning mechanism, in
which the acquired images have equal spacing. (d) The mechanically tilting mechanism, but integrated into a 3D US
transducer. The US transducer is “wobbled” inside the housing of the transducer.
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2.2.2. Linear mechanical 3D scanners

Linear scanners mechanisms use an external motorized fixture to move the conventional 2D
transducer across the skin of the patient. The 2D transducer can be fixed to be perpendicular
to the surface of the skin or at an angle for acquiring Doppler images. The spacing between
the acquired 2D images is adjustable but constant during the scan so that the acquired 2D
images are parallel and uniformly spaced (see Fig. 1c). The velocity of the transducer as it is
being scanned is adjusted to obtain 2D images with an appropriate spatial interval for
generating high quality 3D images [10].

The predefined spacing between the acquired 2D US images allows 3D images to be recon‐
structed while the 2D US images are being acquired. In the direction parallel to the acquired
2D US images the resolution of the reconstructed 3D US image will be the same as the original
2D US images. However, in the direction of the 3D scanning, the resolution of the reconstructed
3D image will be equal (if spatial sampling is appropriate) to the elevational resolution of the
acquired 2D US images. Thus, the resolution of the 3D US image will be poorest in the 3D
scanning direction due to greater spread of the US beam in the elevational direction [21].

This scanning approach is not typically used in interventional applications; however, it has
been successfully implemented in many vascular B-mode and Doppler imaging applications,
particularly of for carotid arteries [11, 22-30] and tumor vascularization [25, 31-33].

2.2.3. Endo-cavity rotational 3D scanners

The endo-cavity rotational 3D scanning approach has been used extensively in 3D US-guided
prostate interventional procedures. In this approach an external fixture or internal mechanism
is used to rotate an endo-cavity transducer (e.g., a transrectal ultrasound (TRUS) probe, see
Fig. 1b) about its long axis. Endo-cavity transducers using an end-firing approach are typically
used for prostate biopsy. When these types of conventional transducers are rotated by the
motorized fixture, the set of acquired 2D images will be arranged as a fan (Fig. 1b), intersecting
in the center of the 3D US image, resulting in an image as shown in Fig. 2. To obtain a 3D image
of the prostate as in Fig. 2, an end-firing transducer is typically rotated by 180° [16].

Endo-cavity transducers using a side-firing 1D array are typically used in prostate brachy‐
therapy, cryotherapy and focal therapy. When using these types of conventional transducers,
the acquired images will also be arranged as a fan, but intersect at the axis of rotation of the
transducer (see Fig. 1a). The side-firing transducer is typically rotated from 80° to 110° to obtain
a 3D TRUS image of the prostate [16, 34, 35]. Figure 2 shows that endo-cavity scanning
transducer used to image the prostate for 3D US-guided therapy [6, 9, 11, 25, 34, 36-39]

For scanning systems used for 3D US-guided prostate biopsy, the end-firing transducer is
rotated by at least 180° about a fixed axis that perpendicularly bisects the transducer array. In
this approach, the resolution of the 3D image will not be isotropic. Since the spatial sampling
is highest near the rotation axis of the transducer and the poorest away from the axis of rotation
of the transducer, thus the resolution of the 3D US image will degrade as the distance from the
rotational axis of the transducer is increased. In addition, the axial and elevational resolution
will decrease as the distance from the transducer is increased, as discussed above. The
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combination of these effects will result in a 3D US image resolution that is best near the
transducer and the rotational axis, while being poorest away from the transducer and rota‐
tional axis.

3D rotational scanning with an end-firing transducer is most sensitive to the motion of the
transducer and patient since the axis of rotation is in the center of the 3D US image. Any motion
during the 3D scan will cause a mismatch in the acquired 2D US images, resulting in artifacts
in the center of the 3D US image. Artifacts in the center of the 3D US image will also occur if
the axis of rotation is not accurately known; however, proper calibrations can remove this
source of potential error. Thus, for interventional applications such as 3D US-guided prostate
biopsy or brachytherapy, the rotational scanning mechanism is typically supported by a
stabilization apparatus [16, 34, 40].

 (a) (b) 

) 

Figure 2. The 3D US of the prostate displayed using the multi-planar reformatting approach: (a) An end-firing TRUS
prostate cube-view 3D image, allowing the sides to be translated and angles to reveal the desired anatomy. (b) A 3D
TRUS image acquired using a side-firing transducer using the mechanical rotation approach.

2.2.4. Free-hand scanning with position sensing

Some 3D US-guided interventional procedures are making use of 3D scanning techniques that
do not require a mechanical scanning device. In this approach, the user holds and manipulates
a conventional US transducer to cover the patient’s anatomy being investigated. Since
construction of a 3D US image requires that the position and orientation of the conventional
transducer be known, free-hand scanning requires a method to track the positions and
orientations of the transducer as it is being moved. All methods to accomplish this task require
a sensor to be mounted on the transducer to allow measurement of the conventional 2D
transducer’s position and orientation as it is moved over the body.

Over the past 2 decades, several approaches for free-hand scanning have been developed:
tracked 3D US with articulated arms, free-hand 3D US with acoustic sensing, free-hand 3D US
with magnetic field sensing, and image-based sensing (speckle decorrelation). The method
used most commonly is the magnetic field sensing approach with several companies providing
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the sensing technology: Ascension – Bird sensor [3] Polhemus – Fastrack sensor [41] and
Northern Digital – Aurora sensor [4].

The most successful free-hand 3D US scanning approach used in interventional procedures
makes use of magnetic field sensors, as well as applications such as echocardiography,
obstetrics, and vascular imaging [3, 4, 41-51]. To track the transducer during generation of a
3D US image, a small receiver is mounted on the transducer containing three orthogonal coils
allowing six-degrees-of-freedom sensing. The small receiver mounted on the transducer
measures the strength of the magnetic field in three orthogonal directions, which is generated
by a time-varying 3D magnetic field transmitter placed near the patient. The position and
orientation of the transducer is calculated by continuously measuring the strength of the three
components of the local magnetic field.

Since magnetic field sensors are small and unobtrusive devices, they allow the transducer to
be tracked without the need for bulky mechanical devices, and without the need to keep a clear
line of sight as required by optical tracking methods. Since magnetic field sensors are sensitive
to electromagnetic interference or ferrous (or highly conductive) metals located nearby,
geometric tracking errors can occur leading to distortions in the 3D US image. Thus, metal
beds used in procedures, or surgical rooms can cause significant distortions. However, modern
magnetic field sensors have been produced to be less susceptible to these sources of error,
particularly ones that use a magnetic transmitter placed between the bed and the patient.

3. 3D Ultrasound-guided focal liver ablation

3.1. Clinical problem

Hepatocellular carcinoma (HCC) is the fifth most common diagnosed malignancy and the
third most frequent cause of cancer related deaths worldwide [52]. Incidence is particularly
high in Asia and sub-Saharan Africa due to the large incidence of hepatitis B and C, both of
which are complicated by hepatic cirrhosis, which is the greatest risk factor for HCC. Recently,
increasing trends in HCC have been reported from several Western countries [53]. Further‐
more, the liver is the second most common site of metastatic cancer arising in other organs.

When feasible, surgical resection or liver transplant is the accepted standard therapeutic
approach, and currently has the highest success rate of all treatment methods for primary and
metastatic liver cancer. Unfortunately, only 15% of patients are candidates for surgery [54,
55]. Patients who do not qualify for surgery usually are offered other therapeutic solutions
such as chemotherapy and radiotherapy, but unfortunately have variable limited success rates.

Minimally invasive percutaneous techniques, such as radio-frequency (RF) and microwave
(MW) ablation of malignant tissue in the liver is a rapidly expanding research field and treat‐
ment tool for those patients who are not candidates for surgical resection or transplant. In some
cases this acts as a bridge to liver transplantation [54, 56]. Due to low complications rates and
shorter recovery times, the indications for these minimally invasive procedures are constantly
increasing. However, these methods have a higher local recurrence rate than surgical resec‐
tion, mostly due to insufficient or inaccurate local ablation of cancerous cells [56, 57].
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Microwave energy-induced tissue heating by near-field probes is emerging as a common
thermal treatment of liver tumors [58]. Application of MW for tumor ablation has multiple
advantages over other techniques, including higher treatment temperatures and the ability to
create larger uniformly shaped ablation zones in shorter time periods. However, the accurate
placement of the probe is critical in achieving the predicted treatment goal [59]. The current
standard of care uses CT images for planning and 2D US image guidance for intra-operative
guidance of the ablation probe(s) into the target lesion. However, this approach suffers from
several disadvantages, such as: (1) 2D US imaging requires physicians to mentally integrate
many 2D images to form an impression of the anatomy and pathology, leading to more
variability in guidance during interventional procedures; (2) 2D US does not permit the
viewing of planes parallel to the skin, (3) liver deformation and motion artifact due to breathing
reduces targeting accuracy, (4) 2D US-based for measurement of tumor volume needed for the
treatment plan is variable and at times inaccurate, and (5) the detection and tracking of the
needle delivering the thermal energy in the liver is crucial for accurate placement of the needle
relative to the tumor, but can be difficult using 2D US. 3D US imaging of the liver and target
may help to overcome these disadvantages resulting in improved accuracy of probe placement
and improved ablation of the lesion.

The use of 3D US-guidance for focal liver tumor ablation is based on the fact that the use of
3D US will show the features of liver masses and the hepatic vasculature more clearly, allow
guidance of the ablation probes to the target more accurately, and allow more accurate
monitoring of the ablation zone during the procedure and at follow up.

3.2. 3D US Scanner for focal liver tumor ablation

We have developed 3D US guidance systems for improving cancer diagnosis and treatment
by introducing hardware and software innovations [21, 60-64]. Our previous efforts have been
extended to the development of a 3D US-guidance system for treating HCC. Specialized
hardware and software tools are used that allow 3D acquisition of 3D US images, real-time
registration of the pre-operative CT to intra-operative 3D US images, and tracking of the
ablation probes during insertion into the target. This is accomplished by registering previously
acquired contrast CT images that show the location of the target lesion to near real-time 3D
US images, plus providing visualization and guidance tools to guide the procedure.

The 3D US scanning system consists of: a hand-held electro-mechanical motor/encoder assem‐
bly to move a conventional 2D US imaging transducer in a fan shaped, linear or hybrid motion
to a maximum angular limit of 60 degrees and/or 30 mm linear extent to acquire a series of 2D US
images; and, a PC equipped with a digital frame grabber and software components to control the
motor assembly, acquire 2D images, reconstruct them in 3D, and visualize them in 3D.

3.2.1. Mechanical design

The handheld 3D scanning device is motorized and constructed with two mechanical systems
for generating a linear and tilt scanning motions of the transducer is shown schematically and
photographically in Figs. 3 and 4. The linear scanning system is operated with a geared DC
motor and lead screw providing linear translation. The tilt motion is generated via a paralle‐
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logram linkage, which is mounted on the carriage of the linear slide. A second geared DC

motor is used to generate the tilt motion, allowing for independent control of the two systems.

Figure 3. Schematic diagram of the hybrid 3D US scanner for used in the focal liver ablation procedure. The diagram
shows the start and end positions of the hybrid (linear and tilt) scan.
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Figure 4. Photograph of hybrid scanner with abdominal ultrasound transducer mounted and ready for scanning.

The 3D scanning device has three modes of operation: a linear translation, in which the
transducer (oriented perpendicular to the surface or at an angle for Doppler imaging) is
translated along a straight line parallel to the patient’s surface. This motion generates a
rectangular volume shown in Fig. 5a. The second mode generates a tilt motion (or wobbling),
in which the transducer is rotated about its face resting on the patient’s skin surface (Fig. 5b).
The third mode is a combination of the first two modes that creates a combined (or hybrid)
motion. The transducer is rotated as it is moved along a surface covering a larger volume than
either of the first two modes (Fig. 5c). For example, if transducer with linear array is used at
15cm depth setting on the ultrasound machine (typical depth for abdominal imaging), hybrid
scanning gives a volume that is three times larger than the linear mode and 47% larger than
the tilt mode only.

Figure 5. Schematic diagrams showing the three modes of operation of the mechanical compound 3D US scanning
device. On the left is the schematic of the linkage and the right are the linear, tilt and hybrid motions.

Advancements and Breakthroughs in Ultrasound Imaging10



The 3D scanning system parameters can be set by the user: Scanning mode: Three different
modes of linear, tilt and combined (or hybrid, a combination of both linear and tilt imaging
modes to maximize the field-of-view) are available depending on the anatomy of body parts
being scanned and the image requirements. Scan Extent: Maximum extent of linear translation
(typically 2.5 cm) or tilt angle (typically 60 deg) can be set individually to the extremes values.
Scan Spacing: Elevational linear and angular spacing can be set to optimize the trade-off
between the scanning time and the scan spacing. Frame-Rate: The rate at which images are
digitized by the frame grabber is set (typically 15 frames/s). Scanning Depth: Maximum
scanning depth can be set prior to each scan for accurate reconstruction of the volumes.

3.2.2. Validation methods

Since the hybrid scanning mode involves coordination between two acquisition methods, it
was tested in terms of accuracy of 3D image generation. We used two custom made phantoms
with known geometry. The validation experiments where performed using the handheld 3D
US scanning device in hybrid scanning mode using a two-dimensional conventional curved
array ultrasound transducer used for abdominal applications (Toshiba, PVT-375BT).

Geometrical Error in 3D reconstruction: This test was designed to measure the accuracy of the
3D reconstruction of the 3D hybrid scanner in three directions. The test phantom was made of
a grid of known dimensions made with 0.1 mm thick nylon monofilament threads wrapped
around an accurately machined frame to form a 4-layer grid. Each layer was slightly shifted
from the layer above to avoid acoustic shadowing. The distance between any two layers was
1cm. The phantom was submerged in a 15% glycerol solution [61] and imaged at different
depth settings. The acquired 3D US images were then viewed and analyzed by measuring the
distances between the images of the monofilaments and comparing them to the expected
values.

 (a) (b) 

) 

Figure 6. (a) Photograph of the 3D monofilament thread grid, which was used to validate the 3D reconstruction of
the ultrasound image. (b) The 3D ultrasound image of the phantom, showing the grid of threads.

Error in 3D volume measurements: In the second test, we assessed the accuracy in measuring
volumes using our system. For this experiment, several spherical phantoms with different sizes
were made of tissue mimicking agar [65]. The volume of each of these spherical phantoms was
measured prior to embedding them in a cube of tissue mimicking agar phantom. The spherical
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phantoms were then imaged with our hybrid scanner, viewed in the 3D visualization software,
and manually segmented. The volume of spherical structures were calculated and compared
with the expected values.

3.2.3. Validation results

Testing the 3D hybrid scanner with the 3D thread phantom showed that mean error in the
measured values of the distances in the X, Y and Z directions were 3.6%, 2.5% and 5.7%
respectively. A one-sample t-test was performed to compare the measured distance values
with the known distance value of 1cm, showed there was no statistical significant difference
between the measured values and expected values between the threads.

Validation of volume measurements using the hybrid scanner were carried out by imaging a
tissue mimicking agar sphere with a volume of 10 cm3 embedded in a block of tissue mimicking
agar phantom. The measurements were performed at two different depth settings on the
ultrasound machine (10 and 15 cm). The mean errors of the volume measurement were 5.7%
and 4.4% for the 10cm and 15cm depth settings respectively, demonstrating that the hybrid
scanner can be used to make sufficiently accurate volumetric measurements.

In-vivo experiments: After obtaining institutional research board (IRB) approvals, we investigat‐
ed the use of the scanner in thermal ablation treatment of primary hepatic tumors. Figure 7 shows
a 3D US image acquired during the microwave ablation procedure of a primary (hepatocellu‐
lar) tumor. It shows application of the hybrid mode in acquiring volumes large enough to include
both the ablated tumor region as well as all ablation needles in two different views.

Figure 7. 3D ultrasound image of a primary (hepatocellular) tumor with two microwave applicators in place. The ap‐
plicators and tumor have been segmented and displayed in 3D allowing the interventional radiologist to examine the
placement accuracy of the applicators in the tumor. In addition, the ablation zone has also been superimposed.
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4. 3D ultrasound guided prostate biopsy

4.1. The clinical problem

Prostate Cancer (PCa) is the most commonly diagnosed malignancy in men, and is found at
autopsy in 30% of men at age 50, 40% at age 60, and almost 90% at age 90 [66, 67]. Worldwide,
it is the second leading cause of death due to cancer in men, accounting for between 2.1% and
15.2% of all cancer deaths [68, 69]. Symptoms PCa are generally absent until extensive local
growth or metastases develop. When diagnosed at an early stage, the disease is curable [70,
71], and even at later stages treatment can be effective [72]; however, once the tumor has
extended beyond the prostate, the risk of metastases and locally aggressive cancer increases.
Clearly, early diagnosis, accurate staging of prostate cancer, and appropriate therapies are
critical to the patient’s well-being.

In managing patients with possible PCa, the challenges facing physicians are to: (a) diagnose
clinically relevant cancers at a curable stage; (b) stage the disease accurately; (c) apply appro‐
priate therapy accurately to optimize destruction of cancer cells while preserving normal
tissues and function; and (d) follow patients to assess side effects and therapy effectiveness.
This section focuses on improving early PCa diagnosis and staging with the use of 3D
ultrasound-guided prostate biopsy.

Since not all cancers are palpable by digital rectal exam (DRE), PCa diagnosis is established
by histological examination of prostate tissue obtained most commonly by trans-rectal
ultrasound (TRUS)-guided biopsy. Prostate needle biopsy is the only definitive diagnostic
modality capable of confirming malignancy, and is now always performed with TRUS
guidance.

Since many small tumors are not detected by TRUS or DRE, biopsy samples are obtained from
predetermined regions of the prostate known to have a high probability of harboring cancer.
These are typically in the peripheral zone (PZ), which harbors 80% of all PCs and a higher
proportion of clinically significant ones, and close to the capsule, as most cancers are thought
to start within 5mm of the prostate capsule. Most centers are now taking 8-12 cores or more as
part of their routine assessment [73-76].

TRUS biopsies are now performed with a thin, 18-gauge needle mounted on a spring-loaded
gun connected to the TRUS probe, forcing the needle to stay in the imaging plane. Each core
is separately identified as to the prostate region from which it was drawn, so that the pathol‐
ogist can report the extent and grade of the cancer within each region.

Since prostate volume sampled by the biopsy is small, and PCa is often multi-focal, involving
only a small volume of the prostate in the early stages of the disease [77, 78], the probability
for obtaining a sample of the tumour on biopsy is small. Thus, a negative biopsy may be, in
fact, false, and the patient may be harbouring cancer at an early and curable stage. Various
reports have shown that the false negative rate ranges from 10% to 25% [73, 74]. Since cancer
is still present in 1/10 to 1/4 of patients with a negative first biopsy, the current biopsy procedure
is still suboptimal [74, 79]. Clearly, an improved procedure with improved planning and
recording of biopsy locations is necessary to resolve these issues.
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Due to the increasing number of younger men with early and potentially curable PCa under‐
going repeated prostate biopsy, it is therefore vital not to re-biopsy the same area if the original
biopsy was negative, and it is particularly vital to re-biopsy the same area if a possible abnormal
area was detected on first biopsy as ASAP [80]. Thus, the locations of the cores obtained from
the prostate must be known accurately to help guide the physician during the repeat biopsy
[81, 82], to help in correlating any imaging evidence of the disease, and to provide improved
planning for subsequent therapy.

4.2. Multi-modality directed prostate biopsy

A variety of imaging techniques and molecular imaging probes are being investigated to
improve early detection of PCa. Different magnetic resonance imaging (MRI) techniques have
been evaluated using body and endo-rectal coils, contrast enhancement, and different pulse
sequences [83-85] resulting in disease detection sensitivity and specificity of 80-88% and
75-95%, respectively [84, 86, 87]. Positron emission tomography (PET) (combined with CT or
MRI) is used to detect early disease, with the newer PET imaging probes proving to be the
more promising [88-90]. Although progress has been made with improved PET and MRI
techniques, they do not yet have ideal specificity or sufficient accuracy to assess the grade of
the cancer; thus a biopsy of suspicious lesions on MRI or PET is required to provide a definitive
diagnosis and grade of the disease. Systems have been developed to perform biopsies in the
MRI suite; however, the cost of the equipment and prolonged use of the MRI is extremely
expensive and likely prohibitive given the large number of patients requiring biopsy. Un‐
fortunately, conventional 2D TRUS guidance of the biopsy procedure limits the physician’s
ability to target locations identified as suspicious on other modalities.

As we currently do not have a highly sensitive and specific imaging test for local staging of
PCa, there is a growing belief that the optimal method to guide prostate biopsy will involve
not just one, but a combination of imaging modalities. 3D TRUS imaging combined with
functional or molecular imaging from another imaging modality such as radiopharmaceutical
imaging (PET, SPECT), or magnetic resonance imaging (MRS, MRI) may provide the best
approach for guiding prostate biopsy.

4.3. 3D TRUS-guided prostate biopsy system

Since ultrasound imaging is the clinical standard for image-guided biopsy of the prostate, we
have developed a 3D TRUS-based navigation system that provides a reproducible record of
the 3D locations of the biopsy targets throughout the procedure and allows fusion with MR
images with identified lesions for targeting.

The system we have developed is a mechanical 3D biopsy system that maintains the procedural
workflow, minimizing costs and physician retraining. This mechanical system has 4 degrees-
of-freedom (DOF) and has an adaptable cradle that supports commercially available end-firing
TRUS transducers used for prostate biopsy [16]. It also allows real time tracking and recording
of the 3D position and orientation of the biopsy needle as the physician manipulates the TRUS
transducer. The following describes the components of the system, including hardware,

Advancements and Breakthroughs in Ultrasound Imaging14



modeling and segmentation algorithms, and system validation using a multi-modal US/CT
prostate phantom.

Our approach involves the use of a device composed of two mechanisms shown as a schematic
in Figure 8. The system is composed of an articulated multi-jointed stabilizer and a transducer
tracking mechanism.

Figure 8. A schematic diagram of the mechanical tracker, which supports the TRUS transducer and attached cradle.
This configuration constrains the TRUS probe motion to three degrees-of-freedom and one degree of translation
along the axis of the probe. The system is mounted at the base of a stabilizer while the linkage allows the TRUS trans‐
ducer to be manually manipulated about a remote center of motion (RCM), which is at the center of the ultrasound
transducer tip.

The end-firing TRUS transducer with the biopsy needle guide in place is mounted to the
mechanical tracking mechanism in a manner where the US probe is free to rotate around its
longitudinal axis (Fig. 8). The tracking assembly is attached to a stabilizer, which is mounted
on a free-standing cart. Thus, the physician can manipulate the tracking mechanism freely,
insert the transducer through the anus, and rotate the transducer in order to acquire a 3D image
of the prostate. The tracking linkage contains angle-sensing encoders mounted to each joint in
order to transmit to the computer the angles between the arms. This arrangement allows the
computer to determine the relative position of the transducer as it is being manipulated. Since
the biopsy gun is mounted onto the transducer and its position relative to the transducer is
calibrated, the needle location can be calculated.

The mechanical tracking device is a spherical linkage assembly, in which the axis of the joints
converge to a common point on the remote center of motion (RCM). The RCM design mini‐
mizes targeting errors within the prostate. As the TRUS transducer is constrained through a
stationary point, the physician’s movements are replicated at a scaled down rate (minified
through the RCM), minimizing changes in morphology and dislocation of the prostate. In
addition, the RCM enables a precision equivalent to that of robotic assisted machines. Thus,
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the system improves the physician’s ability to accurately biopsy a point of interest within the
patient’s prostate.

4.4. Prostate biopsy procedure

To perform a 3D US-guided prostate biopsy, the end-firing US transducer is mounted onto the
tracking assembly such that the tip of the probe is initially set to the RCM point of the tracker
linkage. The physician inserts the TRUS transducer into the patient’s rectum and aligns the
prostate to the center of the 2D TRUS image. A 3D image of the prostate is then acquired by
rotating the transducer 180 degrees about its longitudinal axis (Fig. 1b) [91]. A graphical model
of the prostate is then generated by a semi-automatic 3D segmentation algorithm [61, 92-94].
After the prostate model has been constructed, the physician can then manipulate the 3D image
on the computer screen and select locations to biopsy. After all of the biopsy targets have been
selected, the system then displays the 3D needle guidance interface (Fig. 9), which facilitates
the systematic targeting of each biopsy location previously selected. Other images or infor‐
mation (e.g., MRI or PET/CT images), if available, are registered to the 3D TRUS image and
displayed as an overlay on the computer screen (Fig. 10).

Figure 9. The 3D US-guided prostate biopsy system interface is composed of 4 windows: (top left) the 3D TRUS image
dynamically sliced to match the real-time TRUS probe 3D orientation, (bottom left) the live 2D TRUS video stream,
(right side) and the 3D location of the biopsy core is displayed within the 3D prostate models. The targeting ring in the
bottom right window shows all the possible needle paths that intersect the preplanned target by rotating the TRUS
about its long axis. This allows the physician to move the TRUS probe to the target (highlighted by the red dot) in the
shortest possible distance. The segmented tumor to be targeted is outlined and rendered in red.
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Figure 10. Registered 3D TRUS and MRI images of the same patient showing delineated suspicious lesions identified
in the MR images (right panel). The MR images were then registered with the 3D TRUS images (left panel) and the
delineated two regions (red and green) superimposed on the 3D TRUS images. These regions were then targeted with
the 3D TRUS-guided biopsy system shown in Figs. 8 and 9.

As the physician manually manipulates the TRUS transducer, the 3D location and orientation
of the transducer and needle trajectory are tracked in real-time throughout the procedure on
the computer screen. Figure 9 illustrates the biopsy interface, which is composed of 4 windows:
the live 2D TRUS video stream, the 3D TRUS image, and two 3D model views. The 2D TRUS
window displays the real-time 2D TRUS image from the US machine. The 3D TRUS window
contains a 2D slice of the 3D static model in real-time to reflect the expected orientation and
position of the TRUS probe. This correspondence allows the physician to compare the 3D image
with the real-time 2D image to determine if the prostate has moved or deformed to a prohibitive
extent. After each biopsy, the biopsy location is recorded in 3D from the tracker orientation,
and the system is ready for the next biopsy. After the needle is withdrawn, a 3D image may
be obtained to determine if there is any movement or swelling of the prostate.

4.5. Clinical evaluation of 3D TRUS/MRI-guided biopsy

Clinical studies are being performed at a number of centers to evaluate the clinical impact of
fusion of MRI to intra-biopsy 3D TRUS for 3D US-guided targeted biopsy of suspicious MRI
lesions on prostate cancer detection and grading. At the London Health Sciences Centre in
London, Canada, prostate MR imaging was performed on 31 patients with clinical suspicion
for prostate cancer in advance of their 3D TRUS-guided biopsy. T2, diffusion-weighted and
dynamic-contrast enhanced MR sequences were collected in a 3T MRI system with an endo-
rectal RF coil. All suspicious lesions in the MR images were then identified and delineated on
the images, which were then registered to the 3D TRUS image obtained during the biopsy
procedure (see Figure 10). Using the 3D TRUS-guided biopsy system, prostate biopsy cores
were targeted toward each suspicious delineated MRI lesion, which were displayed on the 3D
TRUS image. A standard 12-core set of random biopsies was also performed on each patient
and used as an internal control.
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The results of this study showed that MRI-3D TRUS fusion was successfully performed and
the targeted biopsy needle cores had a significantly higher rates of prostate malignancy (30.0%)
compared to random, sextant cores (10.0%). In total, prostate cancer was biopsy confirmed in
11 patients; however, only 7 of these patients had abnormal MRI findings (even in retrospective
analysis) and were sampled with targeted MRI-3D TRUS fusion. Random sampling detected
the remaining four patients. A significantly higher percentage of the targeted biopsy cores
(47+/-26%) contained cancer compared to the randomly sampled cores (28+/-26%), and for 3
patients, the MRI-targeted cores detected a higher Gleason cancer grade than the random cores,
modifying potential treatment modalities. This study showed that MRI-3D TRUS fusion allows
for superior sampling of prostate cancer visible on MRI. This technology may benefit both
cancer detection and accurate malignancy grading for appropriate therapeutic management;
however, further testing is needed to establish the full utility of this technology.

5. Conclusions

Clinical evaluation of the mechanical tracking systems for use in 3D ultrasound guidance for
focal liver ablation and prostate biopsy have been found to be easy to use. The tracker permits
manual motions identical to the current conventional procedure, where restricted movements
are produced by the US probe in the patient’s rectum.

Reconstruction of 3D TRUS images using the hybrid approach for focal liver ablation, and
rotational approach for prostate biopsy can produce accurate 3D images without significant
visible discontinuity or artefacts. Volume calculations from the 3D TRUS image have shown
that the 3D US systems can generate accurate volume measurements.

The patient studies have demonstrated that it is possible to minimize the effects of liver and
prostate motion through a variety of mechanical and software mechanisms. However,
improved solutions, which correct any patient motion automatically are still needed. It is not
possible to control all patient/organ motion during the procedures, particularly if the patient
moves during the prostate biopsy procedure after the firing of the prostate biopsy needle. To
overcome this problem, a software module would have to be developed to inform the physician
that the prostate has moved and then correct for the motion and deformation. This task must
be done quickly, possibly in real-time, using an implementation of the software in a graphical
processing unit (GPU).
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