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1. Introduction

Polarization-mode dispersion (PMD) is a major source of impairments in optical fiber com‐
munication systems. PMD causes distortion and broadens the optical pulses carrying infor‐
mation and lead to inter-symbol interference. In long-haul transmission systems it is
necessary to limit the penalty caused by polarization effects [1], so that the probability of ex‐
ceeding a maximum specified penalty, such as 1 dB, will be small, typically 10-5 or less. This
probability is referred as the outage probability. Since PMD is a random process, Monte Car‐
lo simulations are often used to compute PMD-induced penalties. However, the rare events
of interest to system designers, which consists of large penalties, cannot be efficiently com‐
puted using standard (unbiased) Monte Carlo simulations or laboratory experiments. A
very large number of samples must be explored using standard unbiased Monte Carlo simu‐
lations in order to obtain an accurate estimate of the probability of large penalties, which is
computationally costly. To overcome this hurdle, advanced Monte Carlo methods, such as
importance sampling (IS) [2], [3] and multicanonical Monte Carlo (MMC) [4] methods, have
been applied to compute PMD-induced penalties [5], [6] using a much smaller number of
samples. The analytical connections between MMC and IS are presented in [7], [8], [9], [10].
The MMC method has also been used to estimate the bit-error rate (BER) in optical fiber
communication systems due to amplified spontaneous emission noise (ASE) [11], for which
no practical IS implementation has been developed, and to estimate BER in spectrum-sliced
wavelength-division-multiplexed (SS-WDM) systems with semiconductor optical amplifier
(SOA) induced noise [12]. More recently, MMC has been used in WDM systems, where the
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performance is affected by the bit patterns on the various channels and, in order to account
for this pattern dependence, a large number of simulations must be performed [13].

In optical fiber communication systems without PMD compensators, the penalty is correlat‐
ed with the differential group delay (DGD) due to PMD. As a consequence, one can apply IS
to bias the DGD [2] for the computation of PMD-induced penalties. However, biasing the
DGD alone is inadequate to compute penalties in compensated systems. On the other hand,
the use of multiple IS in which both first-and second-order PMD are biased [3] allows one to
efficiently study important rare events with large first-and second-order PMD. In [5] and
[14], we used multiple IS to bias first-and second-order PMD to compute the outage proba‐
bility due to PMD in uncompensated systems and in compensated systems with a single-
section PMD compensator. The development of IS requires some a priori knowledge of how
to bias a given parameter in the simulations. In this particular problem, the parameter of in‐
terest is the penalty. However, to date there is no IS method that directly biases the penalty.
Instead of directly biasing the penalty, one has to rely on the correlation of the first-and sec‐
ond-order PMD with the penalty, which may not hold in all compensated systems. In con‐
trast to IS, MMC does not require a priori knowledge of which rare events contribute
significantly to the penalty distribution function in the tails, since the bias is done automati‐
cally in MMC.

In this chapter, we investigated and applied MMC and IS to accurately and efficiently com‐
pute penalties caused by PMD. Using these techniques, we studied the performance of PMD
compensators and compared the efficiency of these two advanced Monte Carlo methods to
compute the penalty of several types of compensated systems. Since Monte Carlo methods are
not deterministic, error estimates are essential to verify the accuracy of the results. MMC is a
highly nonlinear iterative method that generates correlated samples, so that standard error es‐
timation techniques cannot be applied. To enable an estimate of the statistical error in the cal‐
culations using MMC, we developed a method that we refer to as the MMC transition matrix
method [15]. Because the samples are independent in IS simulations, one can successfully ap‐
ply standard error estimation techniques and first-order error propagation to estimate errors
in IS simulations. In this chapter, we also estimate the statistical errors when using MMC and
IS. Practical aspects of MMC and IS implementation for optical fiber communication systems
are also discussed; in addition, we provide practical guidelines on how MMC can be opti‐
mized to accurately and rapidly generate probability distribution functions.

2. MMC Implementation and Estimation of Errors in MMC simulations

In this section, we show how the MMC method can be implemented to PMD emulators and
to compute PMD-induced penalty in systems with and without PMD compensators, and al‐
so show how one can efficiently estimate errors in MMC simulations using the MMC Transi‐
tion Matrix method that we developed [15]. For example, when using a standard, unbiased
Monte Carlo simulation to calculate the probability density function (pdf) of a statistical
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quantity, such as the DGD, each sample drawn is independent from the other sample.
Hence, when the histogram is smooth, one can infer that the error is acceptably low. The
same is not true in MMC simulations because the MMC algorithm requires a substantial de‐
gree of correlation among the samples to effectively estimate the histogram, which induces a
correlation between the calculated values of the probabilities of neighboring bins. Therefore,
it is essential to be able to estimate errors particularly in MMC simulation to assess the accu‐
racy of the calculation.

2.1. Multicanonical Monte Carlo method for PMD-Induced penalty

In this sub-section, we briefly review the multicanonical Monte Carlo (MMC) method pro‐
posed by Berg and Neuhaus [16], and we describe how we implemented MMC to compute
the probability density function (pdf) of the differential group delay (DGD) for PMD emula‐
tors. Then, we present results showing the correlation among the histogram bins of the pdf
of the DGD that is generated using the MMC method. Finally, we present results with the
application of MMC to compute the PMD-induced penalty in uncompensated and single-
section compensated system. In particular, we use contours plots to show the regions in the
| τ |–| τω |  plane that are the dominant source of penalties in uncompensated and single-
section PMD compensated systems.

2.1.1. The multicanonical Monte Carlo method

In statistical physics applications, a conventional canonical simulation calculates expectation
values at a fixed temperature T and can, by re-weighting techniques, only be extrapolated to
a vicinity of this temperature [17]. In contrast, a single multicanonical simulation allows one
to obtain expectation values over a range of temperatures, which would require many can‐
onical simulations. Hence, the name multicanonical [16], [17]. The multicanonical Monte
Carlo method is an iterative method, which in each iteration produces a biased random
walk that automatically searches the state space for the important rare events. Within each
iteration, the Metropolis algorithm [18] is used to select samples for the random walk based
on an estimated pdf of the quantity of interest or control parameter, which is updated from
iteration to iteration. Each new sample in the random walk is obtained after a small random
perturbation is applied to the previous sample. In each MMC iteration, a histogram of the
control parameter is calculated that records how many samples are in each bin. In each itera‐
tion, one generates a pre-determined number of samples that can vary from iteration to iter‐
ation. Typically, each iteration has several thousand samples. Once the pre-determined
number of samples in any iteration has been generated, the histogram of the control param‐
eter is used to update the estimate of the probability of all the bins as in [16], which will be
used to bias the following iteration. After some number of iterations, typically 15 - 50, the
number of samples in each bin of the histogram of the control quantity becomes approxi‐
mately constant over the range of interest, indicating that the estimated pdf of the control
quantity is converging to the true pdf.
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2.1.2. MMC implementation to PMD emulators

In the computation of the pdf of the DGD, the state space of the system is determined by the
random mode coupling between the birefringent sections in an optical fiber with PMD, and
the control parameter E  is the DGD, as in [19]. When applying MMC, the goal is to obtain an
approximately equal number of samples in each bin of the histogram of the control quantity.
We compute probabilities by dividing the range of DGD values into discrete bins and con‐
structing a histogram of the values generated by the different random configurations of the
fiber sections. The calculations are based on coarse-step PMD emulators consisting of bire‐
fringent fiber sections separated by polarization scramblers [20]. We model the fiber using
emulators with Ns =15 and Ns =80 birefringent sections. Prior to each section, we use a po‐
larization scrambler to uniformly scatter the polarization dispersion vector on the Poincaré
sphere. When polarization scramblers are present, the evolution of the polarization disper‐
sion vector is equivalent to a three-dimensional random walk, and an exact solution [21] is
available for the pdf of the DGD that can be compared with the simulations. In unbiased
Monte Carlo simulations, the unit matrix R = Rx(ϕ)Ry(γ)Rx(ψ) rotates the polarization dis‐
persion vector before each section, such that the rotation angles around the x-axis in the i-th
section, ϕi and ψi, have their pdfs uniformly distributed between −π and π, while the cosine
of the rotation angle γi around y-axis has its pdf uniformly distributed between − 1 and 1.

Within each MMC iteration, we use the Metropolis algorithm to make a transition from a
state k  to a state l  by making random perturbations Δϕi, Δγi, and Δψi of the angles ϕi, γi,
and ψi in each section, where Δϕi, Δγi, and Δψi are uniformly distributed in the range
−επ,επ . To keep the average acceptance ratio close to 0.5 [22], we choose the coefficient of

perturbation ε =0.09. This perturbation is small, since it does not exceed 10% of the range of
the angles. In order to further optimize the MMC simulations and avoid sub-optimal solu‐
tions, the random perturbation should also be optimized. We are currently investigating the
dependence of the relative error obtained in MMC simulations on the random perturbation
and coefficient of perturnation used. The results of this investigation will be published in an‐
other publication.

To obtain the correct statistics in γi, since in the coarse step method the cosine of γi is uniform‐
ly  distributed,  we  accept  the  perturbation  Δγi  with  probability  equal  to

min 1,F (γi + Δγi )/ F (γi) , where F (γ)=0.5(1−cos2γ)1/2. When the perturbation is not accepted,
we  set  Δγi =0.  The  random  variable  with  acceptance  probability  given  by
min 1,F (γi + Δγi )/ F (γi)  can be implemented by obtaining a random number from a pdf uni‐
formly distributed between 0 and 1, and then accepting the perturbation Δγi  if the random
number obtained is smaller than F (γi + Δγi )/ F (γi). To introduce a bias towards large values of
the control parameter E , each transition from state k to the state l in the iteration j + 1 is accept‐
ed with probability Paccept(k → l)=min 1, P j(Ek ) / P j(El) , and rejected otherwise, where P j(E )
is the estimate of the pdf of DGD obtained after the first j iterations. At the end of each itera‐
tion we update P j(E ) using the same recursion algorithm as in [16], so that the number of hits
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in each bin of the control parameter histogram becomes approximately equal as the iteration
number increases.

2.1.3. Summary of the MMC algorithm

In the first iteration we use M1 samples and set the pdf of the DGD P 1(E ) of a PMD emulator

with Ns sections as uniform, P 1(E )=1/ Nb (Nb= number of bins). Because every step in the Met‐
ropolis algorithm will be accepted with this initial distribution, we more effectively exploit the
first iteration by choosing the coefficient of perturbation ε=1 To update the pdf of the DGD at
the end of this iteration we use the recursive equation as in (1), which is the same equation used
in any other iteration. We then carry out an additional N −1 iterations with M l (1< l ≤N ) sam‐
ples in each iteration. We note that in general the number of samples in each iteration does not
have to be the same. We now present a pseudo-code summary of the algorithm:

Loop over iterations j = 1 to N -1:

Loop over fiber realizations (samples) m=1 to M l :

(1) start random walk on ϕ, γ, and ψ with small steps Δϕ, Δγ, and Δψ

Δϕ={Δϕ1,⋯ ,ΔϕN s}; Δγ={Δγ1,⋯ ,ΔγN s}; Δψ ={Δψ1,⋯ ,ΔψN s}
(2) compute the provisional value of the DGD ((Eprov))
with the angles ϕ + Δϕ, γ + Δγ and ψ + Δψ.

(3) accept provisional step with probability equal to min 1,P j(Em) / P j(Eprov)
if step accepted: Em+1=Eprov

ϕ
m+1

=ϕ
m

+ Δϕ; γ
m+1

=γ
m

+ Δγ; ψ
m+1

=ψ
m

+ Δψ

if step rejected: Em+1=Em

ϕ
m+1

=ϕ
m

; γ
m+1

=γ
m

; ψ
m+1

=ψ
m

(4) increment the histogram of E with the sample Em+1

End of loop over fiber realizations

update the pdf of the DGD P j+1(E )
restart histogram

go to next iteration j

End

To update P j(E ) at the end of each iteration j we use the recursive equation [16],

ˆ
1 1 1 1
1 ,

jgkj j
j j k k

k k j j
k k

P H
P P

P H
+ + + +
+

æ ö
ç ÷=
ç ÷
è ø

(1)

Where ĝ k
j , the relative statistical significance of the k-th bin in the j-th iteration, is defined as
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If Hk +1
j + Hk

j=0 in a given iteration, then the k-th bin has no statistical significance in this iter‐

ation. Therefore, we set gk
j=0 in that iteration. The statistical significance, 0≤ ĝ k

j ≤1, depends

on both previous bins and previous iterations, inducing a significant correlation among Pk
j.

Finally, the Pk
j are normalized so that ∑

k=1

Nb

Pk
j=1, where Nb is the number of bins. MMC is an

extension of the Metropolis algorithm [18], where the acceptance rule accepts all the transi‐
tions to states with lower probabilities, but rejects part of the more likely transitions to states
with higher probabilities. As the number of iterations increases, the histogram of the num‐
ber of hits in each bin will asymptotically converge to a uniform distribution (Hk +1

j / Hk
j →1),

and the relative statistical significance will asymptotically converge to zero (ĝ k
j →0). Conse‐

quently, P j+1will asymptotically converge to the true probability of the control parameter.

Equations (1) and (2) were derived by Berg and Neuhaus [16] assuming that the probability
distribution is exponentially distributed with a slowly varying exponent that is a function of
the control quantity (the temperature in their case and DGD or the penalty due to PMD in
ours). This assumption is valid in a large number of problems in optical fiber communica‐
tions, including the pdf of the DGD in fibers with an arbitrary number of sections [19], [23].
The recursions in (1) and (2) were derived by applying a quasi-linear approximation to the
logarithm of the pdf in addition to a method for combining the information in the current
histogram with that of previous iterations according to their relative statistical significance
[16], [19].

2.1.4. Correlations

The goal of any scheme for biasing Monte Carlo simulations, including MMC, is to reduce
the variance of the quantities of interest. MMC uses a set of systematic procedures to reduce
the variance, which are highly nonlinear as well as iterative and have the effect of inducing a
complex web of correlations from sample to sample in each iteration and between iterations.
These, in turn, induce bin-to-bin correlations in the histograms of the pdfs. It is easy to see
that the use of (1) and (2) generates correlated estimates for the Pk

j, although this procedure
significantly reduces the variance [16]. In this section, we illustrate this correlation by show‐
ing results obtained when we applied MMC to compute the pdf of the DGD for a PMD emu‐
lator with 80 sections.

We computed the correlation coefficient between bin i and each bin j (1≤ j ≤80) in the histo‐
gram of the normalized DGD by doing a statistical analysis on an ensemble of many inde‐
pendent standard MMC simulations. The normalized DGD, | τ | / | τ | , is defined as the
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DGD divided by its expected value, which is 30 ps in this case. Suppose that on the l-th
MMC simulation, we have Pi

l  as the probability of the i-th bin and suppose that the average
over all L  MMC simulations is Pī. Then, we define a normalized correlation between bin i
and bin j as

=1

( )( )1( , ) =
1

l lL i i j j

l P Pi j

P P P P
C i j

L s s

- -

- å (3)

where σPi
 and σPj

 are the standard deviation of Pi and Pj, respectively. The normalized cor‐
relation defined in (3) is known as Pearson's correlation coefficient [24].

The values for C(i, j) generated by (3) will range from -1 to 1. A value of +1 indicates a per‐
fect correlation between the random variables. While a value of -1 indicates a perfect anti-
correlation between the random variables. A value of zero indicates no correlation between
the random variables.

In Figs. 1–3, we show the correlation coefficients between bin i and bin j, 1≤ j ≤80, for the
DGD in the bin i, DGDi, equal to 30 ps, 45 ps, and 75 ps, respectively. In this case, we used a
PMD emulator with 80 sections and the mean DGD is equal to 30 ps. To compute each value
of C(i, j) we used L =32 MMC simulations. We computed sample mean C(i, j )̄ and standard
deviation σC (i , j) using 32 samples of C(i, j). The values of the standard deviation for the re‐

sults shown in Figs. 1–3 are in the range from 1.84×10−2 to 3.91×10−2. Note that DGDi equal
to 75 ps represents a case in the tail of the pdf of the DGD, where the unbiased Monte Carlo
method has very low probability of generating samples, by contrast to a biased Monte Carlo
method such as MMC. The results show that the correlations are not significant until we use
a large value for DGDi compared to the mean DGD. However, these values of DGDi are pre‐
cisely the values of greatest interest.

Figure 1. Correlation coefficients between bin i and bin j (1≤ j ≤80) for the 80-section emulator, where the bin i cor‐
responds to DGDi=30 ps (1 ×  mean DGD). The correlation coefficients are computed using 32 standard MMC simula‐
tions. Each standard MMC simulation consists of 30 MMC iterations with 8,000 samples.
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Figure 2. Correlation coefficients between bin i and bin j (1≤ j ≤80) for the 80-section emulator, where the bin i cor‐
responds to DGDi=45 ps (1.5 ×  mean DGD). The correlation coefficients are computed using 32 standard MMC simu‐
lations. Each standard MMC simulation consists of 30 MMC iterations with 8,000 samples.

Figure 3. Correlation coefficients between bin i and bin j (1≤ j ≤80) for the 80-section emulator, where the bin i cor‐
responds to DGDi=75 ps (2.5 ×  mean DGD). The correlation coefficients are computed using 32 standard MMC simu‐
lations. Each standard MMC simulation consists of 30 MMC iterations with 8,000 samples.

2.2. Estimation of errors in MMC simulations

In this sub-section, we explain why a new error estimation procedure is needed for multica‐
nonical Monte Carlo simulations, and we then present the transition matrix method that we
developed to efficiently estimate the error in MMC. Finally, we present the validation and
application of this method.

2.2.1. Why a new error estimation procedure ?

Since MMC is a Monte Carlo technique, it is subject to statistical errors, and it is essential to
determine their magnitude. In [25], we showed how to compute errors when using impor‐
tance sampling. In this sub-section, we show how one can efficiently estimate errors in
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MMC simulations using a transition matrix method that we developed. In practice, users of
Monte Carlo methods often avoid making detailed error estimates. For example, when using
an standard, unbiased Monte Carlo simulation to calculate the pdf of a quantity such as the
DGD, the number of samples in each bin of the pdf's histogram is independent. Hence,
when the histogram is smooth, one can infer that the error is acceptably low. This procedure
is not reliable with MMC simulations because, as we showed in Section 2.1.4, the MMC al‐
gorithm induces a high degree of correlation from bin to bin. While it is always best to esti‐
mate error with any Monte Carlo method, it is particularly important in MMC simulations,
due to the presence of large sample-to-sample correlations on the tails of the distributions.

The existence of correlations in the samples generated with the MMC method makes calcu‐
lating the errors in MMC simulations significantly more difficult than in standard Monte
Carlo simulations. Also, due to the correlations, one cannot apply to MMC standard error
analysis that are traditionally used for simulations with uncorrelated samples. For the same
reason, one cannot determine the contribution of the variance from each iteration using
standard error propagation methods as in the case with importance sampling simulations
[5]. Thus, the MMC variance cannot be estimated by applying a standard error analysis to a
single MMC simulation. One can in principle run many independent MMC simulations in
order to estimate the error by using the standard sample variance formula [26] on the en‐
semble of MMC simulations. However, estimating the error of the pdf of the quantity of in‐
terest by running many independent MMC simulations is computationally costly and in
many cases not feasible. One can overcome this problem with the transition matrix method
that we developed.

The transition matrix method is an efficient numerical method to estimate statistical errors
in the pdfs computed using MMC. In this method, we use the estimated transition probabili‐
ty matrix to rapidly generate an ensemble of hundreds of pseudo-MMC simulations, which
allows one to estimate errors from only one standard MMC simulation. The transition prob‐
ability matrix, which is computed from a single, standard MMC simulation, contains all the
probabilities that a transition occurs from any bin of the histogram of the quantity of interest
to any other bin after a step (or perturbation) in the MMC random walk. The pseudo-MMC
simulations are then made using the computed transition matrix instead of running full sim‐
ulations. Each pseudo-MMC simulation must be made with the same number of samples
per iteration and the same number of iterations as in the original standard MMC simulation.
Once an ensemble of pseudo-MMC simulations has been calculated, one can use standard
procedures to estimate the error. Since the transition matrix that is used in the pseudo-MMC
simulations has its own statistical error, it might seem strange at first that it can be used as
the basis from which to estimate the error in the MMC simulations. However, bootstrap
theory assures us that such is the case [27]. Intuitively, the variation of any statistical quanti‐
ty among the members of an ensemble of pseudo-MMC simulations is expected to be the
same as the variation among members of an ensemble of standard MMC simulations be‐
cause the simulations are carried out with the same number of samples and the same num‐
ber of iterations.
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To illustrate the transition matrix method, we calculated the pdf of DGD due to PMD and
the associated confidence interval for two types of PMD emulators [28]. We validated our
method by comparison to the results obtained by using a large ensemble of standard MMC
simulations. We tested our method by applying it to PMD emulators because it was the first
random phenomenon in optical fiber communication to which MMC was applied [19] and
has become essential for testing biasing Monte Carlo methods. Moreover, it is computation‐
ally feasible to validate the proposed method with a large ensemble of standard MMC simu‐
lations. That is not the case for most other problems, e.g., the error rate due to optical noise
[29] and the residual penalty in certain PMD-compensated systems [6].

2.2.2. New error estimation procedure

Here we introduce an efficient numerical procedure that we refer to as the transition matrix
method, to compute statistical errors in MMC simulations that properly accounts for the
contributions of all MMC iterations. The transition matrix method is a bootstrap resampling
method [27], [30] that uses a computed estimate of the probability of a transition from bin i
to bin j of the histogram of the DGD. In a bootstrap method, one estimates a complex statis‐
tical quantity by extracting samples from an unknown distribution and computing the stat‐
istical quantity. In the case of computing the pdf of the DGD in PMD emulators, the
complex statistical quantity is the probability of each bin in the histogram of the DGD, the
pseudo-samples are the DGD values obtained in the pseudo-MMC simulations, and the un‐
known distribution is the true transition matrix. One then repeatedly and independently
draws an ensemble of pseudo-samples with replacement from each original sample and
computes the statistical quantity of interest using the same procedure by which the statisti‐
cal quantity was first estimated. One can then estimate the variance of the quantity of inter‐
est from these pseudo-samples using standard techniques. The bootstrap method is useful
when it is computationally far more rapid to resample the original set of samples than to
generate new samples, allowing for an efficient estimate of the variance.

2.3. Bootstrap method

Efron's bootstrap [27] is a well-known general purpose technique for obtaining statistical es‐
timates without making a priori assumptions about the distribution of the data. A schematic
illustration of this method is shown in Fig.4. Suppose one draws a random vector
x=( x1,x2,...,xn) with n samples from an unknown probability distribution F  and one wishes
to estimate the error in a parameter of interest θ̂= f (x). Since there is only one sample of θ̂,
one cannot use the sample standard deviation formula to compute the error. However, one
can use the random vector x to determine an empirical distribution F̂  from F  (unknown dis‐
tribution). Then, one can generate bootstrap samples from F̂ , x* =( x1

*,x2
*,...,xn

*), to obtain

θ̂*= f (x*) by drawing n samples with replacement from x. The quantity f (x*) is the result of
applying the same function f (.)  to x* as was applied to x. For example, if f (x) is the median
of x, then f (x*) is the median of the bootstrap resampled data set. The star notation indicates
that x* is not the actual data set x, but rather a resampled version of x obtained from the esti‐
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mated distribution F̂ . Note that one can rapidly generate as many bootstrap samples x* as
one needs, since those simulations do not make use the system model, and then generate
independent bootstrap sample estimates of θ̂, θ̂1

*= f (x1
* ), ... , θ̂B

* = f (xB
* ), where B is the total

number of bootstrap samples. Then, one can estimate the error in θ̂ using the standard devi‐
ation formula on the bootstrap samples θ̂*.

Figure 4. On the left, we show the drawing of a true realization form the actual, unknown distribution F. On the right,
we show the same procedure applied to drawing bootstrap realizations.

The transition matrix method that we describe in this chapter is related to the bootstrap re‐
sampling method as follows:

1. F̂  is an estimate of the transition matrix obtained from a single standard MMC simula‐
tion;

2. x1
* ,..., xB

* , are the collection of samples that is obtained from the ensemble of pseudo-

MMC simulations. We note that xb
* should be computed using the exact same number of

iterations and the exact same number of samples per iteration as in the original stand‐
ard MMC simulation;

3. Each θ̂b
*, where b=1,2,...,B, is a value for the probability pk

* of the k -th bin of the histo‐
gram of the DGD obtained from each of the pseudo-MMC simulations;

4. Given that one has B independent pk
*, one can obtain an error estimate for each bin in

the estimated pdf of the DGD using the traditional sample standard deviation formula
[26, 27].

( )
1/22

ˆ
=1

1 ˆ ˆ= ,
1

B

b
bBq

s q q
é ù

-ê ú
-ê úë û
å * *

* (4)

where,
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2.4. The transition matrix method

In this sub-section, we explain the transition matrix method in the context of computing er‐
rors in the pdf of the DGD for PMD emulators. The transition matrix method has two parts.
In the first part, one obtains an estimate of the pdf of the DGD and an estimate of the one-
step transition probability matrix Π. To do so, one runs a standard MMC simulation, as de‐
scribed in Section 2.1.2. At the same time, one computes an estimate of the transition
probability πi , j, which is the probability that a sample in the bin i will move to the bin j
after a single step in the MMC algorithm. We stress that a transition attempt must be record‐
ed whether or not it is accepted by the Metropolis algorithm after the fiber undergoes a ran‐
dom perturbation. The transition matrix is a matrix that contains the probability that a
transition will take place from one bin to any other bin when applying a random perturba‐
tion. It is independent of the procedure for rejecting or accepting samples, which is how the
biasing is implemented in the MMC method. An estimate of the transition matrix that is
statistically as accurate as the estimate of the pdf using MMC can be obtained by consider‐
ing all the transitions that were attempted in the MMC ensemble. One uses this information
to build a Nb × Nb one-step transition probability matrix, where Nb is the number of bins in
the histogram of the pdf. The transition matrix Π consists of elements πi , j, where the sum of
the row elements of Π equals 1. The elements πi , j are computed as
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And πi , j=0, otherwise. In (6), M t  is the total number of samples in the MMC simulation and
Em is the m-th DGD sample. The indicator function I i(E ) is chosen to compute the probabili‐
ty of having a DGD sample inside the bin i of the histogram. Thus, I i(E ) is defined as 1 in‐
side the DGD range of the bin i, otherwise I i(E ) is defined as 0. In the second part of the
procedure, one carries out a new series of MMC simulations (using the transition probability
matrix), that we refer to as pseudo-MMC simulations. In each step, if one starts for example
in bin i of the histogram, one picks a new provisional bin j using a procedure to sample
from the pdf πi, where πi( j )=πi , j. One then accepts or rejects this provisional transition us‐
ing the same criteria as in full, standard MMC simulations, and the number of samples in
the bins of histogram is updated accordingly. Thus, one is using the transition matrix Π to
emulate the random changes in the DGD that result from the perturbations Δϕi, Δγi, and
Δψi that were used in the original standard MMC simulation. In all other respects, each
pseudo-MMC simulation is like the standard MMC simulation. In particular, the metric for
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accepting or rejecting a step, the number of samples per iteration, and the number of itera‐
tions must be kept the same. It is possible to carry out hundreds of these pseudo-MMC sim‐
ulations in a small fraction of the computer time that it takes to carry out a single standard
MMC simulation. This procedure requires us to hold the entire transition matrix in memory,
which could in principle be memory-intensive, although this issue did not arise in any of the
problems that we considered. This procedure will be useful when evaluating a transition us‐
ing the transition matrix requires far less computational time than calculating a transition
using the underlying physics. This is an assumption that was valid for the cases in which we
considered, and we expect that it is applicable to most practical problems. An estimate of the
pdf of the DGD is obtained in the final iteration of each pseudo-MMC simulation. Since the
estimates of the probability in a given bin in the different pseudo-MMC simulations are in‐
dependent, one may apply the standard formula for computation of the variance σpi

*
2  of the

i-th bin

( )2
2

, ,
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1 1= , with = ,
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B B
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where pi ,b
*  is the probability of the i-th bin in the histogram of the DGD obtained in the b-th

pseudo-MMC simulation and B is the total number of pseudo-MMC simulations. Thus, σpi
*

is an estimate of the error in the i-th bin in the histogram of the DGD obtained in a single
MMC simulation. We now illustrate the details of how we choose the provisional transition
from bin i to bin j with the following pseudo-code:

bin DGD of current sample = i

use random number to generate x from a uniform pdf between 0 and 1:x ← U 0,1

for j=1 to Nb

if (x < πi , j
cdf )

new bin = j

break

end if

end for

current bin = new bin

where πi , j
cdf=∑

m=1

j
πi ,m is the cumulative transition probability. This procedure is used to sample

from the pdf πi, where πi( j )=πi , j, and with πi , j defined as the probability that a sample in
the bin i will move to the bin j.
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2.5. Assessing the error in the MMC error estimation

The estimate of the MMC variance also has an error, which depends on the number of sam‐
ples in a single standard MMC simulation and on the number of pseudo-MMC simulations
(bootstrap samples) [31]. Here, the error due to the bootstrap resampling is minimized by
using 1,000 bootstrap pseudo-MMC simulations. Therefore, the residual error is due to the
finite number of samples used to estimate both the pdf of the DGD and the transition matrix
in the single standard MMC simulation, i.e., in the first part of the transition matrix method.
Thus, there is a variability in the estimate of the MMC variance due to the variability of the
transition matrix Π̂ as an estimate of the true transition matrix Π. To estimate the error in
the estimate of the MMC variance, we apply a procedure known in the literature as boot‐
strapping the bootstrap or iterated bootstrap [32]. The procedure is based on the principle that if
the bootstrap can estimate errors in one statistical parameter using Π̂, one can also use boot‐
strap to check the uncertainty in the error estimate using bootstrap resampled transition ma‐
trices Π̂*. The procedure consists of:

1. Running one standard MMC simulation;

2. Generating NB=100 pseudo-MMC simulations and computing transition matrices for
each of the pseudo-MMC simulation. Therefore, we obtain NB transition matrices that

we call pseudo-transition matrices Π̂B
* ;

3. For each pseudo-transition matrix Π̂B
*  we calculate NB=100 pseudo-MMC simulations

(NB values for the probability of any given bin of the estimated pdf of the DGD, p **).
The double star notation indicates quantities computed with bootstrap resampling from
a pseudo-transition matrix. We then estimate the error for the probability of any given
bin in the estimated pdf of the DGD, σp **, for each pseudo-transition matrix;

4. Since we have NB=100 pseudo-transition matrices, we repeat step 3 NB times and obtain

NB values for σp **. Then, we compute the double bootstrap confidence interval Δ p ** of

the relative variation of the error of p (statistical error in p, where p is the probability of
any given bin in the estimated pdf of the DGD computed using a single standard MMC
simulation):
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where,
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In (9) and (10), σp **
(n) is the standard deviation of p ** computed using the n-th pseudo-transi‐

tion matrix.

Figure 5. Relative variation (σ̂ P
^

DGD / P̂ DGD) of the pdf of the normalized DGD, | τ | / | τ | , for the 15-section PMD emu‐

lator using 14 MMC iterations with 4,000 samples. The confidence interval is given by (8) when we compute an en‐
semble of standard deviations using bootstrap resampling for each of the 100 pseudo-transition matrices.

In Fig. 5, we show the relative variation of p ** and its confidence interval Δ p ** for a PMD
emulator with 15 sections. We used 14 MMC iterations with 4,000 samples each (total of
56,000 samples). The confidence interval of the relative variation is defined in (8). We used a
total of 80 evenly-spaced bins where we set the maximum value for the normalized DGD as
five times the mean DGD. We also use the same number for bins for all the figures shown in
this chapter. As expected, we observed that the error in the estimate of the MMC variance is
large when the MMC variance is also large. The confidence interval Δ p ** is between
(2.73×10−2, 3.19×10−2) and (3.61×10−1, 4.62×10−1) for | τ | / |τ| <2. It increases to
(2.68×10−1,4.48×10−1) when |τ | / |τ| =3 and to (4.05×10−1, 9.09×10−1) at the largest value
of | τ | / |τ| . We concluded that the estimate of the relative variation of the probability of
a bin is a good estimate of its own accuracy. This result is similar to what is observed with
the standard analysis of standard Monte Carlo simulations [26]. Intuitively, one expects the
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relative error and the error in the estimated error to be closely related because both are
drawn from the same sample space. In Fig. 5, we also observe that the relative variation in‐
creases with the DGD for values larger than the mean DGD, especially in the tail of the pdf.
This phenomenon occurs because the regions in the configuration space that contribute to
the tail of the pdf of the DGD are only explored by the MMC algorithm after several itera‐
tions. As the number of iterations increases, the MMC algorithm allows the exploration of
less probable regions of the configuration space. Because less probable regions are explored
in the last iterations, there will be a significantly smaller number of hits in the regions that
contribute to the tail of the pdf of the DGD. As a consequence, the relative variation will in‐
crease as the DGD increases.

2.6. Application and validation

We estimated the pdf of the normalized DGD (P̂DGD) and its associated confidence interval
ΔP̂DGD for PMD emulators comprised of 15 and 80 birefringent fiber sections with polariza‐
tion scramblers at the beginning of each section. The normalized DGD, |τ| / |τ| , is de‐
fined as the DGD divided by its expected value, which is equal 30 ps. We used 14 MMC
iterations with 4,000 samples each to compute the pdf of the normalized DGD when we
used a 15-section emulator and 30 MMC iterations with 8,000 samples each when we used
an 80-section PMD emulator.

Figure 6. Relative variation (σ̂ P
^

DGD / P̂ DGD) of the pdf of the normalized DGD, | τ | / | τ | . (i) Circles: Transition matrix

method based on a single standard MMC simulation for the 15-section PMD emulator; (ii) Solid: 103 standard MMC
simulations for the 15-section emulator; (iii) Dashed: Confidence interval of the relative variation of the error estimat‐
ed using the transition matrix method for the 15-section PMD emulator; (iv) Squares: Transition matrix method based
on a single standard MMC simulation for the 80-section PMD emulator; (v) Dot-dashed: 103 standard MMC simula‐
tions for the 80-section PMD emulator.

We monitored the accuracy of our computation by calculating the relative variation of the
pdf of the normalized DGD. The relative variation is defined as the ratio between the stand‐
ard deviation of the pdf of the normalized DGD and the pdf of the normalized DGD
(σ̂P

^
DGD / P̂DGD). In Fig. 6, we show the relative variation when we used PMD emulators with
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15 and with 80 birefringent sections. The symbols show the relative variation when we ap‐
plied the procedure that we described in Section 2 with 1,000 pseudo-MMC simulations
based on a single standard MMC simulation and the transition matrix method, while the
solid and the dot-dashed lines show the relative variation when we used 1,000 standard
MMC simulations. The circles and the solid line show the results for a 15-section PMD emu‐
lator, while the squares and dot-dashed line show the results when we used an 80-section
PMD emulator. As expected, the result from an ensemble of pseudo-MMC simulations
shows a systematic deviation from the result from an ensemble of standard MMC simula‐
tions for both emulators. The systematic deviation changes depending on which standard
MMC simulation is used to generate the pseudo ensemble. In Fig. 6, the two dashed lines
show the confidence interval of the relative variation with the 15-section PMD emulator
computed using the transition matrix method, i.e., the confidence interval for the results that
are shown with the circles. The confidence interval Δ p ** is between (3.04×10−2, 3.28×10−2)
and (2.76×10−1, 3.62×10−1) for | τ | / | τ | <2. It increases to (2.39×10−1, 4.31×10−1) when
| τ | / | τ | =3 and to (2.69×10−1, 9.88×10−1) at the largest value of | τ | / | τ | .

While the relative variation that is computed using the transition matrix method from a
single MMC simulation will vary from one standard MMC simulation to another, the re‐
sults obtained from different standard MMC simulations are likely to be inside this confi‐
dence  interval  with  a  well-defined  probability.  The  confidence  interval  of  the  relative
variation was obtained using a procedure similar to the one discussed in the Section 2.2,
except that we computed the relative variation of the probability of a bin using the transi‐
tion matrix method for every one of the 1,000 standard MMC simulations. Therefore, we
effectively computed the true confidence interval of the error estimated using the transi‐
tion  matrix  method.  We have  verified  that  the  confidence  interval  calculated  using  the
double bootstrap procedure on a single standard MMC simulation agrees well  with the
true confidence interval  in  all  the  cases  that  we investigated.  We observed an excellent
agreement between the results obtained with the transition matrix method based on a sin‐
gle standard MMC simulation and the results obtained with 1,000 standard MMC simula‐
tions for both 15 and 80 fiber sections when the relative variation (σ̂P

^
DGD / P̂DGD) is smaller

than 15%. For larger relative variation, the true error is within the confidence interval of
the error, which can be estimated using the double bootstrap method described in Section
2.2. The curves for the 80-section PMD emulator have a larger DGD range because a fiber
with 80 birefringent sections is able to produce larger DGD values than is possible with a
fiber with 15 birefringent fiber sections [28].

In Figs. 7 and 8, we show with symbols the results for the pdf of the normalized DGD and
its confidence interval using the numerical procedure that we presented in Section 2.2. The
solid line shows the pdf of the normalized DGD obtained analytically using a solution (see
[21]) for 15 and 80 concatenated birefringent fiber sections with equal length. For compari‐
son, we also show the Maxwellian pdf for the same mean DGD. In table 1, we present select‐
ed data points from the curves shown in Fig. 7. For both 15- and 80-section emulators, we
find that the MMC yields estimates of the pdf of the normalized DGD with a small confi‐
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dence interval. In Figs. 7 and 8, we see that the standard deviation (σ̂P
^

DGD
) for the DGD pdf is

always small compared to the DGD pdf. The values of the relative variation (σ̂P
^

DGD / P̂DGD)
ranges from 0.016 to 0.541. We used only 56,000 MMC samples to compute the pdf of the
DGD in a 15-section emulator, but we were able nonetheless to accurately estimate probabil‐
ities as small as 10−8. Since the relative error in unbiased Monte Carlo simulations is approxi‐
mately given by N I

−1/2, where N I  is the number of hits in a given bin, it would be necessary

to use on the order of 109 unbiased Monte Carlo samples to obtain a statistical accuracy com‐
parable to the results that I show in the bin with lowest probability in Figs. 7 and 8.

Figure 7. The pdf of the normalized DGD, | τ | / | τ | , for the 15-section PMD emulator using 14 MMC iterations with
4,000 samples. (i) Diamonds: DGD pdf with error estimation using the transition matrix method, (ii) Dashed line: Max‐
wellian pdf, (iii) Solid line: Analytical pdf of the DGD for the 15-section PMD emulator.

Figure 8. The pdf of the normalized DGD, | τ | / | τ | , for the 80-section PMD emulator using 30 MMC iterations with
8,000 samples. (i) Diamonds: DGD pdf with error estimation using the transition matrix method, (ii) Dashed line: Max‐
wellian pdf, (iii) Solid line: Analytical pdf of the DGD for the 80-section PMD emulator.
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| τ | / | τ | PDGD P̂DGD σ̂P
^

DGD
σ̂P

^
DGD / P̂DGD

0.031 3.00 × 10−3 4.50 × 10−3 1.35 × 10−3 0.301

0.344 3.16 × 10−1 2.84 × 10−1 1.75 × 10−2 0.062

0.719 8.56 × 10−1 8.57 × 10−1 2.83 × 10−2 0.033

1.094 8.63 × 10−1 8.50 × 10−1 2.76 × 10−2 0.033

1.469 4.64 × 10−1 4.66 × 10−1 2.16 × 10−2 0.046

1.844 1.43 × 10−1 1.36 × 10−1 1.21 × 10−2 0.089

2.219 2.50 × 10−2 2.32 × 10−2 3.37 × 10−3 0.145

2.594 2.26 × 10−3 2.15 × 10−3 4.43 × 10−4 0.206

2.969 8.70 × 10−5 7.57 × 10−5 2.16 × 10−5 0.286

3.344 8.92 × 10−7 8.13 × 10−7 3.49 × 10−7 0.430

3.594 1.10 × 10−8 1.59 × 10−8 8.63 × 10−9 0.541

Table 1. Selected data points from the curves shown in Fig. 6. The columns from left to right show: the normalized
DGD value, the analytical probability density function, the estimated probability density function, the standard
deviation computed using the transition matrix method, and the relative variation.

We would like to stress that the computational time that is required to estimate the errors
using the transition matrix method does not scale with the time needed to carry out a single
standard MMC simulation. For instance, it takes approximately 17.5 seconds of computation
using a Pentium 4.0 computer with 3 GHz of clock speed to estimate the errors in the pdf of
the DGD for the 80-section emulator using 1,000 pseudo-MMC simulations with the transi‐
tion matrix method, once the transition matrix is available. The computational time that is
required to compute the pdf of the DGD using only one standard MMC simulation is 60 sec‐
onds. To obtain 1,000 standard MMC simulations would require about 16.6 hours of CPU
time in this case.

We also stress that it is difficult to estimate the statistical errors in MMC simulations because
the algorithm is iterative and highly nonlinear. We introduced the transition matrix method
that allows us to efficiently estimate the statistical errors from a single standard MMC simu‐
lation, and we showed that this method is a variant of the bootstrap procedure. We applied
this method to calculate the pdf of the DGD and its expected error for 15-section and 80-sec‐
tion PMD emulators. Finally, we validated this method in both cases by comparing the re‐
sults to estimates of the error from ensembles of 1,000 independent standard MMC
simulations. The agreement was excellent. In Section 4, we apply the transition matrix meth‐
od to estimate errors in the outage probability of PMD uncompensated and compensated
systems. We anticipate that the transition matrix method will allow one to estimate errors
with any application of MMC including the computation of the pdf of the received voltage
in optical communication systems [29] and the computation of rare events in coded commu‐
nication systems [33].
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3. PMD Compensators

In this chapter, we investigated a single-section and three-section PMD compensators. A sin‐
gle-section PMD compensator [34], which is a variable-DGD compensator that was pro‐
grammed to eliminate the residual DGD at the central frequency of the channel after
compensation, and a three-section PMD compensator proposed in [35], which compensates
for first- and second-order PMD. The three-section compensator consists of two fixed-DGD
elements that compensate for the second-order PMD and one variable-DGD element that
eliminates the residual DGD at the central frequency of the channel after compensation. The
three-section compensator that we used has the first- and second-order PMD as feedback
parameters. This compensator can also in principle operate in a feedforward configuration.

3.1. Single-section compensator

The increased understanding of PMD and its system impairments, together with a quest for
higher transmission bandwidths, has motivated considerable effort to mitigate the effects of
PMD, based on different compensation schemes [36], [37], [38]. One of the primary objec‐
tives has been to enable system upgrades from 2.5 Gbit/s to 10 Gbit/s or from 10 Gbit/s to 40
Gbit/s on old, embedded, high-PMD fibers. PMD compensation techniques must reduce the
impact of first-order PMD and should reduce higher-order PMD effects or at least not in‐
crease the higher orders of PMD. The techniques should also be able to rapidly track
changes in PMD, including changes both in the DGD and the PSPs. Other desired character‐
istics of PMD mitigation techniques are low cost and small size to minimize the impact on
existing system architectures. In addition, mitigation techniques should have a small num‐
ber of feedback parameters to control [39].

In this section, we describe a PMD compensator with an arbitrarily rotatable polarization
controller and a single DGD element, which can be fixed [40] or variable [41]. Figure 9
shows a schematic illustration of a single-section DGD compensator. The adjustable DGD el‐
ement or birefringent element is used to minimize the impact of the fiber PMD and the po‐
larization controller is used to adjust the direction of the polarization dispersion vector of
the compensator. The expression for the polarization dispersion vector after compensation,
which is equivalent to the one in [42], is given by

Figure 9. Schematic illustration of a single-section compensator with a monitor and a feedback element. In practical
systems, the compensator will usually be part of the receiver, so that the monitor and the feedback control are inte‐
grated with the detection circuit.
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τ
tot

(ω)= τ
c

+ Tc(ω)Rpc τ
f
(ω), (11)

where τ
c
 is the polarization dispersion vector of the compensator, τ

f (ω) is the polarization

dispersion vector of the transmission fiber, Rpc is the polarization transformation in Stokes
space that is produced by the polarization controller of the compensator, and Tc(ω) is the
polarization transformation in Stokes space that is produced by the DGD element of the
compensator. We model the polarization transformation Rpc as

pc pc pc pcR = R ( )R ( )R ( ).x y xf y f- (12)

We note that the two parameters of the polarization controller's angles in (12) are the only
free parameters that a compensator with a fixed DGD element possesses, while the value of
the DGD element of a variable DGD compensator is an extra free parameter that must be
adjusted during the operation. In (12), the parameter ϕpc is the angle that determines the ax‐
is of polarization rotation in the y-z plane of the Poincaré sphere, while the parameter ψpc is
the angle of rotation around that axis of polarization rotation. An appropriate selection of
these two angles will transform an arbitrary input Stokes vector into a given output Stokes
vector. While most electronic polarization controllers have two or more parameters to adjust
that are different from ϕpc and ψpc, it is possible to configure them to operate in accordance
to the transformation matrix Rpc in (12) [43].

In all the work reported in this chapter, we used the eye opening as the feedback parameter
for the optimization algorithm unless otherwise stated. We defined the eye opening as the
difference between the lowest mark and the highest space at the decision time in the re‐
ceived electrical noise-free signal. The eye-opening penalty is defined as the ratio between
the back-to-back and the PMD-distorted eye opening. The back-to-back eye opening is com‐
puted when PMD is not included in the system. Since PMD causes pulse spreading in am‐
plitude-shift keyed modulation formats, the isolated marks and spaces are the ones that
suffer the highest penalty [44]. To define the decision time, we recovered the clock using an
algorithm based on one described by Trischitta and Varma [45].

We simulated the 16-bit string "0100100101101101." This bit string has isolated marks and
spaces, in addition to other combinations of marks and spaces. In most of other simulations
in this dissertation we use pseudorandom binary sequence pattern. The receiver model con‐
sists of an Gaussian optical filter with full width at half maximum (FWHM) of 60 GHz, a
square-law photodetector, and a fifth-order electrical Bessel filter with a 3 dB bandwidth of
8.6 GHz. To determine the decision time after the electronic receiver, we delayed the bit
stream by half a bit slot and subtracted it from the original stream, which is then squared.
As a result a strong tone is produced at 10 GHz. The decision time is set equal to the time at
which the phase of this tone is equal to π /2 . The goal of our study is to determine the per‐
formance limit of the compensators. In order to do that, we search for the angles ϕpc and ψpc.
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of the polarization controller for which the eye opening is largest. In this case, the eye open‐
ing is our compensated feedback parameter. We therefore show the global optimum of the
compensated feedback parameter for each fiber realization.

To obtain the optimum, we start with 5 evenly spaced initial values for each of the angles
ϕpc and ψpc in the polarization transformation matrix Rpc, which results in 25 different initial
values. If the DGD of the compensator is adjustable, we start the optimization with the DGD
of the compensator equal to the DGD of the fiber. We then apply the conjugate gradient al‐
gorithm [46] to each of these 25 initial polarization transformations. To ensure that this pro‐
cedure yields the global optimum, we studied the convergence as the number of initial
polarization transformations is increased. We examined 104 fiber realizations spread
throughout our phase space, and we never found more than 12 local optima in the cases that
we examined. We missed the global optimum in three of these cases because several optima
were closely clustered, but the penalty difference was small. We therefore concluded that 25
initial polarization transformations were sufficient to obtain the global optimum with suffi‐
cient accuracy for our purposes. We observed that the use of the eye opening as the objec‐
tive function for the conjugate gradient algorithm produces multiple optimum values when
both the DGD and the length of the frequency derivative of the polarization dispersion vec‐
tor are very large.

The performance of the compensator depends on how the DGD and the effects of the first-
and higher-order frequency derivatives of the polarization dispersion vector of the transmis‐
sion fiber interact with the DGD element of the compensator to produce a residual
polarization dispersion vector and on how the signal couples with the residual principal
states of polarization over the spectrum of the channel. Therefore, the operation of single-
section PMD compensators is a compromise between reducing the DGD and setting one
principal state of polarization after compensation that is approximately co-polarized with
the signal. An expression for the pulse spreading due to PMD as a function of the polariza‐
tion dispersion vector of the transmission fiber and the polarization state over the spectrum
of the signal was given in [47].

3.2. Three-section compensator

Second-order PMD has two components: Polarization chromatic dispersion (PCD) and the
principal states of polarization rotation rate (PSPRR) [35]. Let τ

1
 be the polarization disper‐

sion vector of the transmission line, and let τ
2
 and τ

3
 be the polarization dispersion vec‐

tors  of  the  two  fixed-DGD  elements  of  the  three-section  compensator.  Using  the
concatenation rule [42], the first- and second-order PMD vector of these three concatenat‐
ed fibers are given by

τ
tot

= R3 R2 τ
1

+ R3 τ
2

+ τ
3
, (13)

τ
tot ,w

= (τ
3

+ R3 τ
2)× R3 R2 τ1q1 + τ

3
× R3 τ

2
+ R3 R2 τ1wq1 + R3 R2 τ1q1w, (14)
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where R2 and R3 are the rotation matrices of the polarization controllers before the first and
the second fixed-DGD elements of the compensator, respectively. In (14), τ1wq1and τ1q1w are
the transmission line PCD and the PSPRR components, respectively, where we express the
polarization dispersion vector of the transmission fiber as τ

1
=τ1q1. Here, the variable τ is

the DGD and q= τ / | τ |  is the Stokes vector of one of the two orthogonal principal states of
polarization. The three-section PMD compensator has two operating points [35]. For the first
operating point, the term τ

3
×R3 τ

2
 in (14) is used to cancel the PSPRR component

R3 R2 τ1q1w, provided that we choose R3 and R2 so that R3
† τ

3
× τ

2
 and R2τ1q1w are antiparal‐

lel, where R3
† is the Hermitian conjugate of R3. Note that with this configuration one cannot

compensate for PCD.

For the second operating point, τ
3
×R3 τ

2
in (14) is used to compensate for PCD by choosing

R3
† τ

3
× τ

2
 and R2τ1wq1 to be antiparallel. Moreover, we can add an extra rotation to R2 so

that (R3
† τ

3
+ τ

2)×R2 τ1q1  and R2 τ1q1w are also antiparallel. In this way, the compensator

can also reduce the PSPRR term. In our simulations, we computed the reduction of the PCD
and PSPRR components for the two operating points and we selected the one that presented
the largest reduction of the second-order PMD. Finally, the third, variable-DGD, section of
the compensator cancels the residual DGD τ

tot
 after the first two sections.

4. Simulation results and discussions

We evaluate the performance of optical fiber communication systems with and without
PMD compensators using the statistical methods of importance sampling (IS) and multica‐
nonical Monte Carlo (MMC). Both MMC and IS can be used to bias Monte Carlo simulations
to the outage probability due to PMD in optical fiber communication systems with one-sec‐
tion and with three-section PMD compensators. When there exist a IS bias technique availa‐
ble, IS is more effective than MMC because each sample in IS is independent, while the
samples in MMC slowly become uncorrelated. However, the effectiveness of MMC can be
comparable or even exceed that of IS in the cases in which there isn’t a high correlation be‐
tween the parameters that are biased in IS and the parameter of interest. This is the case of
optical communication systems with PMD compensation, in which IS has to exploit a vast
region of the probability space that does not contribute to the events of interest.

In Fig.10, we show the pdf of the eye-opening penalty for a system with 30 ps mean DGD
and a single-section compensator. We compute the pdf using IS in which only the DGD is
biased, and we also compute the pdf using IS in which both the first- and the second-order
PMD are biased. We observed that it is not sufficient to only bias the DGD in order to accu‐
rately calculate the compensated penalty and its pdf. This approach can only be used in sys‐
tems where the DGD is the dominant source of penalties, which is the case in
uncompensated systems and in systems with limited PMD compensation.
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Figure 10. PDF of the eye-opening penalty for a system with a mean DGD of 30 ps and a single-section compensator.
(i) Solid line: results using IS in which only the DGD is biased. (ii) Dashed line: results using IS in which both first-and
second-order PMD are biased. The confidence interval is shown with error bars.

In Fig. 11, we show the outage probability as a function of the eye-opening penalty. We ap‐
ply the MMC algorithm to compute PMD-induced penalties in a 10 Gbit/s NRZ system us‐
ing 50 MMC iterations with 2,000 samples each. The results obtained using the samples in
the final iteration of the MMC simulation (dashed and solid lines) are in excellent agreement
with the ones obtained using importance sampling (open circles and squares). Here we used
the results computed with importance sampling to validate the results obtained with MMC.
The use of importance sampling to compute penalties in PMD single-section compensated
systems was already validated with a large number of standard Monte Carlo simulations by
Lima Jr. et al. [36], [14]. Therefore, the results computed with importance sampling can be
used to validate the results computed with MMC. Our goal here is to show the applicability
of MMC to accurately compute PMD-induced penalties in uncompensated and single-sec‐
tion PMD compensated systems.

In Fig. 12, we show contours (dotted lines) of the joint pdf of the magnitude of the uncom‐
pensated normalized first- and second-order PMD, | τ |  and | τω | , computed using impor‐
tance sampling, as in [48]. We also show contours for the eye-opening penalty (solid lines) of
an uncompensated system with a mean DGD, |τ| , of 15 ps. The penalty contours were
produced using the same samples we generated using the MMC method in the computation
of the outage probability shown in Fig. 11. The MMC method automatically placed its sam‐
ples in the regions of the |τ |–| τ

ω |plane that corresponds to the large DGD values that

have the highest probability of occurrence, which is the region that is the dominant source
of penalties in uncompensated systems.

Current Developments in Optical Fiber Technology146



Figure 11. Outage probability as a function of the eye-opening penalty. (i) Dotted line: Uncompensated system with a
mean DGD of 30 ps. (ii) Dashed line and (iii) Open circles: Results for a variable-DGD compensator, obtained using
MMC and IS, respectively, for a system with mean DGD of 30 ps. (iv) Solid line and (v) Squares: Results for an uncom‐
pensated system with mean DGD of 15 ps, obtained using MMC and IS, respectively.

Figure 12. Penalty curves computed with MMC for an uncompensated system. Uncompensated system with a mean
DGD of 15 ps. The dotted lines show the contour plots of the joint pdf of the normalized | τ |  and | τω | , obtained using
IS. The solid lines show the average eye-opening penalty given a value of | τ |  and | τω | , obtained using MMC. The con‐

tours of joint pdf from the bottom to the top of the plot, are at 3 × 10−n, and, n=1, …, 7 and 10−m, m=1, …,11. The
penalty contours in dB from the left to the right of the plot, are at 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6.

In Fig. 13, we show similar results for a system with |τ| =30 ps and a variable-DGD com‐
pensator that was programmed to minimize the residual DGD at the central frequency of
the channel after compensation. In contrast to Fig.12, the MMC method automatically
placed its samples in the regions of the | τ |–| τ

ω |  plane where | τ
ω |  is large and the

DGD is close to its average, corresponding to the region in the plane that is the dominant
source of penalties in this compensated system. These results agree with the fact that the
contour plots in the region dominating the penalty are approximately parallel to the DGD
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axis, indicating that the penalty is nearly independent of DGD. In Figs. 12 and 13, the sam‐
ples obtained using the MMC method are automatically biased towards the specific region
of the | τ |–| τ

ω |  plane that dominates the penalty, i.e., the region where the correspond‐

ing penalty level curve intersects the contour of the joint pdf of | τ |  and | τ
ω |  with the

highest probability. We did not compute the confidence interval for the results showed in
this section.

Figure 13. Same set of curves of Fig. 12 for a compensated system with a variable-DGD compensator. The penalty
contours in dB from the bottom to the top of the plot, are at 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6.

In the following results, we evaluated the performance of a single-section and a three-sec‐
tion PMD compensator in a 10 Gbit/s nonreturn-to-zero system with a mean DGD of 30 ps.
We used perfectly rectangular pulses filtered by a Gaussian shape filter that produces a rise
time of 30 ps. We simulated a string with 8 bits generated using a pseudorandom binary se‐
quence pattern. We modeled the fiber using the coarse step method with 80 birefringent fi‐
ber sections, which reproduces first- and higher-order PMD distortions within the
probability range of interest [14]. The results of our simulations can also be applied to 40
Gbit/s systems by scaling down all time quantities by a factor of four. As in previous results,
we used the eye opening for performance evaluation. The three-section compensator has
two fixed-DGD elements of 45 ps and one variable-DGD element. The results that we
present in this section were obtained using 30 MMC iterations with 8,000 samples each and
using importance sampling with a total of 2.4×105 samples. We estimated the errors in
MMC using the transition matrix method that we described in Section 2.2, while we estimat‐
ed the errors in importance sampling as in [25].

In Fig. 14, we show the outage probability for a 1-dB penalty as function of the DGD ele‐
ment (τc) for a system with the three-section compensator that we used. We observed that
there is an optimum value for τc that minimizes the outage probability, which is close to 45
ps. We set the values for the two fixed-DGD elements of the three-section PMD compensator
that we used to this optimum value. The reason why the outage probability rises when τc
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becomes larger than this optimum is because large values of τc add unacceptable penalties
to fiber realizations with relatively small second-order PMD values that could be adequately
compensated at lower values of τc. We also observed that there is a relatively small depend‐
ence of the outage probability on τc. That is because the third, variable-DGD section of the
compensator cancels the residual DGD after the first two sections, which significantly miti‐
gates the penalty regardless of the value of τc.

Figure 14. Outage probability for a 1-dB penalty as function of the DGD element (τc) of the three-section compensa‐
tor for a system with mean DGD of 30 ps.

Figure 15. Outage probability as a function of the eye-opening penalty for a system with mean DGD of 30 ps. (i) Dash‐
ed line (MMC) and triangles (IS): Uncompensated system. (ii) Dot-dashed line (MMC) and circles (IS): System with a
single-section compensator. (iii) Solid line (MMC) and diamonds (IS): System with a three-section compensator. The
error bars show the confidence interval for the MMC results.
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In Fig. 15, we plot the outage probability (P̂out) as a function of the eye-opening penalty for
the compensators that we studied. The histogram of the penalty was divided into 34 evenly
spaced bins in the range −0.1 and 2 dB, even though we show results from 0 to 1.5 dB of
penalty. The maximum relative error (σ̂P

^
out / P̂out) for the curves computed with MMC

shown in this plot equals 0.13. The relative error for the curves computed with importance
sampling is smaller than with MMC, and is not shown in the plot. The maximum relative
error for the curves computed with importance sampling equals 0.1. The results obtained us‐
ing MMC (solid lines) are in agreement with the ones obtained using importance sampling
(symbols). The agreement between the MMC and importance sampling results was expected
for the case that we used a single-section compensator, since this type of compensator can
only compensate for first-order PMD [6], so that the dominant source of penalty after com‐
pensation is the second-order PMD of the transmission line. Hence, it is expected that MMC
and importance sampling give similar results. We also observed good agreement between
the MMC and importance sampling results for the three-section compensator. This level of
agreement indicates that three-section compensators that compensate for the first two orders
of the Taylor expansion of the transmission line PMD produce residual third and higher or‐
ders of PMD that are significantly correlated with the first- and second-order PMD of the
transmission line. That is why the use of importance sampling to bias first- and second-or‐
der PMD is sufficient to accurately compute the outage probability in systems where the
first two orders of PMD of the transmission line are compensated.

Significantly, we observed that the performance improvement with the addition of two sec‐
tions, from the single-section compensator to the three-section compensator, is not as large
as the improvement in the performance when one section is added, from the uncompensat‐
ed to the single-section compensator. The diminishing returns that we observed for in‐
creased compensator complexity is consistent with the existence of correlations between the
residual higher orders of PMD after compensation and the first two orders of PMD of the
transmission line that are compensated by the three-section compensator.

Figure 16. Conditional expectation of the magnitude of the normalized second-order PMD, | τ
ω | , given a value of the

DGD of the transmission line, | τ | . Conditional expectation before (dashed) and after (solid) the three-section com‐
pensator.
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Figure 17. Conditional expectation of the magnitude of the normalized third-order PMD, | τ
ωω | , given a value of the

DGD of the transmission line, | τ | . Conditional expectation before (dashed) and after (solid) the three-section com‐
pensator.

Figure 18. Conditional expectation of the magnitude of the normalized fourth-order PMD, | τ
ωωω | , given a value of

the DGD of the transmission line, | τ | . Conditional expectation before (dashed) and after (solid) the three-section
compensator.

Figures 16–18 quantify the correlation between the lower and higher orders of PMD. In Fig.
16, we show the conditional expectation of the magnitude of second-order of PMD both be‐
fore and after the three-section compensator given a value of the DGD of the transmission
line. In these figures, the DGD | τ |  is normalized by the mean DGD | τ |  and | τ

ω |  is

normalized by | τ
ω |  to obtain results that are independent of the mean DGD and of the

mean of the magnitude of second-order PMD. We observed a large correlation between
| τ |  and | τ

ω |  before compensation, while after compensation | τ
ω |  is significantly re‐

duced and is less correlated with the DGD, demonstrating the effectiveness of the three-sec‐
tion compensator in compensating for second-order PMD. In Figs. 17and 18, we show the
conditional expectation of the magnitude of the third-order PMD and of the fourth-order
PMD, respectively, before and after the three-section compensator, given a value of the
DGD of the transmission line. In both cases, we observed a high correlation of the third- and
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the fourth-order PMD with the DGD before and after compensation. In addition, we ob‐
served a significant increase of these higher-order PMD components after compensation,
which leads to a residual penalty after compensation that is correlated to the original first-
and second-order PMD.

In Fig. 19, we show contour plots of the conditional expectation of the penalty with respect
to the first- and second-order PMD for a system with a three-section PMD compensator [35].
These results show that the residual penalty after compensation is significantly correlated
with the first- and second-order PMD. The correlation between the higher orders of PMD
with the DGD that we show in Figs. 16–18 can be estimated from the concatenation rule [42],
which explicitly indicates a dependence of the higher-order PMD components on the lower
order components. The increase in these higher-order components after compensation is al‐
so due to our choice of the operating point of this compensator, which is set to compensate
only for first- and second-order PMD, regardless of the higher-order PMD components. It is
possible that this three-section PMD compensator would perform better if all 7 parameters
of the compensator are adjusted to achieve the global penalty minimum. However, finding
this global optimum is unpractical due to the large number of local optima in such a multi‐
dimensional optimization space, as we found in our investigation of single-section PMD
compensators [14]. On the other hand, the compensation of first- and second-order PMD us‐
ing the three-section compensator that we studied here, which was proposed by Zheng, et al.
[35], can be implemented in practice.

Figure 19. Three-section compensated system. The dotted lines are contour plots of the joint pdf of the normalized
| τ |  and | τ

ω |  from the bottom to the top of the plot, are at 3 × 10−n, with n=1,⋯ ,7 and 10−m, with m=1,⋯ ,11. The

solid lines are contour plots of the conditional expectation of the eye-opening penalty in dB from the bottom to the
top of the plot, are at 0.1, 0.2, 0.3, 0.4, 0.5, 0.6.

In this Section, we showed that both multiple importance sampling and MMC can be used
with all the compensators that we investigated to reduce the computation time for the out‐
age probability due to PMD in optical fiber communication systems. Importance sampling
in which both the first- and second-order PMD are biased can be used to efficiently compute
the outage probability even with a three-section PMD compensator in which both first- and
second-order PMD are compensated, which is consistent with the existence of a large corre‐
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lation between first- and second-order PMD of the transmission line and higher orders of
PMD after compensation. We directly verified the existence of these correlations. In contrast
to what we presented in Fig.11, where importance sampling was used to validate the results
with MMC, in the resulted subsequently presented, we used MMC to validate the results
obtained with importance sampling. We used MMC to validate the results obtained with
importance sampling because MMC can be used to compute penalties induced by all orders
of PMD and not just penalties correlated to first- and second-order PMD as is the case with
the importance sampling method. We showed that MMC yields the same results as impor‐
tance sampling, within the statistical errors of both methods. Finally, we showed that the
three-section compensator offers less than twice the advantage (in dB) of single-section com‐
pensators. We attribute the diminishing returns with increased complexity to the existence
of correlations between the first two orders of PMD prior to compensation and higher or‐
ders of PMD after compensation.

5. Conclusions

In this chapter, we used MMC and IS in which both the first- and second-order PMD are
biased to investigate the performance of single-section and three-section PMD compensa‐
tors. We showed that both methods are effective to compute outage probabilities for the op‐
tical fiber communication systems that we studied with and without PMD compensators.
The comparison of importance sampling to the MMC method not only allowed us to mutu‐
ally validate both calculations, but yielded insights that were not obtained from either meth‐
od alone. The development of IS requires some a priori knowledge of how to bias a given
parameter in the simulations. In this particular problem, the parameter of interest is the pen‐
alty. However, to date there is no IS method that directly biases the penalty. Instead of di‐
rectly biasing the penalty, one has to rely on the correlation of the first-and second-order
PMD with the penalty, which may not hold in all compensated systems. In contrast to IS,
MMC does not require a priori knowledge of which rare events contribute significantly to the
penalty distribution function in the tails, since the bias is done automatically in MMC. Be‐
cause the samples in IS are independent, IS converges more rapidly than MMC when the
biased quantity is highly correlated to the parameter of interest. However this is not always
the case. The applicability of IS to model a system with a three-section PMD compensator, in
which both first- and second-order components of the Taylor’s expansion of PMD in the fre‐
quency domain are compensated, is consistent with the existence of a large correlation be‐
tween first- and second-order PMD components of the transmission line and the higher
orders of PMD after compensation. Thus, even when the first two orders of PMD are com‐
pensated, these quantities prior to compensation still remain highly correlated with the re‐
sidual penalty.

It is essential to carefully monitor statistical errors when carrying out Monte Carlo simula‐
tions in order to verify the accuracy of the results. Effective procedures for calculating the
statistical errors in standard Monte Carlo simulations are well known and are easily imple‐
mented. Moreover, in this case, each sample is independently drawn, and the errors in each

Multicanonical Monte Carlo Method Applied to the Investigation of Polarization Effects in Optical Fiber…
http://dx.doi.org/10.5772/53306

153



bin of the histogram will also be independent. Hence, the smoothness of the histogram is
often a good indication that the errors are acceptably low. While calculating the statistical
errors with importance sampling is more complicated, analytical formulae have been suc‐
cessfully implemented. By contrast, calculating statistical errors using MMC is not trivial.
MMC generates correlated samples, so that standard error estimation techniques cannot be
applied. To enable the estimate of the statistical errors in the calculations using MMC we de‐
veloped a method that we refer to as the MMC transition matrix method. The method is
based on the calculation of a transition matrix with a standard MMC simulations and the
use of this transition matrix to draw a large number of independent samples.

Author details

Aurenice M. Oliveira1 and Ivan T. Lima Jr.2

1 Michigan Technological University, U.S.A

2 North Dakota State University, U.S.A

References

[1] B. Huttner, C. Geiser, and N. Gisin, "Polarization-induced distortions in optical fiber
networks with polarization-mode dispersion and polarization-dependent losses,"
IEEE J. Selec. Topics Quantum Electron, vol. 6, pp. 317-329, 2000.

[2] G. Biondini, W. L. Kath, and C. R. Menyuk, "Importance sampling for polarization-
mode dispersion," IEEE Photon. Technol. Lett, vol. 14, pp. 310-312, 2002.

[3] S. L. Fogal, G. Biondini, and W. Kath, "Multiple importance sampling for first- and
second-order polarization-mode dispresion," IEEE Photon. Technol Lett, vol. 14, pp.
1273-1275, 2002.

[4] B. A. Berg and T. Neuhaus, "The multicanonical ensemble: a new approach to simu‐
late first-order phase transitions, "Phys. Rev. Lett, vol. 68, pp. 9-12, 1992.

[5] A. M. Oliveira, I. T. LimaJr, C. R. Menyuk, G. Biondini, B. Marks, and W. Kath, "Stat‐
istical analysis of the performance of PMD compensators using multiple importance
sampling," IEEE Photon. Technol. Lett., vol. 15, pp. 1716-1718, 2003.

[6] A. M. Oliveira, I. T. LimaJr, J. Zweck, and C. R. Menyuk, "Efficient computation of
PMD-induced penalties using multicanonical Monte Carlo simulations," in Proceed‐
ings ECOC 2003, pp. 538-539.

Current Developments in Optical Fiber Technology154



[7] A. M. Oliveira, C. Menyuk, and I. LimaJr, "Comparison of Two Biasing Monte Carlo
Methods for Calculating Outage Probabilities in Systems with Multisection PMD
Compensators," IEEE Photon. Technol. Lett., vol. 17, pp. 2580-2582, 2005.

[8] A. M. Oliveira, I. T. LimaJr, C. R. Menyuk, and J. Zweck, "Performance evaluation of
single-section and three-section PMD compensators using extended Monte Carlo
methods," in Proceedings OFC 2005.

[9] A. Bononi, L. Rusch, A. Ghazisaeidi, F. Vacondio, and N. Rossi, "A Fresh Look at
Multicanonical Monte Carlo from a Telecom Perspective," in IEEE Globecom 2009,
2009.

[10] A. Bononi and L. Rusch, "Multicanonical Monte Carlo for Simulation of Optical
Links," in Impact of Nonlinearities on Fiber Optic Communications, S. Kumar, Ed., ed:
Springer Science Business Media, LLC, 2011, pp. 373-413.

[11] R. Holzlohner and C. R. Menyuk, "Use of multicanonical Monte Carlo simulations to
obtain accurate bit error rates in optical communication systems," Optics Letters, vol.
28, pp. 1894-1896, 2003.

[12] A. Ghazisaeidi, F. Vacondio, A. Bononi, and L. Rusch, "SOA Intensity Noise Suppres‐
sion in Spectrum Sliced Systems: A Multicanonical Monte Carlo Simulator of Ex‐
tremely Low BER," Journal of Lighwave Technologies, vol. 27, pp. 2667-2677, 2009.

[13] L. Gerardi, M. Secondini, and E. Forestieri, "Performance Evaluation of WDM Sys‐
tems Through Multicanonical Monte Carlo Simulations," Journal of Lighwave Technolo‐
gies, vol. 29, pp. 871-879, 2011.

[14] I. T. LimaJr, A. M. Oliveira, G. Biondini, C. R. Menyuk, and W. L. Kath, "A compara‐
tive study of single-section polarization-mode dispersion compensators," J. Lightwave
Technol., vol. 22, pp. 1023-1032, 2004.

[15] A. M. Oliveira, I. T. LimaJr, C. R. Menyuk, and J. Zweck, "Error estimation in multi‐
canonical Monte Carlo simulations with applications to polarization-mode-disper‐
sion emulators," Journal of Lighwave Technologies, vol. 23, pp. 3781-3789, 2005.

[16] B. A. Berg and T. Neuhaus, "The multicanonical ensemble: a new approach to simu‐
late first-order phase transitions," Phys. Rev. Lett., vol. 68, pp. 9-12, 1992.

[17] B. A. Berg, "Multicanonical simulations step by step," Comp. Phys. Commum., vol. 153,
pp. 397-407, 2003.

[18] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller,
"Equation of state calculations by fast computing machines," J. Chem. Phys., vol. 21,
pp. 1087-1092, 1953.

[19] D. Yevick, "The accuracy of multicanonical system models," IEEE Photon. Technol.
Lett., vol. 15, pp. 224-226, 2003.

Multicanonical Monte Carlo Method Applied to the Investigation of Polarization Effects in Optical Fiber…
http://dx.doi.org/10.5772/53306

155



[20] D. Marcuse, C. R. Menyuk, and P. K. A. Wai, "Application of the Manakov-PMD
equation to studies of signal propagation in optical fibers with randomly varying bi‐
refringence," J. Lightwave Technol., vol. 15, pp. 1735-1746, 1997.

[21] M. Karlsson, "Probability density functions of the differential group delay in optical
fiber communication systems," J. Lightwave Technol., vol. 19, pp. 324-331, 2001.

[22] M. H. Kalos and P. A. Whitlock, Monte Carlo Methods: John Wiley and Sons, 1986.

[23] D. Yevick, "Multicanonical communication system modeling---application to PMD
statistics," IEEE Photon. Technol. Lett., vol. 14, pp. 1512-1514, 2002.

[24] S. Kachigan, Multivariate Statistical Analysis: A Conceptual Introduction: Radius Press,
1991.

[25] A. M. Oliveira, I. T. LimaJr, C. R. Menyuk, G. Biondini, B. S. Marks, and W. L. Kath,
"Statistical analysis of the performance of PMD compensators using multiple impor‐
tance sampling," IEEE Photon. Technol. Lett., vol. 15, pp. 1716-1718, 2003.

[26] R. Walpole and R. Myers, Probability and Statistics for Engineers and Scientists: Macmil‐
lian, 1993.

[27] B. Efron, "Bootstrap methods: another look at the Jackknife," The Annals of Statistics,
vol. 7, pp. 1-26, 1979.

[28] I. T. LimaJr, R. Khosravani, P. Ebrahimi, E. Ibragimov, A. E. Willner, and C. R. Me‐
nyuk, "Comparison of polarization mode dispersion emulators," J. Lightwave Technol.,
vol. 19, pp. 1872-1881, 2001.

[29] R. Holzlöhner and C. R. Menyuk, "The use of multicanonical Monte Carlo simula‐
tions to obtain accurate bit error rates in optical communications systems," Opt. Lett.,
vol. 28, pp. 1894-1897, 2003.

[30] K. Singh, "On the asymptotic accuracy of Efron's Bootstrap," The Annals of Statistics,
vol. 9, pp. 1187-1195, 1981.

[31] B. Efron and R. Tibshirani, An Introduction to the Bootstrap: Chapman and Hall, 1993.

[32] J. Booth and P. Hall, "Monte Carlo approximation and the Iterated Bootstrap," Biome‐
trika, vol. 81, pp. 331-340, 1994.

[33] R. Holzlöhner, A. Mahadevan, C. R. Menyuk, J. M. Morris, and J. Zweck, "Evaluation
of the very low BER of FEC codes using dual adaptive importance sampling," Comm.
Lett., vol. 9, pp. 163-165, 2005.

[34] R. Noé, D. Sandel, M. Yoshida-Dierolf, S. Hinz, V. Mirvoda, A. Schöpflin, C. Glinge‐
ner, E. Gottwald, C. Scheerer, G. Fisher, T. Weyrauch, and W. Haase, "Polarization
mode dispersion compensation at 10, 20, and 40 Gb/s with various optical equaliz‐
ers," J. Lightwave Technol., vol. 17, pp. 1602-1616, 1999.

Current Developments in Optical Fiber Technology156



[35] Y. Zheng, B. Yang, and X. Zhang, "Three-stage polarization mode dispersion com‐
pensator capable of compensating second-order polarization model dispersion,"
IEEE Photon. Technol. Lett., vol. 14, pp. 1412-1414, 2002.

[36] I. T. LimaJr, G. Biondini, B. S. Marks, W. L. Kath, and C. R. Menyuk, "Analysis of
PMD compensators with fixed DGD using importance sampling," IEEE Photon. Tech‐
nol. Lett., vol. 14, pp. 627-629, 2002.

[37] H. Sunnerud, C. Xie, M. Karlsson, R. Samuelssonm, and P. A. Andrekson, "A com‐
parison between different PMD compensation techniques," J. Lightwave Technol., vol.
20, pp. 368-378, 2002.

[38] A. M. Oliveira, I. T. LimaJr, T. Adalı, and C. R. Menyuk, "A Novel polarization diver‐
sity receiver for PMD mitigation," IEEE Photon. Technol. Lett., vol. 14, pp. 465-467,
2002.

[39] I. P. Kaminow and T. Li, Optical Fiber Telecommunications vol. IV-B: Academic, 2002.

[40] T. Takahashi, T. Imai, and M. Aiki, "Automatic compensation technique for timewise
fluctuation polarization mode dispersion in in-line amplifier systems," Electron. Lett.,
vol. 30, pp. 348-349, 1994.

[41] F. Heismann, "Automatic compensation of first-order polarization mode dispersion
in a 10 Gbit/s Transmission System," in Proceedings ECOC 1998, pp. 329-330.

[42] J. P. Gordon and H. Kogelnik, "PMD fundamentals: Polarization mode dispersion in
optical fibers," Proc. Nat. Acad. Sci., vol. 97, pp. 4541-4550, 2000.

[43] I. T. LimaJr, A. M. Oliveira, and C. R. Menyuk, "A comparative study of single-sec‐
tion polarization-mode dispersion compensators," Journal of Lighwave Technologies,
vol. 22, pp. 1023-1032, 2004.

[44] H. Bülow, "System outage probability due to first- and second-order PMD," IEEE
Photon. Technol. Lett., vol. 10, pp. 696-698, 1998.

[45] P. R. Trischitta and E. L. Varma, Jitter in Digital Transmission Systems: Artech House,
1989.

[46] E. Polak, Computational Methods in Optimization: Academic Press, 1971.

[47] M. Karlsson, "Polarization mode dispersion-induced pulse broadening in optical fi‐
bers," Optics Lett., vol. 23, pp. 688-690, 1998.

[48] A. M. Oliveira, I. T. LimaJr, B. S. Marks, C. R. Menyuk, and W. L. Kath, "Performance
analysis of single-section PMD compensators using multiple importance sampling,"
in Proceedings OFC 2003, pp. 419-421.

Multicanonical Monte Carlo Method Applied to the Investigation of Polarization Effects in Optical Fiber…
http://dx.doi.org/10.5772/53306

157




