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1. Introduction

A current environmental concern is the contamination of aquatic ecosystem due to pesticide
discharges from manufacturing plant, agricultural runoff, leaching, accidental spills and other
sources [1, 2]. Synthetic pyrethroid insecticides were introduced into widespread use for the
control of insect pests and disease vectors more than three decades ago. In addition to their
value in controlling agricultural pests, pyrethroids are at the forefront of efforts to combat
malaria and other mosquito-borne diseases [3] and are also common ingredients of household
insecticide and companion animal ectoparasite control products [4]. Cypermethrin is a type
of synthetic pyrethroids (SPs), a class of pesticides widely used for insect control in both
agricultural and urban settings around the world [5].

The use of SPs in China has increased sharply since many organophosphate products, such as
methamidophos and parathion, are being phased out for agricultural use. With such extensive
application, many adverse effects, such as pest resistance, residues in foods, and environmen‐
tal contamination are public safety concerns [6, 7]. Although SPs are widely considered safe
for humans, numerous studies have shown that exposure to very high concentrations of SPs
might cause human health problems [8]. Such effects include bioaccumulation toxicity;
immune suppression, endocrine disruption; modify electrical activity in various parts of the
nervous system, neurotoxicity, lymph node and splenic damage, and carcinogenesis [9-11]. In
addition, bees, fish, crabs, tadpoles, arthropods, and other non-target organisms are extremely
sensitive to the toxic effects of SPs [12-15].
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Cypermethrin is more effective against pests including moth pests of cotton, fruits and
vegetable crops. Extensive and improper use of this kind chemicals leads to greater health risk
to plants, animals and human population which had been reviewed time to time by several
researchers [16]. One of the major problems asides from toxicity and carcinogenicity of
pesticides is their long persistence in nature that amplifies the toxicity and health risk problems
in the area of contamination [17].

Therefore, it is necessary to develop a rapid and efficient disposal process to eliminate or
minimize the concentrations of SPs in the environment. A variety of physical and chemical
methods are available to treat the soils contaminated with hazardous materials but many of
these physical and chemical treatments do not actually destroy the hazardous compounds but
are bound in a modified matrix or transferred from one phase to another [18, 19], hence
biological transforming is essential. The biological treatment of chemically contaminated soil
involves the transformation of complex or simple chemical compounds into non-hazardous
forms [20]. For biodegradation, ideally the target pesticide will be able to serve as the sole
carbon source and energy for microorganisms, including the synthesis of appropriate enzymes
if need able. The specificity of enzymes active against xenobiotic compounds differs from one
microorganism to another.

In the light of this fact, biodegradation, especially microbial degrading, has proven to be a
suitable method for insecticide elimination. Previous studies indicated that microbes play
important roles in degrading and detoxifying SPs residues in the environment. Thus far, many
reports have described the biodegradation of cypermethrin by various bacteria, including
Ochrobactrum lupini, Pseudomonas aeruginosa, Streptomyces aureus, and Serratia spp.[21-23], but
there is few research describing biodegradation of pesticides by Rhodobacter sphaeroides. Among
the different genera of pesticide-degrading bacteria, the photosynthetic (PSB) genus Rhodo‐
bacter has a special status in the ecosystem, since its metabolic functions are extraordinarily
versatile, including degradation of various organic compounds, nitrogen fixation, hydrogen
production [24], as a biofertilizer for promoting plant growth and increasing grain yield [25],
and 5-aminolevulinic acid production which has multiple functions including a relatively
strong herbicidal effect in clover [26]; therefore, microbes belonging to this genus are ideal
choice for degrading pesticide residues.

The research aim was to identify the potential microbial strain able to utilize cypermethrin
from the contaminated soil. In this study, the pesticide degrading potential of a bacterial
culture is examined with the hope of isolation and characterization of cypermethrin degrading
potentials in the contaminated soil. In addition, the optimum dose and the suitable conditions
for cypermethrin degradation using laboratory scale were also evaluated. The results of the
present study suggest that the use of potential microorganisms in the treatment system can
successfully overcome many of the disadvantages associated with the conventional method
used for the degradation of inhibitory compound.
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2. Materials and methods

2.1. Chemicals and media

Standard analytical grade sample of 100 μg/mL cypermethrin (99.8% purity) was purchased
from the Agro-Environmental Protection Institute, Ministry of Agriculture (Tianjin, China).
Acetonitrile, methanol and hexane were of chromatographic grade while other chemicals were
of analytical grade. Cypermethrin dissolved in acetone solution was added to desirable
concentration in medium as the sole carbon source. Mineral Salts Medium (MSM) (g/L): 1.0
NH4NO3, 1.0 NaCl, 1.5 K2HPO4, 0.5 KH2PO4, 0.2 MgSO4 7H2O, pH 7.0. For solid plate, 1.5% (w/
v) agar was added. Medium were sterilized by autoclaving at 121℃ for 30 min before use.

2.2. Enrichment, isolation and screening of bacterial strains

An activated sludge sample was collected from the wastewater treatment pool of a pesticide
plant located in Changsha (Hunan, China), which had produced cypermetrin over 5 years.
Wastewater sludge enrichment was performed by placing 10 g activated sludge in a 250 mL-
Erlenmeyer flask containing 100 mL sterilized MSM media with an initial cypermethrin
concentration at 20 mg/L, and incubated in a light incubator (PRX-450D, China) at 37℃ and
7500 lux; the flasks were shaken 3–5 times per day. After 10 days or so, the medium turned
red-brown, a 5 mL aliquot of the culture was inoculated into 100 mL of fresh MSM medium
containing 50 mg/L cypermetrin, and the new mixture was incubated for another 10 days under
the same conditions. The medium was gradually acclimated to increasing concentrations of
cypermetrin ranging from 50 to 200 mg/L at intervals of a week. After about 10 transfers, a
mixed microbial population was diluted in series, and then streaked on MSM agar medium
plate containing 100 mg/L cypermethrin. The dilution series was repeated at least 5 times, until
single colony was achieved. The abilities of isolates to degrade cypermethrin were determined
by gas chromatography (GC) according to Yin et al and Chen et al [23, 27]. The relatively higher
degradation ability colonies were selected for further degrading studies. These organisms were
stored long-term on porous beads in a cryopreservative fluid at -20℃ and short-term on agar
plates at 4℃

2.3. Characterization and identification of the cypermethrin degrading isolates

A cypermethrin degrading isolate designated as S10-1 showed the highest degradation rate was
selected for further study. The purified S10-1 was identified on the basis of its morphological
characteristics and results of biochemical tests and 16S rRNA gene sequence analysis. The
isolate S10-1 was grown on MSM agar plates containing 50 mg/L cypermethrin at 37℃ and 7500
lux for 7 days, its cell morphology, method of reproduction, and the structure of its inner
photosynthesis membrane and flagella were observed by transmission electron microscope
(JEM-6360, JEOL) and/or scanning electron microscope (JSM-6360LV, JEOL).

The isolate S10-1 was further confirmed by 16S rRNA gene sequence. The DNA was extracted
and purified using the Qiagen genomic DNA buffer set. PCR amplification was performed as
described by Mirnejad et al [28]. The 16S rRNA sequencing was performed by Beijing Liuhe
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Huada Genomic Company (Beijing, China). The sequences with the highest 16S rDNA partial
sequence similarity were selected and compared by CLUSTAL W. Phylogenetic and molecular
evolutionary analyses were conducted by MEGA 4.0 software with the Kimura 2-paremeter
model and the neighbor joining algorithm [29]. Confidence estimates of branching order were
determined by bootstrap resampling analysis with 1000 replicates.

2.4. Inoculum preparation

Unless otherwise stated, the inoculants for this experiment were bacteria cultured in a 130 mL
serum bottle containing 120 mL of PSB medium in a light incubator at 35℃ and 7500 lux. At
the exponential phase (about 2–3 days), the cell pellets were harvested via centrifugation
(5000×g, 10 min), washed 3 times with 50 mL of KH2PO4-K2HPO4 (0.15 mol/L, pH 7.0), and
then suspended in the same phosphate buffer as the inoculants. In order to avoid the effects
of hydrolysis and photolysis, each treatment was set in triplicate with non-inoculated samples
as control under the same conditions and analyzed in the same manner. Samples for residual
pesticide concentration analysis were collected from the cultures at regular intervals.

2.5. Optimal conditions for degrading cypermethrin by S10-1

To determine the optimal conditions for degrading cypermethrin by S10-1, single-factor test was
designed in this study under different conditions. To confirm the effects of temperature on
degradation, the media were placed in illuminating incubators at 10, 20, 25, 30, 35, and 40℃,
respectively. To determine the effect of cypermethrin concentration on degradation, MSM
media were added with cypermethrin ranging in concentration from 100 mg/L to 800 mg/L.
The media were prepared at pH values from 4.0 to 11.0 buffers for the measurement of the
effects of pH on degradation. All experiments were conducted in triplicate. The non-inoculated
controls throughout the studied were implemented at the same condition in order to exclude
the abiotic degradation affection.

2.6. Extraction of cypermethrin for residue analysis

The extraction and quantification of cypermethrin residue in the media was modified slightly
from method described in Yin et al [27] and Liu et al [30]. At different time intervals, triplicate
populations were sampled for cypermethrin concentration analysis. Cypermethrin was
extracted three times from the media with 100 mL of hexane. The hexane extracts from the
same samples were combined, dried with anhydrous sodium sulfate, and concentrated by
exposure to nitrogen gas to near dryness on a rotary evaporator at room temperature, and then
dissolved in 5 mL of hexane for GC detection. Before detection the residues were purified using
hexane pre-poured Florisil® columns (Agilent SAMPLIQ Florisil®, USA) and 0.22 μm mem‐
branes (Millipore, USA), and were then recovered in 5 mL of hexane; finally, the residues were
analyzed by performing GC. Preliminary experiments showed that the recovery of cyper‐
methrin in the above extraction and analysis procedures was >90%.

Residue analyses of cypermethrin degradation were performed using an Agilent 6890N GC
system (Agilent Technologies, USA) equipped with an electron capture detector (μ-ECD); an
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HP-5 5% phenyl methyl siloxane capillary column (30 m × 320 μm × 0.25 μm; Agilent Tech‐
nologies, USA) was used for separation, with helium as the carrier gas (flow rate, 1 mL/min).
Other GC parameters included an inlet temperature of 250℃ and a detector temperature of
300℃; initially, the oven temperature was 150℃ for 2.0 min, was ramped to 280℃ at 15℃/min,
and then maintained at 280℃ for 5.0 min. The injection volume was 1.0 μL. Samples were
introduced in split-less mode. Concentrations were determined by analyzing peak area with
an authentic cypermethrin standard.

2.7. Detection of cypermethrin metabolites

Metabolites were isolated from the culture filtrates of the organism grown in cypermethrin
(100 mg/L) by extraction with acetonitrile, before and after acidification to pH 2 with 2 M HCl,
and the residue obtained was dissolved in hexane [22]. The metabolites were identified and
analyzed using the GC/MS system (Agilent 7890A/5975, Agilent Technologies, USA) equipped
with electron ionization (EI). EI (70 eV) was performed with a trap current of 100 mA and a
source temperature of 200℃. Full scan spectra were acquired at m/z 45–500 at 2 sec per scan.
The metabolites were confirmed by standard MS, data collection and processing were
performed using Agilent MSD ChemStation software containing the Agilent chemical library.

3. Results and discussion

3.1. Isolation and characterization of cypermethrin degrading bacterium

After repeated enrichment and purification processes, we obtained approximately 20 strains
of organisms with different colony morphologies from the activated sludge samples. But the
degradation experiments showed the isolate S10-1 possessed the relatively higher degradation,
capacity of degrading cypermethrin (100 mg/L) by 90.4% after incubating 7 days at pH 7.0 and
temperature 35℃ (Fig. 3a). And S10-1 utilized cypermethrin as its sole carbon and energy source
in MSM. Thus strain S10-1 was selected for further detail investigation.

S10-1  is  a  gram-negative,  anaerobic  bacterium.  The  morphology of  the  S10-1  colonies,  cul‐
tured for 10 days on MSM agar plate, were reddish-brown, smooth, circular, wet, nontrans‐
parent, glistening, and with entire margins (Figure 1a). The physiological and biochemical
characteristics of S10-1  are shown in Table 1.  SEM observations showed that the cells  are
ovoid to rod shaped (Figure 1b), sometimes even longer, measuring about 0.5–0.9 μm in
width and 1.2–2.0  μm in  length,  and are  motile  by means  of  polar  flagella  (Figure  1c).
Internal  photosynthetic  membranes  appear  as  lamellae  underlying  and  parallel  to  the
cytoplasmic membrane (Figure 1d). The culture suspension was reddish-brown in color. In
vivo absorption maxima of intact cells (Figure 1e) were recorded at 378, 455, 480, 510, 592,
806, and 865 nm, indicating the presence of bacteriochlorophyll a and carotenoids of the
spheroidene series [31].  These morphological  and biochemical  properties are identical  to
the genus Rhodobacter [31].
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) 

(e) 

Figure 1. The characterization of strain S10-1. (a) The morphology of the S10-1 colonies, cultured for 10 days on MSM
agar plate; (b) Scanning electron micrograph of strain S10-1 (10,000×); (c) Electron micrograph of negatively stained
S10-1 cells showing polar flagella (40,000×); (d) Transmission electron micrograph of S10-1: a cross-section showing the
photosynthetic membrane (PM) lying parallel to the cytoplasmic membrane (200,000×); (e) Absorption spectra of liv‐
ing S10-1 cells.
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Items Results Items Results Items Results

Gram stain -a 3% NaCl - Aerobic dark growth +

Motility +b M. R reaction - Succinate utilization +

Hydrogen sulfide + Citrate utilization + Mannitol utilization -

V−P reaction - Acid from carbohydrates - Glycerol utilization +

Gelatin liquefaction + Indole production - Pyruvate utilization +

Catalase + Urease - Benzoate utilization -

Oxidase + Pigment production + Ammonia utilization +

Strach hydrolysis + Nitrate reduction + Tartrate -

Note: a Negative/Substrate not utilized; b Positive/Substrate utilized.

Abbreviation: VP-Vogues Proskauer; MR-Methyl Red.

Table 1. Physiological and biochemical characteristics of S10-1

3.2. Phylogenetic analysis and identification of S10-1

A 1380-bp 16S rRNA fragment was amplified from the genomic DNA of S10-1 and sequenced
(Genebank Accession NO. HM193898). Phylogenetic analysis of 16S rRNA revealed that S10-1

belonged to the genus Rhodobacter sphaeroides (Figure 2). S10-1 was temporarily identified as R.
sphaeroides according to its morphology, colony and cultural properties, physiological and
biochemical characteristics, absorption spectra (living cells), internal photosynthetic mem‐
brane, and phylogenetic analysis.

Microbial belong to the genus Rhodobacter, which are known to play a major role in the
treatment of organic wastewater, since they can utilize a broad range of organic compounds
as carbon and energy sources; moreover, they are ubiquitous in fresh water, soil, wastewater,
and activated sludge. Thus they have been selected for the treatment of many types of wastes
[32-34], while R. sphaeroides appears to be a new bacterium that may participate in efficient
degradation of cypermethrin. To our knowledge, there is not any information concerning the
ability of R. sphaeroides to degrade cypermethrin and other SPs. However, reports showed that
R. sphaeroides could effectively degrade pesticides including 2,4-d, quinalphos, monocroto‐
phos, captan and carbendazim [35].

3.3. Effect of temperature on cypermethrin degradation in MSM

Cypermethrin was degraded by S10-1 during incubation temperatures ranging from 10℃ to
40℃. The cypermethrin residues were detected after 7 days’ treatment. In cultures incubated
at 10℃ and 20℃, the results show that the degradation rate were 15.3% and 23.8%. However,
in cultures incubated at higher temperature, i.e. 25℃, 30℃ and 35℃, the degradation rate
reached 70.4%, 87.4% and 90.4% within 7 days, respectively, but the degradation rate was only
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61% when incubated at temperature 40℃ for 7 days. The best temperature for degradation was
35℃ (Figure 3a). Similar results were reported by Lin et al [36] who reported temperature
significantly influenced cypermethrin degradation by Streptomyces sp. strain HU-S-01. Our
results also reveal that cypermethrin degradation occurred at 30–35℃ indicating strain S10-1

preferred relatively high temperature condition. These results were consistent with previous
findings of Chen et al [21]. It is possible that some key enzyme(s) responsible for cypermethrin
degradation have their optimum enzymatic activity over such range of temperature. In non-
inoculated controls at different temperatures, abiotic degradation was negligible throughout
the studies.

3.4. Effect of initial concentration on cypermethrin degradation in MSM

Cypermethrin degradation at different initial concentrations by strain S10-1 was investigated.
The cypermethrin degradation rates were found to be 90.4%, 60.3%, 38.4%, 32.3%, and 28.7%
at concentrations of 100, 200, 400, 600, and 800 mg/L, respectively (Figure 3b). At low cyper‐
methrin concentration ranging from 100 to 200 mg/L, the degradation rate reached above 60%

 Rhodopseudomonas palustris(AB498819)

 Rhodopseudomonas palustris(AB498821)

 Rhodopseudomonas palustris(D84187)

 S10-1

 Rhodobacter sphaeroides (GU573899)

 Rhodopseudomonas sp. (AB251404)

 Rhodopseudomonas sp. (AF095928)

 Afipia genosp. (U87766)

 Afipia genosp.(U87768)

 Bradyrhizobium japonicum(AB513462)

 Bradyrhizobium japonicum(AB513466)

 Rhodobacter azotoformans(D70847)

 Rhodobacter sp.(AF515782)

 Ectothiorhodospira marina(X93476)

 Ectothiorhodospira variabilis (AM943121)

 Arthrobacter sp.(AY628689)
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Figure 2. Phylogenetic tree constructed by the neighbor-joining method based on 16S rDNA sequences of S10-1 and
related strains. Bootstrap values are given at branching points. The sequence of Arthrobacter spp. (AY628689) was se‐
lected as an out group. The tree was constructed using the neighbor-joining method. Bootstrap values at nodes were
calculated using 1,000 replicates (only values >70% are indicated). The GeneBank accession numbers for 16S rRNA
gene sequences are shown in parentheses.
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within 7 days. However at high concentration (400 to 800 mg/L), only about 30% was degraded
within 7 days. It might be because of the fact that microbial degradation starts slowly and
requires an acclimation period before rapid degradation occurs at high concentration. Similar
results were reported by Lin et al [36] who reported that initial concentration of carfofuran
was significantly efficiently degraded by Pichia anomala strain HQ-C-01 in contaminated soils.
In non-inoculated controls at different initial concentrations, abiotic degradation was negligi‐
ble throughout the studies.
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Figure 3. Optimal conditions for degrading cypermethrin by S10-1. (a) Effect of temperature on the degradation of cy‐
permethrin by S10-1; (b) Effect of the initial cypermethrin concentration on the degradation by S10-1; (c) (d) Effect of pH
on the degradation of cypermethrin by S10-1. Error bars represent standard deviation (SD) from the mean. Error bars
smaller than symbols are not depicted.
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3.5. Effect of pH on cypermethrin degradation in MSM

The pH is also an important factor, which significantly effects the degrading ability of bacteria
capable of degrading toxicities [37, 38]. To determine the effect of pH on degradation, MSM
medium prepared with different pH buffers, fortified with 100 mg/L cypermethrin, and
incubated at 35℃ and 7500 lux. Eight different pH (4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0) were
tested in the optimization experiment. The result showed that the degradation rate were 18.5%,
26.7%, 57.5%, 90.4%, 60.3%, 38.4%, 32.3%, 28.7%, respectively (Figure 3c). The optimal initial
pH value for degradation was between 6.0 and 8.0. Results revealed that S10-1 was able to
degrade cypermethrin over a wide range of pH. Similar results were reported by Zhang et al
[36] who reported that initial pHs were significantly efficiently degraded by two Serratia spp.,
and rapid degradation of cypermethrin at high pH while it was relatively low at acidic pH. In
non-inoculated controls at different pH conditions, abiotic degradation was negligible
throughout the studies.

3.6. Identification of cypermethrin degradation metabolites

The degradation metabolites of cypermethrin by strain S10-1 were extracted and identified by
GC/MS using Agilent MSD ChemStation software containing the Agilent chemical library. GC/
MS analysis of the metabolites showed the presence of 4 products. These compounds corre‐
sponded with cyclopropanemethanol (Figure 4a), 5-methoxy-2-nitrobenzoic acid (Figure
4b), 3,5-dimethoxybenzamide (Figure 4c), and 5-aminoisophthalic acid (Figure 4d). The
retention times of these compounds were 13.609, 14.874, 16.980, and 17.323 min, respectively.

Previous studies had reported about the biodegradation pathway of SPs [21, 39, 40]. In the
molecular structure of SPs there is an ester bond which is not as firm as other chemical bonds.
Literature indicated that the first step in the microbial degradation and detoxification of SPs
is the hydrolysis of its carboxyl ester linkage [23, 36, 41]. However, the chemical bond broken
of cypermethrin metabolites are not detected as that described in a previous study. It is evident
from our GC/MS results that S10-1 degraded cypermethrin by reductive dechlorination,
oxidation or/and hydrolysis to transform to other 4 metabolites. The cypermethrin degradation
pathway appeared to be different to the initial steps of SPs degradation by Ochrobactrum
lupine, Pseudomonas aeruginosa, Pseudomonas aeruginosa and Achromobacter sp. [21, 22, 42, 43].
Moreover, no 3-phenoxybenzoic acid (3-PBA) was detected in the metabolites by GC-MS after
7 days of treatment, while 3-PBA was generally regarded as the major metabolite after
hydrolysis of SPs in soil and water [21, 36, 42-44]. Owing to its antimicrobial activities [23, 45]
and transient GC/MS detectable peak [21, 45], biodegradation of 3-PBA was rarely reported.
Chen et al reported that fenvalerate was degraded by hydrolysis of the carboxylester linkage
to yield 3-PBA, and then the intermediate was further utilized for bacterial growth by strain
ZS-S-01, finally resulted in complete mineralization [42]. So, we speculated that carboxyles‐
terases and oxidoreductases involved in degradation of cypermethrin by strain S10-1, that
needed to be testified by further experiments.

On the other hand, R. sphaeroides are metabolically flexible and under different situations they
can grow chemoheterotrophically, chemoautotrophically, photoheterotrophically, and
photoautotrophically [46]. Because of this multiplicity of growth modes there has been
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considerable interest in studying of degrading toxic compounds [35, 47]. The structural
components of this metabolically diverse organism and their modes of integrated regulation
are encoded by a genome of ∼4.5 Mb in size [46]. Moreover, its large inventory of transport
and chemotaxis genes also implies that Rhodobacter is adept at sensing and acquiring diverse
compounds from its environment [48-50].

 

(a) (b) 

) 

(c) (d) 

Figure 4. GC/MS spectra of four main metabolites produced during cypermethrin degradation by strain S10-1. (a) cyclo‐
propanemethanol; (b) 5-methoxy-2-nitrobenzoic acid; (c) 3,5-dimethoxybenzamide; (d) 5-aminoisophthalic acid.

4. Conclusion

R. sphaeroides strain S10-1 was isolated from an activated sludge sample collected from the
wastewater treatment pool of a pesticide plant. It can utilize cypermethrin as sole source of
carbon, nitrogen and energy. The optimal temperature and pH for biodegradation of cyper‐
methrin by strain S10-1 were 35℃and pH 7.0, and the degradation rate reached 90.4% within 7
days under the optimal conditions. Four metabolic compounds were detected, hinting that
there are complex redox reactions are involved in the cypermethrin degradation process.

In conclusion, our results indicated that strain S10-1 could be a good choice for the bioremedia‐
tion of cypermethrin contaminated water and soil. However, further studies such as its
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interactions with environment, toxicological aspects, degradation enzymes, biochemical and
genetic aspects are still needed before the application in actual field-scale bioremediation.
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