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1. Introduction

1.1. The evolution of the concept of matrix

Even in the early times of chromatography with conventional detectors (i.e. UV/VIS, FID) it
became evident that different sample matrices present peculiar interfering compounds, and
the importance of using appropriate spiked matrix calibrators in order to get reliable quanti‐
tative results was recognized. In these conditions, however, the main concern was the presence
of coeluting compounds giving similar detector responses, while the risk to alter the detector
response of the analyte was not yet an issue.

Coupling liquid chromatography with mass spectrometry (LC-MS) was an important step
forward because polar and thermally unstable compounds could be effectively analyzed and
the poor specificity of previous detectors was overcome. The main steps to the hyphenation
of the two separation techniques were made by Doles and Fenn with the development of the
atmospheric pressure ionization (API) interfaces (Doles et al, 1968; Whitehouse et al, 1985;
Fenn et al, 1989; Mallet et al, 2004). In short time LC-MS/MS has become an important tool for
the analysis of drugs and metabolites from biological fluids, or for trace analysis from complex
mixtures with many applications, e.g. pharmacokinetic studies of pharmaceuticals or the study
of proteomics. John Fenn received in 2002 the Nobel Prize in Chemistry for his contribution to
the development of the electrospray ionization (ESI) technique.

This huge improvement in selectivity brought quickly to a simplification of separation
methods and/or sample preparation but on the other hand unexpected quantitative or even
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qualitative results were observed. Significant differences in peak intensities were observed
comparing chromatograms recorded on neat solutions and biological extracts with equivalent
concentrations. In most of the cases the signal intensity is reduced, although sometimes signal
enhancement could also be detected. A new concept, that of matrix effect, was emerging, and
coeluting components were recognized as very important in influencing analytes ionization
and detector response. A much more complex vision of the matrix effect is now widely
accepted and even matrix differences between samples of the same kind are in the center of
attention.

As a matter of fact, a lot of emphasis is currently put on adequate validation procedures for
analytical methods in order to be sure that correct quantitative or even qualitative data are
obtained.

Matrix components of a sample can affect, most times negatively, the analytical measurement
of the main compound. The phenomenon was called “matrix effect” and was defined at the
Workshop on “Bioanalytical Method Validation-A Revisit with a Decade of Progress”
(Workshop held in Arlington VA, January 12-14, 2000) as “The direct or indirect alteration or
interference in response due to the presence of unintended analytes (for analysis) or other
interfering substances in the sample” (Shah et al, 2000).

Mass spectrometry is a powerful analytical technique based on ions separation; therefore
ionization is of key importance for high sensitivity and selectivity. The ionization efficiency
depends on the physico-chemical properties of a molecule, and also on the conditions estab‐
lished in the ionization interface. In ESI the eluent from the chromatographic column, already
containing ionic species, is pumped through a capillary; a high voltage is applied to the
capillary producing charge separation at the surface of the liquid. The so-called “Taylor cone”
is produced at the end of the capillary and liquid is nebulized into charged droplets. When the
charge becomes sufficient to overcome the surface tension that holds the droplet together, gas-
phase ions are released (Kebarle and Tang; 1993, Chech and Enke, 2001). Iribarne and Thomson
published one of the first theories on gas-phase ions emission from charged droplets. The rate
of ion emission from a droplet is proportional to the number of charges and will be higher for
the more surface-active ion (Iribarne and Thompson, 1976 and 1979). It is very likely that here
is where matrix components are interfering, competing in these processes; the mechanisms are
not fully elucidated.

The ion suppression effect in ESI was first described by Kebarle and coworkers in the 1990s.
They have shown that the ESI response is linear with the analyte concentration in the range
from 10-8M to 10-5M, and in a mixture of organic basic compounds, the signal of an organic
base ion measured as MH+ could decrease with increasing concentration of another basic
compound depending upon surface activity and Iribarne constants of the respective com‐
pounds. The decrease in ion intensities of the MH+ ions were attributed to gas-phase proton
transfer reactions between the electrosprayed gas-phase ions and evaporated molecules of the
stronger gas-phase base (Ikonomou et al 1990; Kebarle and Tang, 1993).

Buhrman and coworkers published in 1996 a study on ion suppression in plasma samples
(Buhrman et al, 1996). The authors have validated a method for the quantitation of SR 27417 (a
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platelet-activating factor receptor antagonist) in human plasma. During method development,
noticing a loss of signal in extracted samples compared to the neat solutions they studied the
extraction efficiency of three sample clean-up procedures and their effect on analyte ioniza‐
tion. The matrix effect was evaluated by injecting: A) a neat solution of a concentration present
in the sample considering an extraction efficiency of 100%; B) a spiked plasma sample extract‐
ed and C) a blank plasma extracted and spiked post-extraction with the solution from experi‐
ment A). Subsequently, the loss of intensity between A) and B) represents the efficiency of the
total process, whilst the loss of intensity between A) and C) is the ion suppression (Buhrman et
al, 1996).

Later, Matuszewski and coworkers compared the HPLC-MS/MS interface with a “chemical
reactor” in which primary ions react with analyte molecules in a complex series of charge-
transfer and ion-transfer reactions, depending of the ionization energies and proton activities
of the present molecules (Matuszewski et al, 2003).

In such conditions, as the solvent evaporates, inside the droplet a competition starts between
the proton affinity of the analyte and co-analyte, for the proton transfer to take place. If the co-
analyte has a higher gas-phase proton affinity than the analyte this one will be protonated first,
instead of the analyte, therefore the ion intensity of the last one will be reduced. In the same
time, the presence of any nonvolatile matrix components will prevent the droplets to reach
their critical radius and surface field by increasing their viscosity and surface tension and
decreasing the solvent evaporating rate (Matuszewski et al, 2003). As observed also by King
et al, the ionization suppression in biological extracts was the result of the high concentration
of nonvolatile compounds present in the droplet solution and was not affected by the reactions
occurring in the gas-phase (King et al, 2000).

Matrix effects are not attributed only to ESI interface, although some studies show that
atmospheric pressure chemical ionization interfaces (APCI) are less susceptible to ion sup‐
pression, mainly due to the APCI mechanism, which occurs by charge transfer from the ionized
solvent/additives when the analytes are already in gas-phase (King et al, 2000; Henion et al,
1998; Hsieh et al, 2001, Souverain et al, 2004). Nevertheless APCI and other types of ionization
(e.g. atmospheric pressure photoioization – APPI) are not matrix effects-free but the ionization
processes being different, the behavior is of course different from that of ESI. Ion suppression
is not always directly related to the saturation of the charge available in ESI, but it may be
related to changes either in the liquid-to-gas transfer efficiency or in the charge transfer
efficiency (Sangster et al, 2004); experimental data obtained also by our group with these three
ionization interface will be presented in the next sections.

Using the same sample preparation and chromatographic conditions, some studies compared
the results obtained with a triple quadrupole MS interfaced with APCI or ESI, in order to
evaluate the selectivity and reproducibility of an existing HPLC-MS/MS assay method (Fu et
al, 1998, Matuszewski, et al, 2003).

Matuszewski and coworkers have introduced the concepts of quantitative assessment of the
“absolute” and “relative” matrix effect. The absolute matrix effect was considered as the
difference between response of the same concentration of standards spiked before and after
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extraction of the matrix. The variation of the absolute matrix effect between several lots of the
same endogenous matrix was defined as relative matrix effect. Matrix effect (ME), recovery of
the extraction (RE) and process efficiency (PE) were evaluated according with the equations:

ME(%)=B/Ax100

RE(%)=C/Bx100

PE(%)=C/Ax100=(MExRE)/100

Where A is the chromatographic peak area of the standard in neat solution, B is the peak area
of the standard spiked into plasma after extraction and C is the peak area of standards spiked
before extraction.

It is the same approach used by Buhrman group, but it also takes in consideration the potential
for ion enhancement. In this study, Matuszewski and coworkers observed significant ioniza‐
tion enhancement with APCI interface (≈130%) and slight enhancement (analyte) or suppres‐
sion (internal standards) with ESI interface (≈110% and ≈90%, respectively) (Matuszewski et
al, 2003).

To conclude, the effect on the analytical signal of all compounds excepting the main analyte
is therefore defined as “matrix effect” and is expressed as a matrix factor by the equation:

Matrix Factor (MF) = Peak response in presence of matrix ions/Peak response in the neat solution

MF=1 indicates no matrix effect

MF<1 indicates ion suppression

MF>1 indicates ion enhancement.

In bioanalysis, matrix effects are very specific and complex at the same time, because each
biological matrix is unique and can affect differently any analytical technique used for the
identification and quantitation of an analyte from the matrix. The extent of the matrix effect
depends upon: 1) the sample matrix; 2) sample preparation procedure used for clean-up, 3)
chromatographic separation (column, mobile phase,…) and, 4) ionization interface.

Phospholipids are a major source of matrix effects in bioanalysis. Most of them are ionized under
positive mode due to the presence of quaternary nitrogen atoms. Glycerophosphocholines are
the major phospholipids in plasma and are known to cause significant LC-MS/MS matrix
ionization effects in the positive mode (Little et al, 2006, Bennet et al, 2006, Jemal et al, 2010).

The quantitative evaluation of the matrix effect is performed based on the approach described
above (Buhrman et al, 1996, Matuszewski et al, 2003). For a qualitative evaluation, a classical
experiment consists of injecting the extracts of blank (non-spiked) biological samples on the
column, in the analysis conditions, while the target analyte is infused post-column at a
concentration giving a high and flat signal. The influence of the co-extracted compounds will
produce gaps (ion suppression) or peaks (ion enhancement) on the analyte signal. A lot of
examples were presented in literature (Bonfiglio et al, 1999; Dams et al, 2003; Souverain et al,
2004 etc); in the second section of this chapter experimental data obtained for pramipexole in
different analytical conditions will be presented.
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The matrix effect became a critical parameter in bioanalytical method development and
validation. For pharmacokinetic studies, FDA guidance documents (FDA 2001) require that
this effect to be evaluated as a part of development and validation of a quantitative LC-
MS/MS method, and more recent EMA guidelines as well (EMA 2011).

For an accurate quantitation of the requested analytes, the use of an isotope-labeled internal
standard is required. This will reasonably compensate the eventual matrix effects, being
chemically identical and hence it will be suppressed or enhanced in the same manner as the
analyte (Viswanathan et al, 2007). When isotope-labeled standards are not easily available,
structural analogues of the compound of interest or related molecules that match its extraction
and chromatographic properties can be used, but in this case the matrix effects compensation
can be different and the impact on results reliability should be evaluated.

2. Relevance of matrix effect in HPLC-MS/MS

Due to its high selectivity and sensitivity, mass spectrometry in tandem with liquid chroma‐
tography became quickly a powerful analytical tool and even took the supremacy over the
coupling with gas-chromatography in various fields, like genomics and proteomics, metabolite
identification and metabolomics, or regulated bioanalysis. Along with the development of
HPLC-MS/MS instrumentation and its applications, the matrix interferences were observed
and studied from the beginning. The importance of matrix effects was recognized especially
in quantitative analysis, because they can heavily influence the reproducibility, linearity and
accuracy of the method, leading to altered results (Trufelli et al, 2011). Although not so much
considered, qualitative analysis can be also affected because some trace compounds will not
be identified in a sample if their signal is excessively suppressed by matrix, thus giving
erroneous assessment of the composition of the sample.

Matrix effects are different depending on the sample nature, and moreover variations are
observed between different lots of the same type of sample. The phenomenon was defined by
Matuszewski et al as “relative matrix effect”. As discussed above, electrospray ionization is
more influenced than other ionization techniques. Coming to chromatography, the matrix
effect is usually higher on the early-eluting peaks, because all hydrophilic compounds from
the biological sample are not well retained in reversed-phase columns and usually elute in the
first minutes. This is not a 100% rule though, because some phospholipids, flavonoids or other
classes of organic compounds can be strongly retained and in some cases, depending on the
chromatographic conditions, they even accumulate in the column and elute periodically after
a series of injections, thus a strong matrix effect being noticed only on the respective sample
and not overall (Little et al, 2006; Jemal et al, 2010).

Some examples registered during routine work in our laboratory will be presented next. In the
first case, we have developed and validated a method for quantitative determination of
salicylic and acetylsalicylic acids in plasma by LC-MS/MS on an API4000 QTrap (AB Sciex)
quadrupole-linear ion trap instrument, using an ESI interface, in negative mode. The chroma‐
tographic separation involved an Ascentis Express RP-Amide (10cmx2.1mm, 2.7μm) column,
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eluted in isocratic conditions, at 0.25 mL/min, with a mobile phase consisting of 0.1% formic
acid in water/acetonitrile 45/55 (v/v). The concentration range to be measured in the biological
samples being quite high (low limits of quantification/LLOQs of 5 and 50 ng/mL for acetylsa‐
licylic and salicylic acid, respectively), a simple protein precipitation with acetonitrile was
chosen for sample clean-up and further optimized. D4-salicylic and D4-acetylsalicylic acids
were used as internal standards and matrix effects were evaluated during method validation.

Analysing a large set of plasma samples from a group of patients treated with acetylsalicylic
acid, different matrix effects were observed in some volunteers compared to those registered
on calibration curves and control samples (prepared by spiking a pooled plasma lot). Fig. 1
and 2 show the metric plots of D4-acetylsalicylic acid and D4-salicylic acid chromatographic
peak areas, respectively, in one of the batches (including calibrator and OC samples); as
expected stronger ion suppression can be seen on the transition of D4-acetylsalicylic acid,
eluting first (retention time 1.15 min), compared to D4-salicylic acid (retention time 1.6 min).

Figure 1. D4-acetylsalicylic acid (internal standard) chromatographic peak area plotted against the sample index in
the results table, after the analysis of a batch containing unknown samples, calibration (CC) and control (QC) points.
ESI ionization. Data legend on the left. High ion suppression can be observed between different plasma sources (un‐
known samples versus CC and QC samples).

Another situation often encountered in quantitative determinations is when the analyte sig‐
nal is progressively suppressed after the injection of biological extracts, until a plateau is
reached. For this reason, column equilibration by injecting an appropriate number of ex‐
tracted samples is recommended before starting the analytical run.

Figure 3 shows the influence of the accumulated matrix on the signal of medroxyprogesre‐
tone17-acetate observed in our laboratory during method development. In this case the
analysis was performed on an API 5000 triple quadruople mass spectrometer (AB Sciex), in
positive ions mode, using an APCI interface. Medroxyprogesterone-17-acetate was used as
internal standard for the quantitative analysis of chlormadinone acetate. The sample extracts
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Figure 2. D4-salicylic acid (internal standard) chromatographic peak area plotted against the sample index in the re‐
sults table, after the analysis of a batch (the same as in Fig. 1) containing unknown samples, calibration (CC) and con‐
trol (QC) points. ESI ionization. Data legend on the left. High ion suppression can be observed between different
plasma sources (unknown samples versus CC and QC samples). However, later-eluting D4-salicylic acid was less affect‐
ed than D4-acetylsalicylic acid by matrix effects.

Figure 3. Medroxyprogesterone 17-acetate (internal standard) chromatographic peak area plotted against the sam‐
ple index in the results table, after the analysis of a batch containing unknown samples, calibration (CC) and control
(QC) points.APCI ionization. Data legend on the left. Progressive ion suppression is noticed after the injection of plas‐
ma extracts, until an equilibration of the system with the matrix components. The injection of a solvent sample is parti‐
ally alleviating the matrix effects.

Matrix Effects in Mass Spectrometry Combined with Separation Methods — Comparison HPLC, GC and Discussion…
http://dx.doi.org/10.5772/55982

9



were separated on a LiChrospherRP-Select B (12.5 cmx3 mm, 5μm) column, eluted at 1.2 mL/
min with a mobile phase composed of acetonitrile and water, in gradient conditions (starting
from 70 to 97% acetonitrile). The low limit of quantification being in the low pg/mL range, a
liquid-liquid extraction procedure was selected for sample clean-up. As it can be seen on the
internal standard peak area metric plot, the sensitivity is quite high in the first samples of the
run, then the signal goes down until stabilizing at a certain level. After the injection of a wash
sample (mobile phase) the sensitivity increases again. The decreasing intensities could be
produced by an instrument charging also caused by matrix components accumulated on some
parts of the ion-path. This is an example of ion suppression in APCI and underlines the fact
that co-extracted matrix can have an impact not only on the current but also on the next
injections.

More recently we have conducted in our laboratory a series of experiments on pramipexole, a
dopamine agonist in the non-ergoline class prescribed for the treatment of Parkinson’s disease
and restless leg syndrome. Because of its structure and its quite low molecular mass (211.324
g/mol), pramipexole quantification has proven to be a difficult problem to solve. Very good
sensitivity and chromatographic separation were achieved with neat standards, but going
further to plasma samples, issues of ion suppression and high chromatographic background
have led to a long method development that covered almost all possible tests. For the final
method, a separation on a pentafluorophenylpropyl stationary phase (Discovery HSF5,
10cmx2.1 mm, 5 μm, Supelco) was preferred, and elution was performed with a mixture of
acetonitrile/ammonium formate 10mM, pH 6 (75/25, v/v) delivered at 0.7 mL/min. Mass
spectrometer, API 3000 (AB Sciex) with HSID modified interface (Ionics) was operated in ESI
positive ions mode. Measured concentrations being again in the low pg/mL range, a large
number of experiments were conducted for a better clean-up and pre-concentration of the
analyte from plasma. The matrix effects were explored with the classical test of post-column
infusion of the target analyte. The results obtained after injecting blank plasma processed by
solid-phase extraction (SPE, on cation-exchange Isolute SCX-3 100 mg cartridges, eluted with
ammonia 5% in methanol), direct protein precipitation with solvent (acetonitrile) and sup‐
ported liquid-liquid extraction (Isolute SLE 400mg cartridges, eluted with methyl-tert-butyl
ether) are presented in Figure 4. As expected, direct protein precipitation produced the highest
ion suppression, all over the recorded chromatogram and as well in the region of the target
analyte peak (retention time 2 min).

In order to evaluate the contribution of phospholipids to these matrix effects, a second
experiment, precursor ion scan of m/z 184, in positive mode, over a range from 200 to 1000 Da,
was performed (Figure 5). This is used to detect all phosphatidylcholines (PC), lyso-phospha‐
tidylcholines(lyso-PC) and sphingomyelins (SM) (Jemal et al, 2010).

The precursor ion experiment on the sample processed by direct precipitation with acetonitrile
shows a correlation between ion suppression on the pramipexole main transition 212.2/153.1
and the presence of PC, lyso-PC and SM (Figure 5, A and B). The extracted masses (Figure 5
C and D) confirm the presence of lyso-PC in the beginning of the chromatogram (m/z 406.5,
retention time 0.6) and SM in the same elution region with the analyte (m/z 703.8, retention
time 2 min). The main suppression effect between 0.2-0.4 and 1.4-1.6 minutes seems in this case
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Figure 4. Ion-suppression monitored on the chromatographic traces of pramipexole (blue: 212.2/153.1, red:
212.2/111.1) in the conditions of the method described in the text, after the injection of A) blank plasma processed by
direct precipitation of plasma proteins with acetonitrile, centrifugation, dilution 1:1 with mobile phase and injection in
the LC-MS/MS system; B) blank plasma extracted on a cation-exchange cartridge Isolute SCX-3 100 mg, eluted with
ammonia 5% in methanol and C) blank plasma extracted on an Isolute SLE400 mg cartridge eluted with 0.6 mL meth‐
yl-tert-butyl ether
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not produced by phospholipids; obviously salts and highly polar compounds are influencing
the first region and some other lipids, amines, sterols etc could affect the second region.

Elemental sodium, potassium, iron, phosphorus and sulfur were measured in the same
samples by ICP-MS (ELAN 6100 Perkin Elmer equipped with Apex-Q inlet system and PFA-
ST nebulizer). Very high sodium and potassium concentrations were obviously measured in
the plasma sample precipitated with acetonitrile, while in SLE the salts are not expected to be
present, fact confirmed by ICP-MS (Figure 6). SPE also has high sodium levels (metal ions
retained on the SCX-phase).

Similar experiments were presented in literature back in 1999, employing as model compounds
caffeine and phenacetin (Bonfiglio et al). The authors have used a post-column infusion set-
up and injected in the column plasma samples processed by protein precipitation with
acetonitrile, liquid-liquid extraction with methyl-tert-butyl ether and SPE on Empore C2, C8,
C18 and Oasis HLB. The highest ion suppression in ESI was observed for the protein precip‐
itation, followed by Oasis SPE.

In conclusion, the sample nature, the ionization interface, mobile phase additives, stationary
phases and last but most important, the sample clean-up technique, are all determining the
extent of matrix effects in bioanalysis. Very interesting – and this makes the LC-MS/MS
challenging but also beautiful – is that although some general rules can be established, these
mechanisms are compound-dependent; in some cases there are no relevant matrix effects
whilst in some others each parameter need to be optimized one by one for the best result. For
our example analyte, pramipexole, positive electrospray ionization offered the best sensitivity.
Different chromatographic conditions from reversed-phase at acidic or basic pH to HILIC and
all three classical sample preparation methods were tested; in the end pentafluorophenyl‐

Figure 5. Ion-suppression monitored on the chromatographic traces of pramipexole (A) in the conditions of the meth‐
od described in the text, after the injection of blank plasma processed by direct precipitation of plasma proteins with
acetonitrile, centrifugation, dilution 1:1 with mobile phase and injection in the LC-MS/MS system. For correlation the
precursor ion of m/z 184 scan (B) and extracted masses of two phospholipids (C and D) are presented below.
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propyl stationary phase was preferred, elution was performed with a mixture of acetonitrile/
ammonium formate 10mM, pH 6 (75/25, v/v) and biological sample preparation by solid-phase
extraction on cation-exchange Isolute SCX-3 96-well plates has given the best recovery and less
interferences.

Figure 6. Elemental content (very interesting to notice the metal ion content) determined by ICP-MS in three plasma
samples processed by SLE, SPE and solvent precipitation, as described in Section 2.

3. Relevance of matrix effect in GC-MS

In gas chromatography-mass spectrometry (GC-MS) the matrix effects were generally
neglected, most probably due to the sophisticated sample preparation techniques employed
for GC-MS, but they are not always negligible.
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Gas chromatography involves chromatographic separation of volatile and thermally stable
small molecules (in certain cases derivatization is needed to induce these properties), using a
gaseous mobile phase. In GC-MS the analytes eluted from the chromatographic column enter
directly into the mass spectrometer source where they are ionized by bombardment with free
electrons (electron impact ionization), causing the fragmentation of molecules in a reproduci‐
ble way, or they are ionized interacting with a reagent gas like ammonia or methane (chemical
ionization).

The application of GC-MS to biochemical analysis and especially in metabolomics is based on
the pioneering a work of Horning and coworkers who have demonstrated in 1971 that this
technique could be used to measure different compounds present in urine and extracts. It was
for the first time when the metabolic profile terminology was used (Horning et al, 1971). The
next step was the diagnose of metabolic disorders by a urine test, introduced by Tanaka and
coworkers (1982).

Due to the different mechanisms involved in the ionization process, there is a big difference
between the matrix effects produced in LC-MS and GC-MS. While in LC-MS the co-eluted
compounds affect the soft ionization mechanism in the interface, in GC-MS the ionization
energy is high enough to overcome competing ionization processes, therefore mostly the GC
inlet and the chromatographic column are affected by the matrix compounds, this being
reflected in a high background in cases of very dirty samples or improper separation. Even
though, several groups of researchers have noticed peculiar results.

In gas-chromatography the ion enhancement effect was described for the first time as ”matrix
induced chromatographic response” by Erney and coworkers while they were analyzing
organophosphorous pesticides in extracts from milk and butterfat (Erney et al, 1993). Accord‐
ing to their theory, during injection of standards in neat solvents, analytes could be adsorbed
and thermo-degraded on the active sites of the injector or column, represented by the free
silanol groups. When a real sample extract is analysed, matrix compounds block the active
sites and less analyte molecules will be adsorbed, consequently enhancing their signal. In such
conditions an overestimation of the calculated concentration of analytes will occur if a matrix-
matched calibration curve is not used.

In the same time, the increase of the number of new active sites by gradual accumulation of
non-volatile matrix compounds in the GC inlet and front part of the chromatographic column,
could decrease the analyte response as “matrix – induced diminishment effect” (Hajslova et
al, 2007).

Compared to LC-MS, the two phenomena of the matrix effect occur simultaneously and
practically is impossible to control the formation of new actives sites from deposited non
volatiles matrixes. To compensate the matrix effect phenomena, the thorough clean-up of the
sample to be injected (with or without derivatization) by different extraction techniques, the
use of alternative calibration methods like addition of isotopically labeled internal standards
or the standard addition method, as well as masking the actives sites of the system by different
reagents, have been adopted.
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To compensate the matrix effect analyte protectants are used in GC-MS. These compounds are
added both to the sample and standard solution to interact strongly with the active sites of the
GC system, mainly with the silanol groups, and minimizing the matrix effect (Mastovka et al, 2005).

The evaluation of the matrix effect was used as a validation parameter for the GC-MS assay in
plasma, urine, saliva and sweat of Salvinorin A, the main active ingredient of the hallucino‐
genic mint Salvia divinorum. The peak areas of extracted blank samples spiked with standards
after extraction procedure were compared with the peak areas of pure diluted substances. The
recovery was very good and results showed analytical signal suppression less than 10% due
to co-eluting endogeneous substances (Pichini et al, 2005).

4. Different approaches to minimize the matrix effect during sample
preparation both in HPLC-MS and GC-MS

The techniques used for sample preparation in order to decrease the matrix effects can be
grouped in five classes:

1. Non selective methods to eliminate proteins (i.e. protein precipitation)

2. Non selective methods to separate hydrophobic compounds, generally but not always
containing the analyte, from the hydrophilic fraction (i.e. liquid/liquid extraction)

3. Selective chromatographic methods to separate off-line the analyte from the matrix (i.e. SPE)

4. On-line chromatographic methods to separate the analyte from the matrix (i.e. column
switch two-dimensions HPLC methods with different stationary phases)

5. Analyte pre/post column derivatization to enhance analyte separation from matrix
components, and ionization; this approach can be combined with any one of the previous.

1. Non selective method to eliminate proteins

It is first of all clear that these methods are useful in samples containing important amount of
proteins. Protein precipitation is of modest use in normal urine samples almost free of proteins
while in case of pathologic urine with high protein content it makes sense; in case of plasma
there are no doubts that the protein precipitation is quite effective.

A few basic observations are important to understand the fundamentals of protein precipita‐
tion methods:

• The precipitation method used must avoid introducing a new matrix factor that we cannot
separate from the analyte of interest, like heavy salt contamination;

• The precipitated samples must have a final composition adequate to guarantee the solubility
of the analyte; usually, poor water soluble compounds are better precipitated in solvent then
in mineral acid;
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• Many precipitation methods, like those with solvents, will introduce a relevant dilution that
may limit the application if the instrumental analytical sensitivity was not good enough;

• Not any precipitation conditions will bring to samples compatible with any HPLC method,
like aqueous samples in case of a HILIC separation. In such cases solvent evaporation and
sample reconstitution with an appropriate mobile phase is needed;

• The precipitating agent may alter, for example by chemical degradation or chemical
reaction, the analyte of interest; this factor must be adequately verified;

• The precipitation process will transform relatively homogenous samples, like those of
plasma, in a non-homogenous mass; adequate mixing procedures and precipitation times
must be used to guarantee a complete precipitation within the all sample.

Keeping in mind the above aspects the main precipitation methods are:

a. Solvent precipitation – Methanol, ethanol, acetonitrile and acetone, are probably the most
widely employed solvents; this is also the most suitable procedure for LC/MS analysis;

b. Acid precipitation – Another widely used approach of precipitation based most often on
halogenated organic acids like trichloroacetic acid but also on inorganic acids like
perchloric acid, tungstic acid.

c. Salt precipitation – A less used approach in combination with LC-MS/MS exactly because
of the risk of high ion suppression, but with certain established applications, e.g. zinc
sulfate in immunosuppressant analysis (Koster et al, 2009)

d. Thermal precipitation – This is for sure the oldest method of protein precipitation but it
is seldom used nowadays for analytical purposes (Fan et al, 2001). The technique remains
important for protein purification.

e. Support assisted precipitation – similar with the solvent precipitation but using a solid
phase bed (e.g. 96-well format PPT plate) that filters/retains the precipitate after centrifu‐
gation (Biotage).

2. Non selective methods to separate hydrophobic compounds from the hydrophilic fraction

In case of hydrophobic compounds, mixing the biological sample, generally aqueous, with a
suitable non miscible organic solvent, will bring to a partition of the analyte in the solvent,
leaving the proteins and salts in the aqueous phase. This process of liquid-liquid extraction is
giving the cleanest extracts from biological matrices and it is the main sample preparation
procedure for CG-MS and also widely used in HPLC-MS/MS.

The following basic procedures are used for this type of extraction:

a. Classical liquid/liquid extraction (LLE) – In this system the aqueous based samples are
mixed with an adequate solvent, shaken for a fixed period of time, allowed separating
(usually by centrifugation) and the solvent is recovered and further used for analyses,
after evaporation and reconstitution with an appropriate mobile phase, but some studies
even optimized conditions for direct injection of hydrophobic extracts in reversed-phase
conditions (Medvedovici et al, 2011)
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b. On-line liquid/liquid extraction – In this case the extraction procedure is performed by
flowing the two non-miscible phases (the aqueous samples and the organic extraction
solvent), generally countercurrent, in a chamber of adequate design. The organic eluent,
enriched by the analyte of interest is directly analyzed without further processing, or it is
evaporated and reconstituted with an appropriate mobile phase, depending on the
chromatographic method.

c. Supported liquid extraction – In this particular technique the biological samples (neces‐
sarily fluids) are absorbed over a solid support capable to retain a thin layer of liquid on
its hydrophilic surface. A non-miscible solvent is then passed through the solid support
containing the samples and the analyte is partitioned in the solvent; this will be recovered
and further used for analysis.

The liquid-liquid extraction is also used, although currently to lesser extent, for the washing/
removal of the impurities from the sample. In some cases, a series of extraction and back-
extraction steps are carried out, in order to obtain a better clean-up of very dirty samples, or
when the analyte suffer from high background interferences.

3. Selective chromatographic methods to separate off-line the analyte from the matrix (i.e. SPE)

Solid phase extraction techniques are widespread and very valuable sample preparation
techniques. Based on the retention of the analyte on a stationary phase by different mechanisms
(adsorption, ion-exchange, size-exclusion) and elution with an appropriate organic solvent at
the right pH, solid-phase extraction has some advantages over liquid-liquid extraction. First
of all the broad range of stationary phase beds can cover all classes of compounds, including
highly polar ones; second, larger volumes of sample, even 1 L, can be loaded on the SPE
cartridges, while in LLE such volumes are more difficult to handle. Of course here one must
take into account that increasing pre-concentration will apply not only to the target analyte
but also to the co-extracted compounds, therefore stronger matrix effects could be expected;
careful optimization of SPE conditions is needed for best results.

Off-line SPE can be performed in tubular cartridges, 96-well format beds, flat disks, thin film
(SPME) etc., under vacuum or applying a positive pressure from above. Solid phase micro
extraction (SPME) is already routinely used in GC/MS and literature data were reviewed by
Vas and Vekey (2004). SPME helps to minimize effects due to interfering organic compounds
in complex matrices (Sigma Aldrich). Applications were developed for forensic, environmen‐
tal or food analysis. Brown and coworkers developed and applied a SPME-GC-MS method for
measuring four club drugs, gamma-hydroxybutyrate, ketamine, methamphetamine, and
methylenedioxymethamphetamine, in human urine using deuterium labeled internal stand‐
ards. The drugs were spiked into human urine and derivatized using pyridine and hexyl‐
chloroformate to make them suitable for GC-MS analysis. The SPME conditions of extraction
time/temperature and desorption time/temperature were optimized to yield the highest peak
area for each of the four drugs (Brown et al, 2007). Headspace solid-phase micro-extraction
(HS-SPME) integrates sampling, extraction, concentration and sample introduction into a
single step for GC analysis of biological fluids and materials. Compared to liquid-liquid
extraction and solid phase extraction, extracts are very clean and despite the absolute recov‐
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eries of the analytes from whole blood are rather low, generally <10% (Mills and Walker,
2000), due to the possibility of a good pre-concentration, interesting LLOQs are achievable.
The same technique was used for the determination of volatile organic compounds released
by packaging expanded polystyrene by GC/MS (Kusch and Knupp, 2004).

With respect to ion suppression, for any LC-MSMS analysis is good to know whether the loss
of the sensitivity is due to poor recovery or to matrix effects on the analyte ionization. A
combination between an anionic – exchange SPE for sample preparation and a pre-column –
analytical column switching approach was used to minimize the matrix effect and to achieve
the LLOQ to 2.5 pg/ml for salmeterol in plasma (Capka and Carter, 2007).

4. On-line chromatographic methods to separate the analyte from the matrix (i.e. column
switch two-dimensions HPLC methods with different stationary phases)

The isolation of the target analyte from matrix can be performed also on-line, typically with
the help of a dual HPLC-system and a column-switching valve (of course more complex
multiplexing systems are commercially available). On-line methods have several advantages:
direct injection of the biological material (if fluid), easier for automation, therefore reducing
health risks correlated with handling of hazardous material, not generating waste as used
cartridges, and not the least, in a long run less expensive. As a drawback, the amount of sample
loaded is limited, but the coupling with a very sensitive mass spectrometer will overcome the
limited sample enrichment.

For on-line sample preparation, different stationary phases embedded as classical SPE
columns, or as restricted access media (RAM) and perfusion chromatography (POROS)
columns are available; another technique of interest is turbulent flow chromatography.

5. Analyte pre/post column derivatization to enhance analyte separation from matrix
components, and ionization; this approach can be combined with any one of the previous.

Derivatization is commonly applied in GC/MS analysis in order to increase volatility and
thermal stability of various compounds. In LC-MS/MS derivatization reactions are less used;
they become important when the ionization of the target analyte is poor or matrix interferences
are high. A classical example is the quantitative determination of estradiol and estrone via
dansylated derivatives, in positive ionization (Nelson et al, 2004) or the determination of
bisphosphonates after methylation (Tarcomnicu et al, 2007 and 2009). Because the retention
time is shifted and peaks of interest elute in a region with less interferences and matrix effects,
both in GC and LC-MS, derivatization is useful to improve the separation. Ionization is
generally enhanced, too.

The derivatization process is carried out mostly during sample extraction or on the dried
extract, but sometimes even in the injector, in case of GC-MS, or post-column in LC-MS/MS.
It is done by sylilation, acylation, alkylation (methylation), Schiff base formation etc.

The analyte features and sample nature (solid, fluid), amount, additives used (e.g. anticoagu‐
lant or stabilizer in case of plasma or urine) are first considerations to give an orientation in
order to choose a sample preparation method. Fortunately in general it is not necessary to test
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all the aforementioned techniques, but sometimes a concurrence of factors with negative
impact on the results will require a step-by step approach.

A strategy to minimize the matrix effect produced by endogeneous phospholipids from plasma
was developed by evaluating sample preparation and chromatographic techniques with
respect to extract cleanliness, matrix effect and analyte recovery (Chambers et al, 2007).
Comparisons were made between protein precipitation, liquid-liquid extraction, pure cation
exchange solid-phase extraction, reverse-phase SPE and mixed mode – SPE. Two chromato‐
graphic techniques, UPLC and HPLC were used to compare resolution and matrix sensitivity.
A combination of mixed-mode SPE and UPLC was proved to be the most sensitive and robust
method for removing phospholipids (up to 99% relative to protein precipitation) and for
determination of trace levels of drugs in plasma.

Figures 4 shows the ion suppression induced by matrix on the analyte signal; protein precip‐
itation with solvent, SLE and SPE have been tested for the model compound, pramipexole.
This example and other presented in literature (Bonfiglio, et al, 1999; Dams et al, 2003;
Matuzsewski et al; 2003, Souverain et al, 2004; Mastovka et al, 2005; Pichini et al, 2005,
Annesley, et al, 2007, Capiello et al, 2008) illustrate the effect of co-extracted matrix compounds
on the target analyte separation and ionization. For sophisticated research, with demands of
very high sensitivity and specificity, sample preparation may become very complex and need
laborious optimization but the results will be rewarding.

5. How to minimize matrix effect by chromatography (HPLC and GC)

Beside sample matrix components, other potential sources of matrix effects are mobile phase
impurities or additives used in HPLC (Annesley et al, 2007). For mass spectrometry pure solvents
like acetonitrile or methanol are the most suitable and flow rate, applied voltage, conductivity,
liquid surface tension must be properly balanced for the formation of a stable ESI spray (Chech
and Enke, 2001). Higher percentage of organic solvent in the mobile phase with decreased surface
tension and low boiling point will result in a more efficient desolvation of the analyte. The
conductivity of the solution is also important in ESI, therefore the presence of ionic species in
the solution is necessary. In positive ESI the protonated solvent clusters of methanol/water or
acetonitrile/water, formic or acetic acid are ideal for facilitating the protonation. Diluted salt
solutions like ammonium acetate or formate facilitate adduct formation, especially in APCI, and
also improve the chromatographic peak shape. For negative ionization, diluted ammonium
hydroxide is added to the aqueous solution to facilitate deprotonation (Loo et al, 1992) al‐
though formic acid, halogenated solvents (e.g. trifluoroethanol) and diluted volatile buffers
(ammonium acetate or formate) are suitable as well (Chech and Enke, 2001). However protonat‐
ed analytes can be observed with high pH mobile phases and deprotonated analytes under low
pH conditions, as already reported (Zhou and Cook, 2000).

Ion-pairing reagents like trifluoroacetic, pentafluoropropionic, or heptafluorobutiric acids,
widely used in HPLC with conventional detectors due to good retention and peak shape in
the analysis of polar compounds, have known ion-suppressing effect in negative ESI; the same
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for tetraalkyl ammonium hydroxide and salts in ESI positive. These additives should be
carefully used in LC/MS. When the use of strong acidic ion-pair reagent is unavoidable for
chromatography reasons, post-column addition of a weak acid like propionic acid could
overcome the ion suppression (the so-called “TFA fix”) (Apffel et al, 1995, Kuhlman et al,
1995, Annesley et al, 2007). Inorganic non-volatile buffers like phosphate and sulfate are not
recommended in mass-spectrometry; they can cause salt deposits on the metal surfaces
disturbing conductivity and being detrimental for ion formation and transmission (Chech and
Enke, 2001).

TFA presents also matrix effects in positive ionization and an experiment confirming the well-
known suppression of the ionization was described by Mallet et al. They compared the
intensities of m/z 472 ion of terfenadine [M+H]+, acquired in a solution containing 50/50
methanol/water, by mixing to an equivalent flow rate of 0.5% TFA and 0.5% ammonium
hydroxide. In the presence of ammonium hydroxide the ion m/z 472 has shown an increase of
41% in the signal intensity compared to a decrease of 75% in the presence of TFA. With this
experiment Mallet studied the influence of pH, to the ionization effects in positive and negative
mode of 16 basic drugs and acidic compounds with a diversity of mass range, polarity and
structure; compared to TFA formic acid and acetic acid shown less suppression effect (Mallet
et al, 2004).

Benijts and coworkers have used the basic SPE procedure to study the influence of acetic acid
and formic acid at two concentration levels, 0.01 and 0.1%, and of ammonium acetate and
ammonium formate at the concentration 1mM and 5mM in positive and negative ionization
modes,  for  35 endocrine disrupting chemicals.  In negative ionization mode a significant
suppression of the signal was recorded at the concentration of 0.01% for both acids. The addition
of buffers like ammonium formate in the mobile phase produced a slight enhancement of the
ionization for all compounds excepting estradiol with a ME% of 172% (Benijts et al, 2004).

Steroids are among the compounds prone to suffer from matrix interferences both in terms of
ion suppression and background interferences. We have selected here, as an example, the
analysis of desogestrel from human plasma; in this case the type of ionization method was first
carefully studied (as it will be presented in the next section of this chapter) and APPI (photo‐
spray) has given the best results in terms of sensitivity and background cleanliness (Figures
7-9). The sample clean-up was performed by SLE with a mixture of diethyl ether/tert-butyl
methyl ether, which offered a good recovery and pre-concentration (obviously solvent
precipitation is not suitable the molecule being highly non-polar, while SPE method needed
evaporation of methanol, very time-consuming compared to the ether mixture).

Various stationary phases from different producers were tested during method development
(octadecyl, octyl, pentafluorophenylpropyl, phenyl). Figure 8 presents the chromatograms
recorded on the transitions selected for desogestrel after the injection of blank plasma spiked
with analyte at 1 ng/mL, clean-up by SLE. Separation from the interfering matrix peak in the
vicinity on the octadecyl column (Eternity C18 10 cmx2.1 mm, 2.7μm) was not satisfactory at
first; playing on the gradient a cleaner delimitation of desogestrel peak was achieved.

Tandem Mass Spectrometry - Molecular Characterization20



Figure 9 shows an overlay plot of two extracted plasma samples, a blank and a spiked
concentration (1ng/mL), in the new chromatographic conditions. Desogestrel peak is clearly
visible, as indicated by the arrow. Good results were obtained with the phenyl stationary phase
as well.

A huge selection of stationary phases and mobile phases is available at the moment and their
right combination can make significant improvements in the chromatographic separation, thus
in diminishing matrix effects. As already mentioned before, sample preparation must be also
seen in view of the chromatographic technique selected.

As it can be observed in Figure 7, on the chromatographic traces selected for desogestrel
several quite intense peaks were recorded even after injecting pure methanol.

No miraculous HPLC or GC separation method permit to escape of matrix effects but a few
general considerations are reported next and they may serve as a guideline to improve the
analytical work minimizing matrix effect:

Figure 7. Chromatograms recorded on two transitions selected for desogestrel (A, C: 293.3/133.2 and B, D:
293.3/197.2) in APPI ionization after the injection of pure methanol (A, B) or Desogestrel solution at 1ng/ml in water/
methanol (1:1, v/v). Desogestrel elutes at 4.8 min. As it can be observed each transition is differently affected by ma‐
trix components. Column: HSF5 10 cmx2.1 mm, 5µm (Supelco); Mobile phase: aqueous formic acid 0.1% and acetoni‐
trile; Flow: 0.3 mL/min; gradient elution; injection volume: 30µL In the next step, chromatography was optimized
further for minimizing matrix effects.
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1. Void peak and source contamination – As aforementioned, salts, peptides and other polar
compounds generally not retained in the chromatographic column are important matrix
factors. These compounds tend also to deposit on the ionization sources extending the
matrix effects far beyond the elution times, often accumulating from one injection to the
following. It is nonetheless very useful and simple introducing in the chromatographic
system, both in case of HPLC and GC, of a diverter valve (controlled by the computer
system or the HPLC pump) to send to waste the initial chromatographic peak. This
approach will avoid heavy source contamination improving the system stability. In case
of GC separations, conventional valves can be used but other interesting alternative are
fluidic switches without moving parts and no risks of introducing cold spots in the
chromatographic system and/or deteriorate the peak shape;

2. Fast separations are good but if the resolution is maintained – It is always convenient to
get faster methods but it is important to avoid inadequate separation in order to be quick;
the matrix peaks must be adequately isolated from the peaks of interest.

3. LC x LC or GC x GC methods – It is clear that two dimension separations permit to get
the maximum in term of isolation of the compound to be analyzed from matrix peaks. In
case of difficult analyses it is always difficult to evaluate if a complex sample preparation
is convenient and more effective than a better HPLC/GC separation, in principle both
approaches must be each time evaluated. Experiments carried out by Pascoe and cow‐
orkers are a good example; the authors tested a series of stationary phases with a column-
switching set-up and reported a reduction in matrix effects (Pascoe et al, 2001).

As a general rule, the use of stationary phases with different retention mechanisms (i.e. ion
exchange and reversed phase or hydrophobic with polar GC columns) is the most effective

Figure 8. Chromatograms recorded on two transitions selected for desogestrel (293.3/133.2 and 293.3/197.2) in APPI
ionization. Desogestrel spiked at 1 ng/mL in plasma, extracted by SLE. Column: Eternity C18 10 cmx2.1 mm, 2.7µm
(Akzo Nobel); Mobile phase: aqueous formic acid 0.1% and acetonitrile; Flow: 0.2 mL/min; gradient elution; injection
volume: 30µL. Desogestrel eluted at 4.94 min.
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combination to maximize the separation of analytes from matrix and, at the same time, to
increase the selectivity.

4. Column overload and source overload – A common trend is to increase the loop size when
the sensitivity is inadequate considering that more analyte in the source is increasing the
chromatographic peak; this fact is often wrong for two important reasons. First, increasing
the injection volume may bring to a column overload with modification of peak shape
and a peak normally not affected by matrix can become disturbed by it due to a broadening
of the matrix peak. A deterioration of peak shape is often observed with large injection
volumes making no advantage in terms of S/N ratio improvement. As a paradox, in
complex matrices, in case of inadequate sensitivity it is often interesting to test the injection
of a more diluted sample to understand if the low sensitivity is really due to inadequate
amount of sample or an excessive matrix effect.

5. Mobile phase composition – As discussed above, in HPLC it is always important to
remember that different mobile phases may present quite different matrix results; the
same also for the type of MS ionization (see next section). It is therefore important to test
several mobile phases and ionization conditions in order to minimize the matrix effects.

Figure 9. APPI ionization. Desogestrel - An overlay of blank plasma extract and plasma spiked with desogestrel at 1
ng/mL. Chromatograms recorded on the transition 293.3/197.2, in APPI ionization. Column: Eternity C18 10 cmx2.1
mm, 2.7µm (Akzo Nobel); Mobile phase: aqueous formic acid 0.1% and acetonitrile; Flow: 0.2 mL/min; gradient elu‐
tion; injection volume: 30µL. Desogestrel peak is indicated by the arrow.
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6. Flow rate – Using lower flow rate is a big advantage in order to minimize matrix effects.
The ionization efficiency improves significantly with lower flow rate, less contaminants
are introduced in the source contributing to keep the ion optics cleaner, higher content of
water (this means often better separation) in the mobile phase can be handled without too
much loss in sensitivity and less heating is needed in the source often resulting in a less
important chemical background, partially responsible of matrix effects.

7. Stationary phases – Evidently, it is not possible to review all existing columns and to
suggest special kinds because each analyte has its own properties and such detailed
presentation is outside the scope of this chapter. It is however interesting to summarize a
few key points in order to minimize matrix effects and get the maximum of results. First,
when developing a new analytical method it is important to consider the polarity of the
analyte and, in comparison, the expected type of matrix present in the sample. As an
example in urine one will not have problems with proteins while a high salt content (e.g.
biliary salts) and other polar compounds will dominate the matrix. In such conditions, for
the analysis of highly polar compounds, it can be interesting to consider ion exchange
columns or HILIC chromatography, instead of classical reversed phase columns. In case
of non-polar compounds in plasma, matrix effects from phospholipids are critical and
these endogenous products are also quite apolar creating peculiar matrix problems. In
such cases a careful choice of a column able to retain differentially the analyte is important;
columns like phenyl or pentafluorophenylpropyl can be quite selective in retaining the
analyte if it has an aromatic group normally absent in phospholipids. The possibilities are
endless but the problem must be evaluated before screening blindly a large number of
stationary phases.

8. Analyte derivatization – Derivatization methods, despite not being strictly chromatograph‐
ic methods can often bring to results otherwise impossible, especially when the derivatiza‐
tion changes the analyte polarity. Several examples are available where highly polar
compounds, like aminoacids, biphosphonate, catecholamines, aminoglycosides, can be
transformed by derivatization in less polar compounds easily separated by GC or HPLC.

9. High resolution mass spectrometry can be very useful for the analysis of dirty biological
extracts, through a better separation of the analyte from background interferences. Ultra-
high pressure liquid chromatography (UHPLC), micro, capillary and nano-LC provide
high resolution separations (increased number of theoretical plates) with very narrow
peaks thus easing the possibility of changing the analyte retention time towards regions
in the chromatogram less affected by matrix. Many labs are transferring their methods
now towards ultra-high-pressure chromatography (UHPLC); matrix effects have been
evaluated and improvement reported (Van de Steene and Lambert, 2008).

10. HPLC column, solvents, plastic and polymer residues, reagents as source of matrix – Never
forget that column bleeding both in GC and HPLC can be an important cause of matrix
effect. In case of poor chromatographic sensitivity with compounds otherwise ionizing
properly it is useful to check different columns, also within the same type of bonding, for
matrix effects. Unfortunately similar problems may come also from solvents, water and
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salts employed in HPLC, as well as from plastic and polymer residues from tubes, 96-well
plates, caps and lids, filters, SPE beds, etc. (Mei et al, 2003; Capiello et al, 2008).

6. Optimization of MS interfaces and ionization conditions to minimize
matrix effect

The first point to consider is the choice of interface type. In this respect it is important to observe
that matrix effects are more evident in conditions of poor ionization, therefore generally the
source with the best ion efficiency is the first choice. A second point to consider is that matrix
effects also derive from a competition between matrix ions and analyte ions at the level of ion
sampling in the orifice area. Clearly, a source giving minimum ionization efficiency for the
matrix is also effective in minimize matrix effects over the analyte ionization; this fact can be
well appreciated with sources having specific ionization mechanisms, like the atmospheric
pressure photoionization source (APPI), that may give interesting advantages in terms of
matrix effects. However, only experimental tests will confirm and help to define the most
appropriate ionization interface.

Once defined the source to be used an important step is the definition of the ionization polarity.
In this respect the chemical structure of the analyte may impose a choice but it is also important
to consider the restriction coming from the mobile phase composition: one will never get a
reasonable negative ionization in presence of trifluoroacetic acid, while formic or acetic acids
are fine; no chance to work in positive mode with a strong base like tetrapropylammonium in
the mobile phase but diluted ammonium hydroxide is good.

The aspects of mobile phase composition and ionization mode being clarified, an important
stage in the source optimization is not only to play on the best signal for the analyte but also
to look for the lowest background ionization. It is in fact important to find the situation where
the ratio between background ions and analyte is the most convenient. Ion transfer voltage
(ESI, APPI) or needle current (in case of APCI), declustering (orifice) voltage, nebulization
conditions (temperature, gas flow rates) and source position optimization (depending upon
the kind of source) are some of the key elements of optimization aiming to improve this
ionization ratio.

In our example, we have optimized the ionization interface for the analysis of desogestrel. Due
to the high background in ESI on the most intense multiple reaction monitoring (MRM)
transitions corresponding to the analyte, several other less intense transitions were explored
under selected chromatographic conditions (column HSF5 10 cmx2.1 mm, 5μm, mobile phase:
aqueous formic acid 0.1% and acetonitrile in gradient elution at 0.3 mL/min, mass spectrom‐
eter: API 5000 triple quadrupole). The result is presented in Figure 10. Further development
included testing of APCI (Figure 10) and APPI (Figures 7-9) ionization interfaces.

Photoionization can give excellent results in terms of ionization efficiency for aromatic
compounds or structures with multiple conjugated double bonds (Yang and Henion, 2002,
Tiedong 2004, Yamamoto 2006) and proved to be the best also for our target compound,
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although matrix issues were not completely solved. APPI was selected for the final method;
chromatography experiments were presented in Section 5.

As demonstrated by Mei and coworkers, matrix effects are also not only ionization mode
dependent but also source-design dependent (Mei et al, 2003). They have injected plasma
processed by solvent precipitation, using identical LC set-up, into three instruments from
different manufacturers, equipped with ESI as well as with APCI interfaces. The measurements
were performed in positive ions mode, monitoring 8 MRM transitions, chromatographic
separation employing a Metachem Basic 4.6x50 mm, 5 μm column eluted in gradient with
ammonium acetate 10mM containing 0.005% acetic acid and methanol. For the Micromass
Quattro tandem mass spectrometer, Mei et al found that APCI source is more sensitive to
matrix effects in the studied conditions. Overall, 22 examples of matrix effects were identified
across various regions of the chromatographic gradient; most of these involved early-eluting
polar compounds. One of the monitored molecules showed ionization enhancement in
presence of Li-heparin as anticoagulant.

Capiello and coworkers have studied as an alternative to ESI an efficient LC-MS interface based
on direct electron ionization (Direct-EI) for the analysis of small and medium molecular mass
compounds (Capiello et al, 2008). They have quantitatively evaluated the impact of matrix
effects on this type of ionization, using for experiments plasma or river water samples.
Phenacetin and ibuprofen were used as model compounds. Plasma samples were extracted
by LLE or SPE; water samples by SPE. The majority of matrix effects observed in LC-ESI-MS
were surmounted using the LC-Direct EI-MS interface. There is to mention though that in this

Figure 10. Chromatograms recorded on two transitions selected for desogestrel (293.2/91.2 and 293.2/115.2) in ESI
ionization (A, B) and APCI ionization (C, D). Desogestrel – 10ng/mL standard in water/methanol (1:1, v/v). Column:
HSF5 10 cmx2.1 mm, 5µm (Supelco); Mobile phase: aqueous formic acid 0.1% and acetonitrile; Flow: 0.3 mL/min; in‐
jection volume: 30µL. The same gradient was used in both ionization modes; the difference in retention time (3.69 vs.
4.17 min) resulted because the acquisition was 0.5 min later triggered in chromatograms A and B.

Tandem Mass Spectrometry - Molecular Characterization26



case also the LC set-up was different, respectively a nano-LC system was used in combination
with Direct-EI; nano-LC itself brings improvement in overcoming matrix effects also when ESI
is employed. (More on this topic in Section 8)

7. Accepting matrix effects as unavoidable in analyses of real samples;
approaches to obtain reliable quantitative results

As a conclusion of the discussion so far, there is no doubt that both in quantitative and
qualitative bioanalysis, matrix effects are present. These effects are unseen in the chromato‐
gram but can have deleterious impact on methods accuracy and sensitivity; it is important that
they are identified and addressed in method development, validation, and routine use of
HPLC–ESI–MS/MS (Taylor, 2009, Hall et al, 2012).

Adequate measures must be taken to guarantee that results are reliable; these actions can be
divided in two groups:

1. Identification of the relevance of matrix effect in the analytical conditions used

2. Introduction of corrective factors to compensate the unavoidable matrix effects inherent
to the analytical method employed.

First kind of actions groups the procedures used to detect and/or quantify the matrix effects
present in an analytical procedure. The first method was proposed by Bonfiglio et al (1999)
and it is based on the continuous infusion of the compound to be analyzed in the mass
spectrometer equipped with the selected ionization sources. Just before entering in the source,
this is mixed with the mobile phase from the HPLC pump to be used for the analytical
procedure. Blank matrix samples extracted using certain procedure are injected in this system,
with or without chromatographic column. A few examples of this method were presented in
Figure 4 (Section 2). As it can be seen this approach allows very well to test different HPLC
procedures, especially in order to improve separation conditions, trying to avoid the co-elution
of the analytes of interest with peaks having an important matrix effect. Weak points of this
approach are its complexity, the difficulty to quantitatively define the impact of the matrix
effect and the risk to contaminate the interface with high amount of analyte through infusion.

In order to overcome this fact, the alternative approach was proposed by Buhrman et al
(1996) then by Matuszewski et al (2003). In such method extracted blank samples (represen‐
tative of matrix and analytical procedures to be tested) are spiked with a known amount of
the analyte and the results are compared to the-ones obtained analyzing the same compound
at the same concentration dissolved in mobile phase. Ratios between these data are now
employed and recommended from several regulatory authorities as a quantitative “matrix
factor”, with well-defined limits of acceptance (Viswanathan et al, 2007).

Considering the corrective actions, in order to compensate the matrix factor, the use of internal
standards (in particular analogue of the analyte labeled with stable isotopes) is definitively the
main approach to solve the problem (Tranfo et al, 2007). In case of other chemically related
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analogues, normally used in HPLC with UV or fluorescence detectors to correct for extraction
and/or injection variation, their matrix factor in LC-MS can be quite different from that of the
analyte; in such cases a verification of the matrix factor for analyte and as well for the internal
standard is useful even if they eluted in the same retention time with the analytes. When the
internal standard is not co-eluting with the analyte, the influence of interfering compounds on
the ionization can be different thus the quantitative results could be biased. It is noteworthy
that also in case of stable isotope labeled internal standards significant differences of retention
time, versus the non labeled compound, can be observed sometimes (especially when the mass
difference is high, e.g. d7- or d9-labeled molecules, or in case of HILIC separations), making
critical the matrix effect correction if a sharply eluting peak of an interfering compound is
present. Due to this fact different labeling, like 13C, could be used instead of the more commonly
employed deuterium to minimize the chromatographic shift.

In case an internal standard cannot be used or it is not available blank samples spiked with
the analyte of interest must be always analyzed in parallel to be sure that the analyte is not
influenced by matrix avoiding unreliable results. A spiking of a known analyte concentration
on the same sample to be analyzed is also an interesting approach (if the sample amount is
enough) to guarantee the appropriateness of the measurement performed.

8. Future perspectives

After so many evidences of the relevance of matrix effects in bioanalytics what can we expect
next? Do we have possibilities to further improve this situation?

In the next we will consider the main three areas explored in this paper and the chances of
development for the future:

1. Sample preparation – This area knows continuous improvements; more and more selective
extraction methods provide cleaner sample extracts, with reduced matrix content. In this
context the development of better immunopurification media (more chemically stable,
easier on-line applications) for an always larger palette of antigens, the appearance of
newer molecular imprinted polymer (MIP) columns for specific chemical groups and the
possibility to do automated solid-phase micro-extraction (SPME) processing large number
of samples at the same time are between the most attractive opportunities. SPME seems
to be potentially very interesting, its simplicity minimizing liquid handling, the possibility
for reusing the sorbent by adequate washing (much simpler than in SPE), the possibility
to introduce immunopurification media or MIP, and finally the potential for down scaling
to the micro level are between the most intriguing aspects.

2. HPLC methods – The choice of stationary phases, with enhanced separation properties, is
constantly growing, and one of the directions with a lot of potential is currently hydro‐
philic interaction liquid chromatography (HILIC), with increasing number of applications
in bioanalysis fields (Hsieh, 2008, Van Nuijs et al, 2011).
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However the improvement in equipment seems to be the most interesting part. Years are
passed from the time when LC/MS producers were struggling to get higher flow rate sources
pushed by customers acquainted to large HPLC columns and unsatisfied by the technical
performance of micro-column on micro-HPLC system. UHPLC is nowadays widespread and
better results in terms of matrix effects compared with classical HPLC were already reported
(Novakova et al, 2006, Van de Steene et al, 2008).

Micro, capillary, nano-HPLC columns are now easily available, robust, reliable and performing
very well in terms of separation. All this also thanks to better HPLC systems, permitting to
exploit adequately these columns. It is well recognized that matrix effects are reduced at lower
flow rates, with a concomitant increase in term of sensitivity; it has to be seen if a revolution
will take place in LC/MS as it happened in GC-MS years ago when going from packed to
capillary GC columns. A lot of improvement will come for sure passing to packed columns in
the sub millimeter diameter range and below, eluted with very low flow rate. Experiments
performed recently in our laboratory with a 0.3 mm inner diameter column were very
promising. An example is presented in Figure 11.

Figure 11. Chromatograms recorded on the MRM transitions of Diosmetin-3,7-O-Glucuronide (A, C - 653.222/301.1)
and Diosmetin-7-O-Glucuronide/ Diosmetin-3-O-Glucuronide (B, D – 477.237/301.1) after the injection of extracted
plasma samples spiked at 0.1 ng/mL (A, B) or 15 ng/mL (C, D); elution at 50 μL/min on Halo C18 (0.3x50 mm, 2.7 μm,
90A packing – Eksigent) column. Diosmetin-7-O-Glucuronide – retention time 2.88 min; Diosmetin-3-O-Glucuronide –
retention time 2.81 min

Diosmetin is a metabolite of diosmin, a natural flavonoid found in most fruits and vegetables;
moreover these contain a series of compounds with the same mass and related structure giving
numerous interferences, therefore on conventional LC columns the separation was not possible
below certain concentrations. Figure 11 presents the chromatograms recorded using a sub-
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millimeter column, Halo C18 (0.3x50 mm, 2.7 μm, 90A packing – Eksigent) eluted at 50
μL/min in gradient with a mobile phase containing water+0.5% formic acid and acetonitrile
with 0.5% formic acid. Plasma spiked at 0.1 ng/mL or 15 ng/mL was injected. As it can be
noticed, five peaks were distinctly separated in the biological extract within an interval of 0.25
min; in these conditions it was possible to obtain a blank sample from patients with special
diet. This powerful separation helps in reducing matrix effects and benefits also from the
advantage of very low flow-rate.

The hyphenation of separation techniques like isothacophoresys/capillary electrophoresis and
HPLC is another area not yet well exploited but offering a lot of potential to get cleaner samples
with minimal matrix effects.

3. MS Ionization interfaces – An exhaustive presentation is not possible in this area; however
a few examples of potential new ways to reduce matrix can be introduced.

In the last years ion mobility become more and more present in the MS analytic instrumentation
range. In particular ion mobility (IM) techniques have created a possibility to play on the gas
phase in front of the sampling orifice of the mass spectrometers, selecting the relevant ions to
be analyzed. These applications are quite at the beginning and the real impact on the matrix
effects has not been fully explored, until now the focus being more on the enhancement of the
analytical selectivity. The difference in cleaning the matrix interferences can be impressive, as
it can be seen in the example of clenbuterol analysis from human urine (Figure 12) without
further processing; the sample is just diluted 1:1 and injected in the LC-MS system (AB Sciex).

Figure 12. Clenbuterol Spiked in Human Urine (diluted 1:1 prior to analysis). QTRAP® 5500 vs 5500 with SelexION™
Technology. (Reproduced with the permission of AB Sciex).

Other groups are also focusing on very low molecular mass ions analysis, that most often are
considered background ions, hence optimizing instruments for liquid or gaseous matrices. An
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API Interface with ESI/APCI Glow Discharge on a double beam magnetic sector was developed
by AMD; the interface can switch between LC, GC or CE inlet without needs of any system
modification. The high-resolution results (Figure 13) obtained in the low mass range (like alkali
metals from m/z 6 to 39), generally affected by huge interferences of artifacts, are very
interesting (AMD Intectra GmbH).

Most probably exciting results will come next from this kind of sources in combination with
newer techniques of ion sampling from the atmospheric pressure side to the high vacuum
chamber. We are going from orifice – skimmer sources always more to ion guide systems (with
small quadrupoles or lens cascade) permitting to obtain a higher transmission and improving
the separation from neutral molecules, solvent clusters and allowing a cut-off based on ion
characteristics.

This brief example of future progress in ion sources wants to be just a message on how much
the hardware development remains open for important improvement in the matrix effects
control.

To conclude let’s hope that new developments will be so impressive to make matrix effects
something of the past and all problems presented in this chapter just scientific curiosity. Who
knows?
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