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1. Introduction

Turfgrasses grow in different habitats for numerous purposes worldwide. They are cultivated
for their agronomical, environmental, ornamental, recreational and stock feeding values [1,
2]. Various turfgrasses are used for environmental beautification and for the protection of
resources such as land, soil and water. Many varieties of turfgrasses cover home yards, golf
courses, parks, soccer fields, and roadsides, etc. To cite a few examples of renewed interest in
turfgrasses, they play a significant environmental role in photosynthetically fixing carbon
dioxide to evolve oxygen into the atmosphere. In addition to their vast acreage of widespread
forage, planting of the grasses in urban areas such as rooftops, parks and, more recently
automobile parking lots, contributes to the suppression of urban heat island phenomena [3].
Various causes of soil erosion and losses due to flood washout and landslide can also be
circumvented and managed, as the damages are greatly reduced and the conservation of soil
moisture and underground water is effectively sustained by the planting of turfgrass varieties.
Recreational and sporting activities on the natural turfgrass field, compared to an artificial turf,
greatly reduce the risk of personal injuries, thus contributing to the wellbeing of people in
general.

Not surprisingly, the worldwide turfgrass market and its associated herbicide sales are
substantial; in the United States alone, turfgrass is one of the four major staple crops, second
only to corn [4, 5]. In facing the challenge of global warming, turfgrasses are gaining attention
of both environmentalists and agronomists for their role in the certified emission reductions.
Relatively high production costs of cultivating and maintaining turfgrasses concerns them,
however. Healthy swarth growth and well-maintained turf habitats entail herbicide spraying
because otherwise dominant weed varieties easily overtake the sward. Annually, their
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maintenance costs alone run around 4.5 billion dollars in the United States [4, 6]. One of the
major costs is certainly herbicidal requirement.

Herbicidal agrochemicals are classified into two categories, selective and non-selective
herbicides. The latter kills all plant species, whereas the former is targeted at specific plant(s)/
weed(s) for herbicidal action. The biochemical mechanisms of herbicides include the disrup‐
tions of (i) the photosynthesis by blocking the photosynthetic reaction centers, electron
transport system or photo-oxidative membrane damages, (ii) cell division and root develop‐
ment, (iii) energy transduction and metabolism, (iv) plant growth hormones, (v) biosynthesis
of amino acids/proteins and (vi) disruption of other physiologically significant molecules such
as chlorophylls and carotenoids, as discussed elsewhere in this volume.

Frequent herbicide applications also pose serious environmental and health concerns, for
example, to the authors’ residential island of Jeju where there are 30 golf courses open for
business. In spite of the current difficulties arising from the public objections, genetically
modified turfgrasses with a herbicide-resistant gene provide an effective alternative to the
wide applications of agrochemical herbicides. Since the development and ecological impact
studies of transgenic herbicide-resistant creeping bentgrass [7, 8] and zoysiagrass [9, 10],
several GM varieties of turfgrasses including those of herbicide-resistant cultivars have been
developed (see Table 1). Most recently, in reference [11] bentgrass ASR-368 has been patented
for its commercial rights. With an increasing number of reports on transgenic herbicide-
resistant turfgrasses, it is appropriate to review the subject at this time. Discussion in this
chapter focuses on the transgenic herbicide-resistant turfgrasses developed primarily in our
laboratory here in Jeju and Gwangju, Korea. For a review of other transgenic grasses with
herbicide-resistance traits, see Table 1 and references therein.

Plant species Cultivar Method Marker gene Target gene Target trait References

Agrostis

stolonifera

(creeping

bentgrass)

Crenshaw Agrobacterium bar bar/Rice tlpd34 Disease resistance [16]

Crenshaw Agrobacterium bar bar/Barley hva1 Drought tolerance [33]

Crenshaw Agrobacterium bar/gus bar/PepEST Herbicide resistance/

Disease resistance

[34]

Crenshaw Agrobacterium bar/gus bar/Maize Lc+Pl Purple-color [35]

Crenshaw Agrobacterium bar/gus bar/AtBG1 Herbicide resistance/

Drought tolerance/

dwarf

[36]

Crenshaw,

Penncross

Agrobacterium bar/gus bar Herbicide resistance [37]

Penncross Electroporation bar bar Herbicide resistance [38]

Penncross Electroporation bar/gus bar Herbicide resistance [39]
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Plant species Cultivar Method Marker gene Target gene Target trait References

Penncross Agrobacterium bar bar/Cowpea

VuNCED1

Drought/salt

tolerance

[40]

Penncross Agrobacterium bar/CP4-

EPSPS

bar/CP4-EPSPS Herbicide resistance [22]

Penncross Agrobacterium bar bar/ZjLsL Herbicide resistance/

dwarf

[41]

Province Penn-A-4 Biolistics bar/gus bar/chitinase

+glucanase

Herbicide resistance/

Disease resistance

[42]

Penn-A-4 Agrobacterium hph/gus, bar bar Herbicide resistance [43]

Penn-A-4 Agrobacterium bar bar/Pen4-1 Herbicide resistance/

Disease resistance

[44]

Penn-A-4 Agrobacterium bar bar/AVP1 Herbicide resistance/

Salt tolerance

[45]

Agrostis palustris

(creeping

bentgrass)

Suthshore

Emerald

Biolistics bar/gus bar Herbicide resistance [46]

Regent Tiger Agrobacterium bar/gfp bar Herbicide resistance [47]

Cobra Electroporation bar bar Herbicide resistance [48]

Biolistics bar bar/hs2 Herbicide resistance [49]

Cynodon spp.

(bermudagrass)

TifEagle Biolistics bar bar Herbicide resistance [50]

TifEagle Agrobacterium bar/gus bar Herbicide resistance [51]

Dactylis

glomerata

(orchardgrass)

Embryogen-P Biolistics bar/gus bar Herbicide resistance [52]

Rapido Biolistics bar/hph/gus bar Herbicide resistance [53]

Festuca

arundinacea (tall

fescue)

Protoplasts bar/hph bar Herbicide resistance [54]

Alley Biolistics bar bar/Ipt Herbicide resistance/

Cole tolerance

[55]

Festuca rubra

(red fescue)

Protoplasts bar bar Herbicide resistance [56]

Lolium perenne

(perennial

ryegrass)

Riikka Biolistics bar bar/wft1/wft2 Herbicide resistance/

Freezing tolerance

[57]

TopGun Agrobacterium bar bar/OsNHX1 Herbicide resistance/

Salt tolerance

[58]

Panicum

virgatum

(switchgrass)

Alamo Biolistics bar/gfp bar Herbicide resistance [59]
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Plant species Cultivar Method Marker gene Target gene Target trait References

Alamo Agrobacterium bar/gus bar Herbicide resistance [60]

Paspalum

notatum

(bahiagrass)

Tifton-7 Biolistics bar bar Herbicide resistance [61]

Pensacola Biolistics bar/gus bar Herbicide resistance [62]

Paspalum

vaginatum

Swartz (Seashore

Paspalum)

Agrobacterium bar/gus bar Herbicide resistance [63]

Zoysia japonica

(zoysiagrass)

Agrobacterium bar/gus bar Herbicide resistance [15]

Zenith Biolistics bar/hpt bar Herbicide resistance [64]

Agrobacterium bar bar/phyA Herbicide resistance/

Shade tolerance

[10]

Zoysia sinica

(Chinese

lawngrass)

Agrobacterium bar bar/CBF1 Herbicide resistance/

Chilling tolerance

[65]

bar: bialaphos resistance gene, gus: β-glucuronidase, hph: hygromycin phosphotransferase. gfp: green fluorescent
protein

Table 1. Transgenic herbicide-resistant turfgrasses

2. Turfgrass species

There are some 7,500 turfgrass species of more than 600 genera distributed worldwide. Of
these, 30~40 species are cultivated as agronomic plants [1]. Turfgrasses are generally classified
into two major species, warm and cold season grasses. The plants are also divided into two
groups based on their mechanism of photosynthetic carbon dioxide fixation, C3 and C4 plants.
As representative C4 warm season turfgrasses with optimal growth temperatures of 27~35°C,
zoysiagrass and Bermuda grass species are widely used for sports fields because of their strong
traits such as swarth growth, vegetative propagation and drought tolerance as they are
cultivated widely, especially in China, Japan and Korea. However, they tend to grow relatively
slowly and particularly with zoysiagrasses prematurely lose their greenness by late autumn.
Typical C3 cold season turfgrasses with optimal temperatures in the 15~25°C range include
blue grass and bentgrass varieties. The latter is particularly advantageous for the putting
greens [1, 4, 5, 12]. In this chapter, the review will be concerned with two main varieties,
zoysiagrass (Zoysia japonica Steud.) and bentgrass (Agrostis palustris L., Crenshaw and Penn‐
cross varieties), focusing on their herbicide resistant transgenic cultivars.
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3. Transgenes and mechanisms of herbicidal action

Turfgrass has been a subject of classical breeding for trait improvement over decades, espe‐
cially in Japan and United States. However, conventional breeding suffers from such draw‐
backs as low efficiency, time consuming and labor intensiveness. With an increasing trend in
turfgrass cultivation worldwide, excessive applications of herbicides and other agrochemicals
over the grass habitats adversely impact the environment, biodiversity and human health [13,
14]. Several attempts to develop GM turfgrass lines with improved traits have been reported;
for example, herbicide-resistant turfgrass varieties in references [15], [16], 17] and [10] and
insect-resistant turfgrass in reference [18]. A number of laboratories are developing herbicide-
resistant and other transgenic turfgrasses with biotic and abiotic stress tolerances (Table 1).

So far, several genes including the two widely adopted ones, CP4 EPSPS encoding 5-enolpyr‐
uvylshikimate-3-phosphate synthase (EPSPs) and BAR or PAT encoding a phosphinothricin
acetyl transferase (PAT), have been introduced to generate herbicide-resistant turfgrasses.
Other target genes for herbicide resistance include BXN (bromoxylnil nitrilase gene), DHPS
(dihydropteroate synthase gene), ALS (acetolactate synthase gene) and others (Table 1).
Transgenic bentgrass and zoysiagrass stacked with BAR and PHYA (phytochrome A) genes
conferring herbicide- and shade-resistance traits, respectively, have also been developed [10]
and will be reviewed in this chapter.

The widely used herbicide, bialaphos (also phosphinothricin-alanyl-alanine tripeptide, PTT),
is an antibiotic produced by certain Streptomyces genera and used as an agrochemical, which
has been commercialized under the trade name Basta by Bayer Crop Science. It kills plants
non-selectively. Bialaphos itself is an inactive compound as a herbicide, but it is cleaved by
intracellular peptidases to phosphinothricin (L-PPT), Phosphinothricin (glufosinate) so
produced in situ binds glutamine synthetase (GS), the key enzyme in the nitrogen fixation in
plants, inhibiting its catalytic activity to fix the ammonium with L-glutamate to form glutamine
[19] (See Figure 1).

Figure 1. Biochemical mechanism for the herbicidal action of glufosinate through the inhibition of glutamine synthe‐
tase by the herbicide.
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The glufosinate herbicide causes accumulation of lethal levels of ammonia in both soil bacteria
and plant cells. The GS inhibiting activity of glufosinate is lost when its amino group is
acetylated by a phosphinothricin acetyl transferase (PAT encoded by PAT; also known as bar
or BAR for bialaphos resistance) (Figure. 2).

Figure 2. Detoxication of glufosinate by phosphinothricin acetyl transferase (BAR or PAT).

Thus, a transgenic turfgrass transformed with BAR gene becomes resistant to the Basta spray,
as glufosinate from the Basta is effectively detoxicated in the plant. The transgenic zoysiagrass
and bentgrass developed in our laboratories carry the BAR gene isolated from Streptomyces
hygroscopicus in the soil [10].

Glyphosate is a non-selective herbicidal agent commercialized under the trade name “Round‐
up” by Monsanto. It exerts its herbicidal action by competitively inhibiting the 5-enolpyru‐
vylshikimate-3-phosphate synthase (EPSPs) centrally involved in the biosynthesis of aromatic
amino acids (phenylalanine, tryptophan and tyrosine). Plants treated with glyphosate are
killed for the lack of these amino acids in protein biosynthesis. Accumulation of shikimate also
leads to cell death, thus contributing to the herbicidal action of glyphosate [20] (Figure. 3).

A transgenic bentgrass carrying the EPSPS gene (“Roundup Ready”) then develops resistance
to Roundup [7, 21].

Although both BAR- and EPSPS-.transgenic turfgrasses are yet to be released for agronomic
cultivations, second and third generation GM crops including turfgrasses are forthcoming to
deal with the intolerance and tolerance being developed to the non-specific herbicides in the
transgenic herbicide-resistant turfgrasses and weed plants, respectively. Such next generation
crops are also being developed with the hope of leading consumer acceptance. In reference [22]
the authors stacked both BAR and CP4 EPSPS genes in creeping bentgrass to generate dual
(glufosinate and glyphosate) herbicide-resistant turfgrasses, hoping that less amounts of two
herbicides together are required for weed necrosis than with the greater amount needed with
one herbicide alone. The bentgrass species so developed showed an expected degree of

Herbicides - Current Research and Case Studies in Use382



tolerance to both Basta and Roundup, respectively. While such dual transgene herbicide
resistance may counter for a single-transgene plant to lose tolerance to the herbicide and/or
for the weeds to develop tolerance to the herbicide, it remains to be seen if this expectation is
borne out in natural habitats.

One of the most promising herbicide-resistant traits can be conferred by dicamba monooxy‐
genase gene (DMO). Dicamba (3, 6-dichloro-2-methoxybenzoic acid) is an active auxin analog
and its presence in the plant cells exaggerate the hormonal effects that lead to the cell and plant
death. It is widely used in the Unites States for over four decades. It is a relatively non-toxic
and environment-friendly herbicide. Its herbicidal activity is lost in a DMO-transgenic crop as
dicamba is detoxified to its inactive 3, 6-DCSA (3, 6-dichlorosalicylic acid) [23]. Attempts are
being made to generate DMO-transgenic turfgrass plants in several laboratories.

4. Herbicide-resistant zoysiagrass and bentgrass

In a previous report, we discussed the development of the BAR-transgenic Zoysia japonica
Steud., currently undergoing a regulatory approval process under the cultivar name “Jeju
Green 21” and compared its phenotypic traits with those of non-transgenic control [9]. Figure
4 (A, B) illustrates the effect of spraying Basta on the test plot containing both control and
herbicide-resistant zoysiagrasses. In Figure 4(A), the herbicide-resistant runners were planted
in the GMO-spelled area, which continued to grow healthily after Basta spray, showing “Jeju

Figure 3. The reaction catalyzed by 5-enolpyruvylshikimate 3-phosphate synthase(EPSPS) (Modified from reference [32])
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Green 21” plants growing in “GMO” spell pattern before and after the herbicide treatment at
a concentration of 0.1% (w/v) glufosinate. Figure 4(B) shows the mixed turfgrass/weed habitat
treated with a 0.5% Basta spray, showing an effective herbicidal killing of the weeds. Non-
transgenic grasses are effectively wilted out, whereas the resistant plants remain healthy and
indistinguishable from their non-transgenic counterparts physiologically and phenotypically
[9]. Figure 5 displays the herbicidal performance of BAR-transgenic creeping bentgrass in
which a wild type or mutant PHYA (Ser599Ala PHYA) gene is stacked with the BAR gene, vide
infra. The results show that the gene stacking has not compromised the herbicide-resistance
function conferred by the BAR gene. Qualitatively, both BAR- and EPSPS-transgenic bent‐
grasses effectively tolerate the herbicides, Basta and Roundup, respectively, but quantitative
comparisons of the herbicide resistances exhibited by different transgenic zoysiagrass and
bentgrass varieties entail further study.

Figure 4. Herbicide resistance assay of putative transgenic zoysiagrass plants. A. 0.8% BASTA® was sprayed onto non-
transgenic plants (NT) and bialaphos-resistant zoysiagrass, “GMO” was spelled by removing the plants; GM grass was
then planted into the letters, B. 0.5% BASTA® was sprayed onto the weed and bialaphos-resistance zoysiagrass plants.
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Figure 5. Herbicide resistance assay of putative transgenic creeping bentgrass plants. 0.8% BASTA® was sprayed onto
non-transgenic plants (NT) and transgenic plants over-expressing Wt-PHYA or Ser599Ala-PHYA, and the herbicide re‐
sistance of the plants was determined 10 days after the spraying. Wt-PHYA, transgenic bentgrass plants with wild-type
PHYA gene; Ser599Ala-PHYA, transgenic bentgrass plants with Ser599Ala-PHYA mutant.

When zoysiagrass and possibly other turfgrass species are left unmanaged under natural
habitats, their populations and swarth growth are easily overtaken by the dominant weed
plants. Figure 6 shows our own observations of herbicide-resistant zoysiagrass plants growing
in natural habitats during the four consecutive years (2006~2009). In four years, the ground
coverage of zoysiagrass was dominated by the weeds when the grass plot was left unmanaged.
On the other hand, the herbicide-resistant plants continued healthy population and swarth
growths under managed conditions involving fertilizer applications, herbicide sprays and
timely mowings.

Recently, we reported the development and morphological characterization of transgenic
Zoysia japonica and Agrostis stolonifera plants transformed with both BAR and PHYA genes [1].
The two transgenes confer herbicide resistance and shade tolerance to the grass, respectively.
We developed these turfgrass plants by harboring wild-type Avena PHYA or Ser599Ala PHYA
mutant (S599A-phytochrome A hyperactive mutant gene [24]) on the BAR-decked pCAM‐
BIA3301 vector in order to confer both herbicide and shade tolerant phenotypes to them. The
transgenic plants with Ser599Ala-PHYA and Wt-PHYA also displayed the shorter phenotypes
desired, in addition to their herbicide resistance trait (Figure 7).
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Figure 7. Growth performance of transgenic zoysiagrass plants over-expressing Ser599Ala-PHYA showed short phe‐
notypes compared with control plants (BAR gene) under field conditions. Bar in insert 1 cm.

Figure 6. Survival of the transgenic herbicide-resistant zoysiagrass during 4 years (2006-2009) in natural habitats. A.
Natural habitats during 4 years, B. Managed field, C. Plant height of zoysiagrass, D. Grass coverage of zoysiagrass, E.
Grass density of zoysiagrass. Blue bar, natural habitat; red bar, managed field.
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We observed a delay in necrosis (senescence) of Ser599Ala-PHYA leaves under outdoor
conditions in early winter (Figure 8). During the rejuvenation of zoysiagrass after the winter
season, various weeds began to dominate over the transgenic turfgrass habitats. However,
zoysiagrass plants expressing both BAR and Ser599Ala-PHYA genes exhibited a significant
increase in tiller number and runner length relative to the non-transgenic controls [10]. These
traits will be helpful for the zoysiagrass plants to compete effectively with the weeds, especially
in disrupting the germination of unwanted weeds.

Figure 8. Photographic view of browning (necrosis) in zoysiagrass transformant lines in early winter. NT, non-trans‐
genic zoysiagrass plants; HR, herbicide-resistant zoysiagrass plants with BAR gene; Wt-PHYA, transgenic zoysiagrass
plants with wild-type PHYA gene; Ser599Ala-PHYA 2-14 & 2-18 transformant lines, transgenic zoysiagrass plants with
Ser599Ala-PHYA mutant gene.

5. Environmental risk assessment

To commercialize any of the transgenic turfgrass varieties listed in Table 1, their environ‐
mental risks must be assessed under their natural habitats [7, 8, 9, 25]. This chapter briefly
reviews our own studies and discusses attempts to block or minimize the risks of gene flow
from the transgenic turfgrass habitats to the plants at neighboring and remote sites.  For
example, in reference [26] and [27] the workers introduced a male-sterility gene into GM
crops to block the escape of a transgene from the latter, and this strategy may be applied
to turfgrasses. We developed a sterile herbicide-resistant zoysiagrass through γ-radiation
mutation,  making  the  latter  unbolting  and  deficient  in  fertile  pollens  [28,  29].  The  γ-
radiation generated herbicide-resistant  zoysiagrass  can be  cultivated in  agronomic  habi‐
tats for eventual commercialization [25].

A preliminary study showed that the transgene (BAR) of herbicide-resistant Zoysia japonica
unintentionally escaped from the test plants to the close neighbored non-transgenic zoysia‐
grass species [9]. However, the introgression is likely to be suppressed under natural condi‐
tions (see Figure. 6) and can be easily terminated by applying non-specific herbicides such as
glyphosate and paraquat [25].

According to the “Weed risk assessments for Hawaii and Pacific Islands” database (http://
www.botany.hawaii.edu/faculty/daehler/wra/default.htm), transgenic Zoysia japonica and
Zoysia tenuifolia are classified as being L grade, i.e. not currently recognized as invasive in

Transgenic Herbicide-Resistant Turfgrasses
http://dx.doi.org/10.5772/56096

387



Hawaii, and not likely to have major ecological or economic impacts on other Pacific Islands
based on the HP-WRA screening process. On the other hand, bentgrass (Agrostis stolonifera)
belongs to an H grade group of plants, suggesting that transgenic herbicide-resistant bentgrass
is a higher risk turfgrass than the zoysiagrass; according to the Hawaii database, Agrostis
stolonifera is likely to be invasive in Hawaii and on other Pacific Islands as determined by the
HP-WRA screening process. In fact, the transgene of the Roundup Ready creeping bentgrass
introgressed other recipient plant species 3.8 km away from the test plot [8]. In conclusion, the
herbicide-resistant zoysiagrass developed in our laboratory poses substantially less risk of
transgene flow than the bentgrass (Figure. 5).

Although the risk of transgene escape and flow from the genetically modified zoysiagrass is
low, pollen-induced gene flow cannot be completely discounted. In reference [30] we examined
the pollen releases from the defined boundary of BAR –transgenic Zoysia japonica habitats as
a function of physical variables including the boundary, temperature, atmospheric humidity,
and lighting condition/duration. Results suggest that zoysiagrass’ pollen escape is essentially
limited to the close neighborhood, in contrast to bentgrass pollens.

Figure 9. Monitoring for the potential gene flow from the genetically modified zoysiagrass to wild-type zoysiagrass
plants within a 5-km radius in natural habitat. Samples were taken from 112 zones (448 sites): Zoysia japonica 96
zones (384 sites) and Zoysia matrella 16 zones (64 sites).
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Figure 9 shows the sites in Jeju Island monitored for the potential gene flow from the herbicide-
resistant Zoysia japonica to wild-type zoysiagrass within a 5-km radius in natural habitat. No
introgression was observed at these sites as of this writing.

6. Commercial potentials and outlook

Turfgrass is a highly value-added crop in terms of commercial profits per land acreage, when
compared to other crops. Turfgrasses sward vigorously through vegetative propagation and
swarth growth. According to TPI data (Turfgrass Producers International), the turfgrass
market size increased by 35% during the five year (2002-2007) period [31]. Based on the data
available, transgenic zoysiagrasses pose considerably less risk of transgene escape than does
bentgrass. Furthermore, the former can be effectively propagated vegetatively, and sterile
herbicide-resistant zoysiagrass (and bentgrass) can be developed through γ-radiation treat‐
ment [30]. This will circumvent to a large extent the public’s objections to genetically modified
plants and their unintended escapes.

7. Conclusion

We compiled a table of transgenic herbicide-resistant turfgrass varieties in various stages of
development and eventual agronomic cultivations. As can be seen in Table 1 of this chapter,
several transgenes have been introduced into zoysiagrass, bentgrass and other lawn grass
species primarily through Agrobacterium-mediated transformation and biolistic transfection.
These grasses all exhibit resistance to their intended herbicides such as Basta, Roundup and
others, but how well each of the transgenics developed performs in test plots and natural
habitats cannot be assessed at this point largely because quantitative data such as the dose-
response curves and the outdoor performances are lacking in most cases. In this chapter, we
focused our discussion to the BAR transgenic Zoysia japonica and Agrostis stolonifera species.
We conclude that these cultivars offer promising potentials as environmentally friendly and
economically beneficial turfgrass varieties, especially the former, for Jeju Island and elsewhere.
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