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1. Introduction 

Affective disorders, including major depression, mania and bipolar disorder, represent a 

spectrum of severe psychiatric diseases reflecting a continuum of psychopathological 

symptoms. Starting in young adulthood and often leading to suicidal ideation, affective 

disorders are ranking among the most disabling diseases worldwide in terms of the WHO 

global burden of disease, are socio-economically relevant, severe and prevalent. These 

diseases lead to enormous social disabilities due to affective and cognitive symptoms [1]. 

Depression, for example, has a lifetime risk of about 20-25% [2] and, besides suicide, a 

higher prevalence of the metabolic syndrome including coronary heart disease and diabetes 

increase mortality [3]. Bipolar disorder with manic episodes, in contrast, has a lifetime 

prevalence of about 1-5% [4]. However, due to the occurrence of depressive symptoms, the 

disease may be misdiagnosed - Goldberg et al. [5] could show a hypo-manic or manic 

episode in 46% in patients with depression. 

Despite tremendous efforts, the neurobiological background of affective disorders remains 

elusive, and due to lacking biomarkers an early diagnosis and reliable prognosis is difficult. 

Undisputed is a multifactorial etiology with genetic and psychosocial factors such as stress, 

emotional trauma and viral infections during the vulnerable episodes of brain development. 

They possibly interact in inducing disease symptoms. Beside neuroendocrinological factors, 

neurotransmitter disturbances and alterations of signal transduction constitute the basis of 

structural and functional alterations in neuronal circuits of the brain. 

2. Neuroimaging studies in affective diseases 

Since the description of the limbic “Papez-circuit of emotion” in the 1930s involving 

hippocampus, cingulated gyrus, anterior thalamus and hypothalamus, magnetic resonance 
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imaging [6] studies in patients revealed volume deficits in regions relevant for emotion 

processing, be it amygdala, hippocampus, anterior cingulate gyrus, prefrontal, or 

orbitofrontal cortex as well as basal ganglia. In bipolar disorder, affective and psychotic 

symptoms are related to a dysfunction in the prefrontal-subcortical network interacting with 

limbic regions [7]. Meta-analyses in bipolar disorder indeed show gray matter reductions in 

the paralimbic regions anterior cingulate cortex and insula, partially overlapping with 

decreased volumes in schizophrenia and indicating a continuum of the neurobiological 

background of psychoses [8, 9]. Anterior cingulate dysfunction in bipolar disorder has been 

strengthened by functional MRI studies, which revealed functional attenuation in the 

anterior cingulated cortex in patients with bipolar disorder performing cognitive and 

emotional tasks [10, 11]. Recent meta-analyses of fMRI studies in bipolar disorder show 

decreased activation of the inferior frontal cortex corresponding to frontal hypoactivity and 

overactivated hippocampus plus amygdala (limbic hyperactivity), which was consistent 

across emotional and cognitive tasks and related to the state of mania [12, 13]. Reduced 

fractional anisotropy nearby the parahippocampal gyrus and anterior cingulate cortex have 

been identified in diffusion-tensor imaging studies in bipolar disorder and speak for 

impaired limbic connectivity in neuronal networks [14]. With respect to amygdala size, 

decreased volumes have only been detected in younger patients and a respective correlation 

between volume and age has been reported [15, 16]. Contrastingly, schizophrenia patients 

showed larger ventricles and smaller amygdala volumes compared to bipolar disorder, 

pointing to a continuum of neurobiological alterations [8]. 

Compared to patients with bipolar disorder, those with major depressive disorders present 

decreased rates of white matter hyperintensity, smaller hippocampal and basal ganglia 

volumes and a decreased corpus callosum area [17, 18]. Along with increased lateral 

ventricles, smaller volumes of the basal ganglia, hippocampus, thalamus, frontal lobe, 

orbitofrontal gyrus and gyrus rectus have been detected in major depression [19]. This 

especially pertained patients during depressive episodes with smaller hippocampal 

volumes compared to remittend patients [18]. Reduced hippocampal volumes have 

consistently been reported in patients with major depression and are prominent in patients 

with recurrent and chronic depression [20]. Shape analysis revealed deformations in the 

subiculum, CA1 and CA2-3 subfields in the tail of the right hippocampus of patients with 

first episode of depression [21]. The presence of alterations in first-episode depression is 

consistent with a neurodevelopmental hypothesis of early stress experience, especially since 

this region plays a major role in inhibiting stress response [22], providing inhibitory 

feedback to the hypothalamic-pituitary-adrenal (HPA) axis [23]. 

3. Synaptic plasticity and stress mediation 

Post-mortem investigations reveal reduced density and size of interneurons in cornu 

ammonis (CA) 2/3 subfield of the hippocampus in bipolar disorder [24]. In the hippocampal 

subiculum, a decreased density of neuronal dendrites leading to disturbances of 

microconnectivity and probably representing the basis of the reported volume deficit in 
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bipolar patients has been found [25]. However, the finding of decreased neuropil (dendrites 

and axons) seems not to be specific for bipolar disorder, as it has also been reported in all 

hippocampal subfields of patients with major depression showing increased density of 

neurons and glia cells as a sign of increased packing of the cells. Additionally, in line with the 

hypothesis of a degenerative process, soma size of pyramidal neurons was decreased [26]. In 

the prefrontal cortex of patients with major depression, a decrease in cortical thickness goes 

along with lower densities of neurons and glia cells [27]. In the anterior cingulate cortex, in 

familial depression and bipolar disorder, decreased glia number has been detected [28]. In 

both regions, decrease of glia density and neuronal size has been reported [29]. Decreased glia 

density has also been found in the amygdala of patients with major depression [30]. In animal 

studies again, chronic stress or repeated administration of glucocorticoids interestingly results 

in degeneration of hippocampal neurons with decreased soma size and atrophy of dendrites 

[31, 32]. Stress possibly also influences synaptic plasticity in the prefrontal cortex [33]. Thus the 

volume loss in brain regions like the hippocampus reported in affective disorders may indeed 

be mediated by stress-induced glucocorticoid neurotoxicity [34, 35]. 

Division and differentiation of stem cells to neurons and their migration to the granule cell 

layer has been demonstrated in the hippocampal dentate gyrus of both humans and adult 

rodents [36]. Some factors influence this neurogenesis: While blockade of the glutamatergic 

N-methyl-D-aspartate (NMDA) receptor and adrenalectomy results in increased production 

of granule neurons, adrenal steroids and NMDA receptor activation diminished 

neurogenesis [37]. Acute, chronic or prenatal stress, all of them implicated in the 

pathophysiology of depression [38], have been shown to inhibit proliferation of subgranular 

neurons [39-42]. Because both, circulating adrenal steroids and glutamate-induced 

excitatory input to the hippocampus, are enhanced by stress [43, 44], the influence of 

stressful events on cell proliferation and survival of newly generated neurons may be 

mediated by these mechanisms [40, 45]. In an animal model of learned helplessness, 

inescapable stress is leading to downregulation of neurogenesis [46]. Accordingly, 

antidepressants are known to induce cell proliferation and neurogenesis [46-49]. 

4. Neurotrophins and the HPA axis 

Neurotrophic factors, particulary Brain-Derived Neurotrophic Factor (BDNF) are expressed 

in the hippocampus and cortex and are involved in neurogenesis and synaptic plasticity 

such as promotion of survival and differentiation as well as branching of axons and 

dendrites [50]. In patients with bipolar disorder, reduced hippocampal expression of BDNF 

has been reported [51] while antidepressants reversed this effect [52]. In blood of depressed 

patients, including patients with bipolar disorder, BDNF levels have been found to be 

decreased and correlated to higher depression evaluation scores [53, 54]. Post-mortem 

studies of the hippocampus in major depression revealed a reduced BDNF 

immunhistochemistry [51].  

To date, beside a genetic vulnerability, stress is widely accepted as risk factor for depression. 

In animal models, acute or chronic stress decreased BDNF levels in the hippocampus 
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inclusive the dentate gyrus [52]. Along with this hypothesis, stress is known to reduce the 

branching of hippocampal dendrites [55]. It additionally increases plasma and adrenal 

corticosterone levels and application of this hormone induces reduced hippocampal BDNF 

levels, mimicking stress reaction [52]. The major stress system of the body is the HPA axis, a 

neuroendocrine system involved in the production of the stress hormone cortisol by adrenal 

glands. In more than 50% of patients with major depression, a dysfunction of the HPA axis 

with increased basal cortisol levels and dexamethasone non-suppression of cortisol was 

detected, suggesting abnormal negative feedback system of the HPA axis. Additionally, the 

production of corticotrophin-releasing hormone (CRH) production is abnormal while 

pituitary and adrenal sensitivity seem to be intact [56] (figure 1). CRH is produced in the 

paraventricular nucleus of the hypothalamus in response to psychosocial stress and 

activates the HPA axis. It is binding in the pituitary gland to induce release of 

adrenocorticotropine hormone (ACTH), which in turn stimulates the release of cortisol from 

the adrenal gland. In a negative feedback loop, cortisol binding inhibits CRH and ACTH 

release, inhibiting the HPA axis [57], but this hormonal feedback is known to be abnormal in 

depression. In animal models, CRH administration and overexpression induce depression-

like behavior, while CRH antagonists have antidepressant properties [58, 59]. Depressed 

patients with history of childhood abuse have enhanced HPA axis response to psychosocial 

stress and attenuated adrenocorticotrophin and cortisol response to application of the 

synthetic corticosteroid dexamethasone [60]. However, individual genetic background 

influences the incidence of depression in response to psychosocial stress and only a minority 

of persons exposed to common stressors develops depression [61]. Thus, genes may 

modulate the association between environmental factors like stress and risk of illness. 

5. Genetic findings 

Twin, family and adoption studies have shown that major depression is a moderate 

heritable disease. During the last years, candidate gene and genome-wide association 

studies (GWAS) have linked common DNA sequence variation, called polymorphisms, to 

major depression [62-64] and identified novel candidate loci [65]. However, single 

nucleotide polymorphisms (SNPs) only slightly affect the pathophysiology, and affective 

disorders seem to be of complex polygenetic origin. With respect to CRH dysfunction, a 

genetic variation of the corticotropin releasing hormone type 1 receptor (CRHR1) has been 

found to be associated with decreased HPA axis response to CRH infusion, suggesting to 

influence this pathophysiology of depression [66]. In addition, negative feedback control on 

CRH secretion may be impaired due to altered glucocorticoid receptor (GR) function on 

hippocampal level [67]. A GR polymorphism has also been found to be associated with 

vulnerability to depression [68]. According to the neurotrophin hypothesis, in patients with 

depression and healthy controls, smaller hippocampal volumes have been detected in 

carriers of the BDNF Met66 allele compared to Val/Val homozygotes [69]. These results 

suggest that a Val66Met polymorphism may possibly predispose to smaller hippocampal 

volumes and depression, although this topic currently is under debate [70]. An interaction 

between a 5-HTTLPR serotonin transporter polymorphism and Val66Met BDNF gene 
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variant has been shown to be associated to stress-induced depression [71-73]. Furthermore, 

depression has been associated with polymorphisms in the glucocorticoid receptor gene 

NR3C1, the monoamine oxidase A gene, and genes for glycogen synthase kinase-3ß, a 

neuron-specific neutral amino acid transporter (SLC6A15) as well as group-2 metabotropic 

glutamate receptor (GRM3) [74, 75].  

 

Figure 1.  
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Several other genes are associated with bipolar disorder inclusive brain-derived 

neurotrophic factor (BDNF), D-amino acid oxidase activator (DAOA, G72), disrupted in 

schizophrenia 1 (DISC1), solute carrier family 6 (SLC6A4), tryptophan hydroxylase 2 

(TPH2), catechol-O-methyltransferase (COMT), serotonin transporter (5-HTT) [76-81], but 

there is a large overlap with schizophrenia-associated genes, pointing to a continuum 

between affective disorders and psychosis. Among the risk variants for bipolar disorder, to 

date G72 is the most supported locus [76, 82-84]. However, there is also evidence for an 

association with depression and panic disorder [78, 85]. Additionally, G72 possibly 

influences a predisposition for affective symptoms in schizophrenia [83]. A further risk gene 

for bipolar disorder and depression is diacylglycerol kinase (DGKH), showing 10 SNPs to be 

associated with bipolar disorder while 7 SNPs are associated with unipolar depression and 

four SNPs with ADHD, thus influencing mood instability [86]. Additionally, a region of 

both ankyrin 3 (ANK3) and neurocan (NCAN) has been found to be associated with bipolar 

disorder [65, 87]. A recent meta-analysis revealed association of two SNPs in the serotonin 

1A receptor gene with major depression and bipolar disorder and supports the hypothesis 

of disturbed serotonin neurotransmission in mood disorder [88]. 

Altogether, the heritability of major depression seems to be meager compared to bipolar 

disorder and schizophrenia, which show heritability rates of up to 80%. To date, GWAS 

studies could not identify many reproducible individual gene loci associated with affective 

disorders [89], but SNPs near exons exhibit a greater probability of replication, supporting 

an enrichment of reproducible associations near functional regions of genes [90]. However, 

the confirmation of some loci affords larger samples. In a GWAS study from the GWAS 

consortium Bipolar Disorder Working Group, in large cohorts evidence for association of 

CACN1C, an L-type voltage-gated calcium channel has been confirmed [91]. In order to 

improve methodological quality, new investigations using next-generation sequencing are 

under way.  

Epigenetic mechanisms altering chromatin structure such as histone acetylation and DNA 

methylation may link effects of environmental factors such as stress to transcriptional 

regulation of specific genes. Depression-like behavior and antidepressant action have been 

found to be regulated by epigenetic mechanisms [92]. Besides downregulation of BDNF 

transcripts, stress increased histone methylation at their corresponding promoters. The 

antidepressant imipramine reversed the decrease on the mRNA level and increased histone 

acetylation along with downregulation of histone deacetylase, suggesting an important role 

in histone remodeling in the pathophysiology and treatment of depression [93]. As a 

consequence, new treatment strategies influencing epigenetic targets could be developed. 

6. Neurotransmitter hypotheses 

Selective antidepressant treatment is known to act on the serotonergic and the 

noradrenergic system. Traditional long-term antidepressant treatment is known to induce 

increased levels of serotonin from the raphe nuclei [94]. The serotonin hypothesis of 

depression suggests that decreased serotonin activity increases vulnerability for depression 



 
Neurobiological Background of Affective Disorders 9 

[95]. The serotonin system originates from the dorsal and medial raphe nuclei in the 

brainstem infringing on limbic structures such as the hippocampus and amygdala [94]. 

Reducing serotonin synthesis induces depressive symptoms in healthy probands exposed to 

uncontrollable stress [96], and increased serotonin release in the hippocampus has been 

implicated in the mechanisms underlying coping with stress [97]. Serotonin (5-HT) receptors 

are represented by 5-HT1 class receptors, being situated pre- and postsynaptically and 

inhibitory by reduction of adenylate cyclase activity. The 5-HT2 class excitatory receptors are 

located predominantly postsynaptically through activation of phospholipase C [94]. 5-HT1A 

receptors are known to mediate adaption to stress and these receptors located in the 

hippocampus could attenuate the emotional impact of aversive stimuli, inhibiting the 

consolidation of stressfull memories [97]. Additionally, 5-HT1A receptors are known to 

mediate the serotonin-based increase in neurogenesis [98] and induce release of 

neurotrophic factors [99]. Moreover, serotonin is involved in the regulation of the HPA axis 

[100]. The downregulation of 5-HT1A receptors in the hippocampus by stressors is corticoid-

dependent and reversed by antidepressants [101, 102]. Indeed, patients with depression 

have reduced 5-HT1A receptor binding as revealed by positron emission tomography (PET) 

studies [103, 104] plus results of altered receptor number in post-mortem investigations [105, 

106]. 

The noradrenaline system derives from the locus coeruleus and lateral tegmental nuclei. The 

receptors belong to the excitatory postsynaptic ß-adrenergic, α1 and inhibitory pre- and 

postsynaptic α2 adrenergic categories. They have been shown to be upregulated in post-

mortem brains of patients with depression [95, 107], suggesting a primary noradrenaline 

deficit. Stressors and glucocorticoids persistently activate the noradrenergic system in the 

locus coeruleus with resulting disrupted responses to brief stimuli [94]. In contrast to the 

posterior hippocampus, facilitation of noradrenergic transmission in the ventral 

hippocampus, being involved in emotion and anxiety [108, 109], seems to protect against 

stress effects [110]. Moreover, the noradrenaline system closely interacts with serotonin, 

facilitating serotonin neurotransmission in the hippocampus and amygdala [97] thus 

providing a therapeutic target for antidepressant drugs such as noradrenaline reuptake 

inhibitors [111]. Dopamine is another monoamine proposed to play a role in mood disorder 

since the mesolimbic dopamine reward circuit originating from the ventral tegmental area is 

associated with rewarding effects of food, sex and drug abuse. A dopaminergic deficit may 

contribute to anhedonia reduced motivation and energy level in patients with depression 

and may represent a target for the development of new therapeutic strategies [112]. It is 

expected that reuptake inhibitors for all three catecholamines (serotonin, noradrenaline, 

dopamine) can produce greater efficacy than traditional antidepressants [113]. 

It has been shown that 5-HT depletion alone does not induce mood symptoms, but an 

interaction with glutamate may be responsible for developing affective disorders. 

Additionally, noradrenaline is involved in release and uptake of glutamate [114]. Glutamate 

is the principal excitatory, γ-aminobutyric acid (GABA) the predominant inhibitory 

neurotransmitter in the brain, both occupying at least 50% of the synapses. Besides 

regulating synaptic plasticity, they closely interact with the HPA axis. In depression, an 



 

Psychiatric Disorders – New Frontiers in Affective Disorders 10 

overactive glutamate system and hypoactive GABA system has been suggested [115]. 

Elevated levels of glutamine/glutamate have been shown in MR-spectroscopy (MRS) studies 

in the frontal and occipital cortex as well as in basal ganglia of patients with depression. In 

the anterior cingulate cortex, reduced levels have been reported in depression, while in 

bipolar disorder with acute mania, glutamate/glutamine levels were increased [28]. These 

findings are consistent with glutamatergic overactivity in acute mania. However, 

medication effects may contribute to the findings in mood disorder. In medication-free 

depressed patients, GABA levels have been found to be reduced in the occipital and anterior 

cingulate cortex as well as prefrontal cortex [115]. In clinical studies, agonists at the glycine 

site of the glutamatergic N-methyl-D-aspartate (NMDA) receptor as well as inhibitors of the 

glycine transporter elevating glycine levels have been found to exert antidepressant 

properties. But also antagonists at the NMDA receptor like ketamine induce a presynaptic 

release of glutamate, which in turn activates glutamatergic α-amino-3-hydroxy-5-methyl-

isoxazole-4-propionic acid (AMPA) receptors act as antidepressants [116-118]. Novel 

potential therapeutic drugs affecting the glutamate system are under investigation, such as 

modulators of AMPA receptors, NMDA receptor subunit NR2B, metabotropic glutamate 

receptors, glutamate transporter EAAT2, and N-acetyl-L-cysteine which is a precursor of the 

NMDA receptor activating antioxidant glutathione [117, 119].  

7. Findings on the molecular level 

The above described neurotransmitters are known to modulate gene transcription and 

protein synthesis [120]. Proteomic studies in the frontal cortex and nucleus accumbens of 

depressed patients revealed altered expression of Dihydropyrimidinase-related protein 2 

(DPYSL2), regulating neuronal development, migration and differentiation as well as 

differential expression of aldolase C (ALDOC), which plays a major role in glucose and 

energy metabolism [121]. In the dorsolateral prefrontal cortex, proteomic profiles and a 

phosphoproteomic approach showed differences in proteins associated with synaptic 

transmission and cellular architecture [122] [123]. In bipolar disorder, dysregulation of 

DPYSL2 and glial fibrillary acid protein (GFAP) along with tubulin subunits suggest 

cytoskeletal dysfunction and altered brain development [121].  

Genome-wide gene expression studies in bipolar disorder unearthed a high correlation of 

expression changes also observed in schizophrenia such as decreased oligodendrocyte and 

myelination related genes, as well as deregulation of mitochondrial energy metabolism, 

oxidative phosphorylation, synapse-related and mitochondrial genes [124, 125]. In 

depressed patients, alterations of genes involved in neurodevelopment, signal transduction, 

cell communication and myelination have been reported. Additionally, genes encoding for 

the glutamate and serotonin system have been found to be altered in bipolar disorder and 

depression [125]. Moreover, in mood disorder, alterations of BDNF and subunits of 

glutamate receptors and the GABA synthesizing enzyme GAD have been detected to be 

differentially regulated [126]. In a previous laser-capture microdissection study of the locus 

coeruleus, Bernard [127] found alterations of the glutamate-, astroglia- and growth factor 
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related genes in depression, but not in bipolar disorder, suggesting differential processes in 

both disorders. In the frontal cortex of patients with major depression, increased apoptosis 

stress and upregulation of pro-and anti-inflammatory cytokines have been detected [128] 

which differs from findings in schizophrenia [129]. Interestingly, in an animal study, chronic 

stress affected expression of genes involved in brain development, morphogenesis and 

synaptic transmission in the dentate gyrus of the hippocampus, which is involved in 

neurogenesis [130]. Modulation of these stress effects may lead to development of new 

therapeutic strategies for mood disorder. 

8. Conclusion 

Overall, mood disorder entails a broad spectrum of alterations in specific neuronal circuits. 

Despite overlapping findings in patients with major depression, bipolar disorder and even 

schizophrenia, pointing to a neurobiological continuum of the diagnostic spectrum of 

psychoses, specific findings can be detected on the cellular, molecular and hormonal level. 

Besides genetics, environmental factors like acute or chronic stress are known to account for 

the pathophysiology of the named disorders. New treatment strategies involving several 

neurotransmitter systems are under way and may improve outcome. However, preventive 

and cause-related treatments based on molecular findings plus animal studies of 

environmental and genetic factors should be developed to increase efficacy and prevent 

burden of severe psychiatric diseases. 
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