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1. Introduction

Antibiotic  resistance  is  a  worldwide  problem  of  major  importance.  Isolations  in  some
countries  of  multi-drug-resistant  (resistant  to  three  or  more  classes  of  antimicrobials),
extensively-drug-resistant  (resistant  to  all  but  one  or  two  classes)  or  even  pan-drug-
resistant (resistant to all available classes) Gram-negative pathogens are causing therapeu‐
tic problems and- in the same time- are posing infection control issues in many hospitals.
In fact, numerous studies highlight the link between multi-drug-resistance and increased
morbidity and mortality, increased length of hospital stay and higher hospital costs [1-4].

Pseudomonas  aeruginosa  is  a  Gram-negative  opportunistic  nosocomial  pathogen  responsi‐
ble for a wide range of infections that may present high rates of antimicrobial resistance.
The genome of this microorganism is among the largest  in the bacterial  world allowing
for  great  genetic  capacity  and  high  adaptability  to  environmental  changes.  In  fact,  P.
aeruginosa  has  5567  genes  encoded  in  6.26  Mbp  of  DNA  while  Escherichia  coli  K12  for
example has 4279 genes encoded in 4.46 Mbp and Haemophilus influenzae Rd has 1.83 Mbp
encoding 1714 genes [5]. This large genetic armamentarium- that can be further enriched
with the addition of genes acquired by transferable genetic elements via horizontal gene
transfer- is a major contributing factor to its formidable ability to develop resistance against
all known antibiotics.

Generally, antibiotic resistance mechanisms of P. aeruginosa can be divided in intrinsic and
acquired. Intrinsic refers to resistance that is a consequence of a large selection of genetical‐
ly-encoded mechanisms and acquired refers to resistance that is achieved via the acquisi‐
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tion of  additional  mechanisms or  is  a  consequence of  mutational  events  under selective
pressure.

2. Intrinsic resistance of Pseudomonas aeruginosa

P. aeruginosa shows inherent resistance to antimicrobial agents through a variety of mecha‐
nisms: (1) decreased permeability of the outer membrane, (2) efflux systems which actively
pump antibiotics out of the cell, and (3) production of antibiotic-inactivating enzymes [6].

2.1. Outer membrane permeability

The outer membrane of Gram-negative bacteria is a barrier which prevents large hydrophilic
molecules to pass through it. Aminoglycosides and colistin interact with lipopolysaccharides
changing the permeability of the membrane in order to pass whereas beta-lactams and
quinolones need to diffuse through certain porin channels.

Bacteria produce two major classes of porins: general; which allow almost any hydrophilic
molecule to pass [7] and specific; which have binding sites for certain molecules, allowing them
to be oriented and pass in the most energy-efficient way [8].

Most bacteria posses lots of general porins and relatively few specific ones. However, the exact
opposite occurs for P. aeruginosa that expresses mainly specific porins [7].

2.2. Efflux systems

P. aeruginosa expresses several efflux pumps that expel drugs together with other substances
out of the bacterial cell. These pumps consist of three proteins: (1) a protein transporter of the
cytoplasmatic membrane that uses energy in the form of proton motive force, (2) a periplasmic
connective protein, and (3) an outer membrane porin [5].

Most antibiotics- except polymyxins- are pumped out [9,10] by these efflux systems (Table 1)
therefore their first two components are named multidrug efflux (Mex) along with a letter (e.g.
MexA and MexB). The outer membrane porin is called Opr along with a letter (e.g. OprM) [11].

2.3. Antibiotic-inactivating enzymes

P. aeruginosa belongs to the SPICE group of bacteria (Serratia spp., P. aeruginosa, Indole positive
Proteus, Citrobacter spp., Enterobacter spp.). These microorganisms share a common character‐
istic: the ability to produce chromosomal-encoded and inducible AmpC beta-lactamases.
These are cephalosporinases that hydrolyze most beta-lactams and are not inhibited by the
beta lactamase inhibitors.

Another endogenous beta-lactamase produced by P. aeruginosa is the class D oxacillinase PoxB
[12,13]. This enzyme however has only been found in laboratory mutants and is not clinically
significant.
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Efflux system Efflux pump family Substrates References

MexAB-OprM Resistance Nodulation

Division (RND)

Fluoroquinolones

Aminoglycosides

β-Lactams (preferably

Meropenem, Ticarcillin)

Tetracycline

Tigecycline

Chloramphenicol

[17]

MexCD-OprJ Resistance Nodulation

Division (RND)

Fluoroquinolones

β-Lactams (preferably

Meropenem, Ticarcillin)

Tetracycline

Tigecycline

Chloramphenicol

Erythromycin

Roxythromycin

[17]

MexEF-OprN Resistance Nodulation

Division (RND)

Fluoroquinolones

β-Lactams (preferably

Meropenem, Ticarcillin)

Tetracycline

Tigecycline

Chloramphenicol

[17]

[18]

MexXY-OprM Resistance Nodulation

Division (RND)

Fluoroquinolones

Aminoglycosides

β-Lactams (preferably

Meropenem, Ticarcillin,

Cefepime)

Tetracycline

Tigecycline

Chloramphenicol

[17]

AmrAB-OprA Resistance Nodulation

Division (RND)

Aminoglycosides [19]

PmpM Multidrug And Toxic

compound Extrusion (MATE)

Fluoroquinolones [17]

Mef(A) Major Facilitator Superfamily

(MFS)

Macrolides [20]

ErmEPAF Small Multidrug Resistance

(SMR)

Aminoglycosides [21]

Table 1. Efflux systems of P. aeruginosa.
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3. Antipseudomonal treatment

Despite the intrinsic resistance of P. aeruginosa to many antimicrobials, some antibiotics are
active against this microorganism [14]. Those used more frequently belong to three antibiotic
classes: (1) Beta-lactams, (2) Quinolones and (3) Aminoglycosides (Table 2).

3.1. Beta-lactams

Beta-lactams bind to and inactivate penicillin-binding proteins (PBPs) that are transpeptidases
involved in bacterial cell wall synthesis [15]. The group of beta-lactam antibiotics includes
penicillins, cepholosporins, monobactams and carbapenems. The beta-lactams that are most
active against P. aeruginosa are: Piperacillin and ticarcillin (penicillins), ceftazidime (3rd

generation cephalosporin), cefepime (4th generation cephalosporin), aztreonam (monobac‐
tam), imipenem, meropenem and doripenem (carbapenems).

3.2. Quinolones

Quinolones are synthetic antimicrobials that block DNA replication by inhibiting the activity
of DNA gyrase and topoisomerase IV [16]. The fluorquinolones with anti-pseudomonal
activity are ciprofloxacin, levofloxacin and ofloxacin.

Antibiotic Class Mechanism of action Drug

Penicillins Bacterial cell wall synthesis inhibition Ticarcillin

Penicillin / Beta-lactamase inhibitor Bacterial cell wall synthesis inhibition Ticarcillin/Clavulanic acid

Piperacillin/Tazobactam

Cefalosporins Bacterial cell wall synthesis inhibition Ceftazidime

Cefepime

Monobactams Bacterial cell wall synthesis inhibition Aztreonam

Carbapenems Bacterial cell wall synthesis inhibition Imipenem

Meropenem

Doripenem

Fluoroquinolones Block of DNA synthesis Ciprofloxacin

Levofloxacin

Ofloxacin

Aminoglycosides Protein synthesis inhibition Gentamycin

Tobramycin

Amikacin

Table 2. Commonly used anti-pseudomonal drugs.
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3.3. Aminoglycosides

Aminoglycosides inhibit protein synthesis by binding to the 30S or 50S ribosomal subunit [22].
Drugs of this antibiotic class that can be used against P. aeruginosa are tobramycin, amikacin
and gentamicin. Aminoglycosides are associated with ototoxicity and nefrotoxicity [23].
Because of these adverse effects and because of their narrow therapeutic range, aminoglyco‐
sides are used in combination with agents belonging to other antibiotic classes. The only
treatment in which aminoglycosides are recommended as monotherapy is that of urinary tract
infections due to P. aeruginosa [14].

4. Acquired resistance of Pseudomonas aeruginosa

Apart from being resistant to a variety of antimicrobial agents, P. aeruginosa develops resistance
to anti-pseudomonal drugs as well. This acquired resistance is a consequence of mutational
changes or the acquisition of resistance mechanisms via horizontal gene transfer and can occur
during chemotherapy [24]. Mutational events may lead to over-expression of endogenous
beta-lactamases or efflux pumps, diminished expression of specific porins and target site
modifications while acquisition of resistance genes mainly refers to transferable beta-lacta‐
mases and aminoglycoside-modifying enzymes (Table 3).

Resistance to Resistance mechanism

Beta-lactams Endogenous beta-lactamases

Acquired beta-lactamases

Efflux

Diminished permeability

Fluoroquinolones Target site mutations

Efflux

Aminoglycosides Aminoglycoside-modifying enzymes

Efflux

16S rRNA methylases

Polymyxins LPS modification

Table 3. Resistance mechanisms of P. aeruginosa to anti-pseudomonal drugs.

4.1. Resistance to beta-lactams

Resistance to beta-lactam antibiotics is multi-factorial but is mediated mainly by inactivating
enzymes called beta-lactamases. These enzymes cleave the amide bond of the beta-lactam ring
causing antibiotic inactivation and are classified according to a structural [25] and a functional
[26] classification.
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Among the beta-lactams, carbapenems are the most efficient against P. aeruginosa. These agents
are stable to the hydrolytic effect of the majority of the beta-lactamases including the Extended
Spectrum Beta-Lactamases (ESBLs) [27]. For this reason, the enzymes that possess carbapene‐
mase activity, namely the carbapenemases [28], will be discussed separately in this section.

4.1.1. Expression of endogenous beta-lactamases

Resistance to beta-lactams in clinical isolates is commonly due to the presence of AmpC beta-
lactamases [29-36]. Furthermore, the production of AmpC beta-lactamases in P. aeruginosa can
be induced by a number of beta-lactam antibiotics such as benzyl penicillines, narrow spectrum
cephalosporins and imipenem [37]. In fact, this mutational derepression is one of the most
common mechanisms of resistance to beta-lactams in P. aeruginosa [29,32,33,36].

AmpC enzymes are not carbapenemases, they posses however a low potential of carbapenem
hydrolysis and their overproduction combined with efflux pumps over-expression and/or
diminished outer membrane permeability has been proven to lead also to carbapenem
resistance in P. aeruginosa [38].

4.1.2. Acquired beta-lactamases

Acquired beta-lactamases are typically encoded by genes which are located in transfera‐
ble  genetic  elements  such  as  plasmids  or  transposons  [39]  often  on  integrons  [40-49].
Integrons are genetic elements that capture and mobilize genes [50]. Other genetic elements
associated with transferable resistance in P. aeruginosa  are the mobile insertion sequences
called ISCR elements [49,51-53].

Different types of transferable beta-lactamases have been found in clinical P. aeruginosa isolates
around the world (Table 4).

Among them, carbapenemases are of major clinical importance because they inactivate
carbapenems together with other beta-lactams. Ambler class A ESBLs hydrolyze penicillins,
narrow- and broad-spectrum cephalosporins and aztreonam [54]. Some TEM and SHV
enzymes do not possess broad-spectrum cephalosporinase activity and are called restricted-
spectrum beta-lactamases. Class D OXA beta-lactamases are a heterogenous group of enzymes
and not all share the same properties. Generally, most of them show a preference for cloxacillin
over benzylpenicillin. They confer resistance to amino- and carboxypenicillins and narrow –
spectrum cephalosporins even though some of them are ESBLs and a few members of the class
present carbapenemase activity [24].

4.1.3. Carbapenemases

P. aeruginosa is the species in which all types of transferable carbapenemases, except SIM-1 [55],
have been detected. The class B carbapenemases that bear Zn2+ in their active center [56] are
the most frequent around the world in P. aeruginosa isolates and are called metallo-beta-
lactamases (MBLs). They hydrolyse in vitro all beta-lactams except aztreonam and are the major
cause of high-level carbapenem resistance. Genes that encode MBLs are commonly found as
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gene cassettes in integrons and are transferable [42]. Interestingly, more resistance genes for
other antibiotic classes can be present in the same integrons contributing thus in the develop‐
ment of a multi-drug resistant phenotype.

IMP and VIM type MBLs were first identified in Japan [81] and Italy [82] respectively and have
spread though all continents since then. Other metallo-enzymes are more geographically
restricted. SPM-1, after causing outbreaks in Brazil [28], has been found in Basel [83] in a single
isolate recovered from a patient previously hospitalized in Brazil. GIM-1 and AIM-1 were

Ambler molecular class Bush-Jacoby-Madeiros

group

Enzymes References

A 2b TEM-1, -2, -90,

-110, SHV-1

[57,58]

2be PER-1, -2

VEB-1, -2, -3

TEM-4, -21, -24,

-42, -116

SHV-2a, -5, -12

GES/IBC-1, -2, -5,

-8, -9

BEL

LBT 802

CTX-M-1, -2, -43

[10]

[53]

[59-62]

2c PSE-1 (CARB-2), PSE-4

(CARB-1), CARB-3,

CARB-4, CARB-like, AER-1

[10]

[63]

2f KPC-2, -5 [64,65]

B 3 IMP-1, -4, -6, -7, -9, -10,

-12, -13, -15,

-16, -18, -22

VIM-1, -2, -3, -4, -5, -7, -8,

-11, -13, -15, -16,-17, -18

SPM-1

GIM-1

AIM-1

NDM-1

[10]

[47]

[66-76]

C 1 AmpC [77]

D 2d OXA

LCR-1

NPS-1

[10]

[12]

[54]

[57]

[78-80]

Table 4. Beta-lactamases found in P. aeruginosa isolates.
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reported from Germany [41] and Australia [84] and did not spread elsewhere. Finally, the only
report for NDM-1 in P. aeruginosa was made from Serbia [76].

Ambler class A carbapenemase KPC was first reported in P. aeruginosa isolates in Colombia
[64] but KPC-producing P. aeruginosa isolates have not been reported from other continents
except Latin America. KPCs present high rates of carbapenem hydrolysis and inactivate all
other beta-lactams including aztreonam.

Enzymes GES/IBC belong to the same enzymatic class but their carbapenemase activity is not
as high as that of the KPCs. It may become important however if combined with diminished
outer membrane permeability or efflux over-expression. For P. aeruginosa, GES-2 has been
reported in South Africa [85] and IBC-2 in Greece [86].

Class D carbapenemases like OXA-198 have been found in P. aeruinosa isolates although such
findings are rather rare for this species [87]. The most clinically important carbapenemases are
summarized in Table 5.

Ambler molecular class Bush-Jacoby-Madeiros group Carbapenemases

A 2f KPC

B 3 IMP enzymes

VIM enzymes

SPM-1

GIM-1

AIM-1

NDM-1

Table 5. Clinically important carbapenemases found in P. aeruginosa isolates.

4.1.4. Efflux systems over-expression

Among the various efflux systems of P. aeruginosa, MexAB-OprM, MexXY-OprM and MexCD-
OprJ play an important role in developing beta-lactam resistance [88]. Between these three,
MexAB-OprM accommodates the broadest range of beta-lactams [24], is by far the better
exporter of meropenem [24] and is most frequently related to beta-lactam resistance in clinical
P. aeruginosa isolates [33,89]. The efflux pumps may be over-expressed in some isolates [90]
contributing thus, together with other mechanisms in the development of multi-drug resist‐
ance [24].

4.1.5. Diminished permeability

OprD is a specific porin of the outer membrane of P. aeruginosa through which carbapenems
(mainly imipenem) enter into the periplasmic space [91]. Diminished expression [92] or
mutational loss [93] of this porin is the most common mechanism of resistance to carbapenems
[24,94] and is frequently associated with efflux pumps and/or AmpC over-expression [36,38].
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Diminished expression or loss of the OprD porin is a frequent phenomenon during imipenem
treatment [95].

4.2. Resistance to fluoroquinolones

High-level resistance to fluoroquinolones is mediated by target site modifications. Efflux plays
a contributing role as well [96,97] and the two mechanisms often coexist [32,98-100].

4.2.1. DNA gyrase and topoisomerase IV mutations

Gyrase and topoisomerase are comprised by two subunits each. DNA gyrase (GyrA and GyrB)
is the main target of fluoroquinolones in P. aeruginosa. Consequently, mutations are most
common for this enzyme rather than for topoisomerase IV (ParC and ParE) [98-102]. Highly
resistant isolates have multiple mutations in gyrA and/or parC [98,101-103] while mutations
regarding the other subunits are less frequently encountered [100-102,104].

4.2.2. Efflux pumps contribution

Four efflux pumps contribute to fluoroquinolone resistance: MexAB-OprM, MexCD-OprJ,
MexEF-OprN and MexXY-OprM [105] as a consequence of mutational events in their repressor
genes [24]. Among these, MexAB-OprM, MexCD-OprJ, and MexEF-OprN have been associ‐
ated to fluoroquinolone resistance in clinical isolates [31,105-107] whereas MexXY-OprM has
only been linked rarely to such type of resistance [106].

4.3. Resistance to aminoglycosides

Acquired  resistance  to  aminoglycosides  is  mediated  by  transferable  aminoglycoside-
modifying  enzymes  (AMEs),  rRNA  methylases  and  derepression  of  endogenous  efflux
systems [24,108,109].

4.3.1. Aminoglycoside-modifying enzymes

Modification and subsequent inactivation of aminoglycosides is achieved by three deferent
mechanisms: (1) acetylation, by aminoglycoside acetyltransferases (AACs), (2) adenylation, by
aminoglycoside nucleotidyltransferases (ANTs), and (3) phosphorylation, by aminoglycoside
posphoryltransferases (APHs) [108].

Genes  encoding  AMEs  are  typically  found  on  integrons  together  with  other  genes
responsible  for  transferable  resistance  for  other  antibiotic  classes.  This  way  AMEs  be‐
come important determinants for the development of multi-drug resistance in P. aerugino‐
sa and other species [24,108,109].

Enzymatic families that acetylate the 3 and 6’ position of the antibiotic are the most common.
Five subfamilies of AAC(3) and two of AAC(6’) have been described for P. aeruginosa, each
one presenting different preferences for aminoglycoside substrates (Table 6).

Pseudomonas aeruginosa: Multi-Drug-Resistance Development and Treatment Options
http://dx.doi.org/10.5772/55616

41



Among the nucleotidyltransferases, ANT(2’)-I is the most frequently encountered in P.
aerugiosa. This enzyme is present in isolates showing resistance to gentamicin and tobramycin
but not to amikacin [109].

Almost all phosphoryltransferases of P. aeruginosa act in the 3’ position of the aminoglycoside
molecule [24]. However, they have less clinical importance because of the fact that they
inactivate aminoglycosides that are not routinely used for the treatment of P. aeruginosa
infections such as kanamycin and neomycin [109]. The enzymes of this family that inactivate
anti-pseudomonal aminoglycosides are APH(3’)-VI [110-112], APH(3’)-IIb-like [113] and
APH(2’’) [110]. Despite being reported in some cases, these enzymes remain rare for clinical
P. aeruginosa isolates [24].

4.3.2. Efflux systems

Resistance to aminoglycosides in P. aeruginosa can occur independently of aminoglycoside-
modifying enzymes in cystic fibrosis patients. This type of resistance has been reported in
several  studies  [99,118-120]  and  is  attributable  to  over-expression  of  the  MexXY-OprM
efflux pump.

4.3.3. 16S rRNA methylases

Methylation of the 16S rRNA of the A site of the 30S ribosomal subunit interferes with
aminoglycoside binding and consequently promotes high-level resistance to all aminoglyco‐
sides [24]. Different 16S rRNA methylases have been described for P. aeruginosa: RmtA
[112,121], RmtB [122], ArmA [122,123] and RmtD which is commonly found together with the
MBL SPM-1 in Brazil [124,125].

5. Treatment options for MDR Pseudomonas aeruginosa

Different combinations of the aforementioned mechanisms may be present in a single P.
aeruginosa isolate leading to simultaneous resistance to various anti-pseudomonal compounds.
The most potent combination is obviously that of a carbapenemase producing isolate usually
enriched by resistance to quinolones and aminoglycosides leaving very limited options for
antimicrobial treatment.

As far as newer carbapenem compounds are concerned, data suggest that doripenem does not
offer advantages over other carbapenems against carbapenemase producing strains [126].

Tigecycline is an option for Gram-negative MDR pathogens but it cannot be used against P.
aeruginosa, Morganella morganii, Proteus spp. and Providencia spp. because it is intrinsically
vulnerable to their chromosomal-encoded efflux pumps [127].

Furthermore, time-kill studies on 12 MBL-producing P. aeruginosa isolates performed with
aztreonam alone and in combination with ceftazidime and amikacin, showed bactericidal
activity against one and eight isolates respectively. In the same study, colistin was bactericidal
against all 12 isolates [128].
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In fact, polymyxins and colistin in particular, are quite effective in the treatment of MDR P.
aeruginosa infections [129,130]. The target of colistin is the bacterial cell membrane. More
precisely, colistin interacts with the lipid A of lipopolysaccharides, allowing penetration
through the outer membrane by displacing Ca2+ and Mg2+. The insertion between the phos‐
pholipids leads to loss of membrane integrity and consequent bacterial cell death [131]. There
are reports of resistance to polymyxin B [132-134] and colistin [135-137] in clinical isolates but
they remain to date relatively rare for P. aeruginosa [24]. While in many cases the mechanism
of clinical polymyxin resistance is unknown, substitution of the lipopolysaccharide lipid A
with aminoarabinose has been shown to contribute to polymyxin resistance in vitro [138] and

Category Enzymatic

family

Subfamily Substrates References

Acetyltransferases

(AAC)

AAC(3) I Gentamicin [11]

[48]

[108,109]

II Gentamicin

Tobramycin

III Gentamicin

Tobramycin

IV Gentamicin

VI Gentamicin

Tobramycin

AAC(6΄) I Tobramycin

Amikacin

[108,109]

II Tobramycin

Gentamicin

Nucleotidyltransferases

(ANT)

ANT(2΄) Ι Gentamicin

Tobramycin

[109]

ΑΝΤ(4΄) IIa Tobramycin

Amikacin

[114,115]

IIb Tobramycin

Amikacin

ΑΝΤ(3΄) Streptomycin [108]

Phosphoryltransferases

(APH)

APH(3΄) ΙΙ Kanamycin

Neomycin

[109]

[116]

IIb Kanamycin [117]

IIb-like Amikacin

(weakly)

[113]

VI Amikacin

Isepamicin

[110-112]

APH(2΄΄) Gentamicin

Tobramycin

[110]

Table 6. Aminoglycoside-modifying enzymes found in P. aeruginosa isolates.
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cystic fibrosis isolates [139]. Colistin is frequently associated with nephro- and neurotoxicity
but both these adverse effects seem to be dose-dependent and reversible [140].

Another interesting option for the treatment of MDR P. aeruginosa is fosfomycin, an old
antibacteial that has regained attention because of its in vitro activity against such isolates [140].
Fosfomycin inactivates the enzyme pyruvil-transferase, which is required for the synthesis of
the cell wall peptidoglycan. In a review of the existing fosfomycin studies, 81.1% of 1529
patients were successfully treated for infections caused by P. aeruginosa, Staphylococcus aureus,
Staphylococcus epidermidis, Enterobacter spp. and Klebsiella spp. Fosfomycin was administered
together with aminoglycosides, cephalosporins and penicillines [141]. More studies are needed
however to determine the future role of fosfomycin against MDR P. aeruginosa isolates.

6. Combination therapy

The application of combination therapy instead of monotherapy in cases of non-MDR P.
aeruginosa remains to date a controversial issue [14]. Combination treatment against MDR
strains instead seems to be some times necessary (for example in cases of pan-resistance or
resistance to all except a single agent). In such cases better results are expected by the additive
or subadditive activity of a combination or by the enhancement of a single active agent by an
otherwise inactive drug [142].

Several old and newer studies have showed the increased activity in vitro of various antibiotic
combinations against MDR P. aeruginosa (Table 7) even though, the mechanisms of positive
interaction between the various agents are rarely known [142].

Antibiotic combination References

Ticarcillin, Tobramycin, Rifampin [143]

Cephalosporins, Quinolones [144]

Ceftazidime, Colistin [145]

Macrolides, Tobramycin, Trimethoprim, Rifampin [146]

Polymyxin B, Rifampin [147]

Polymyxin B, Imipenem [148]

Colistin, Meropenem [149]

Table 7. Enhanced activity of antibiotic combinations against MDR P. aeruginosa.

7. Conclusion

P. aeruginosa is a nosocomial pathogen of particular clinical concern not only because of its
extraordinary resistance mechanisms armamentarium but also for its formidable ability to
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adapt very well to the hospital environment. There are important challenges in the treatment
of MDR P. aeruginosa strains and their isolation in healthcare settings poses serious infection
control issues. For these reasons, the prudent use of antibiotics, mainly those used as last resort
treatment like carbapenems is of outmost importance in order to prevent evolutionary pressure
that may lead to the emergence of highly resistant clones.
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