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1. Introduction

In the presence of dust, smoke, fog, haze or pollution, meteorological visibility is reduced.
This reduction constitutes a common and vexing transportation problem for different public
authorities in multiple countries throughout the world.

First, low visibility is obviously a problem of traffic safety. Road crashes which occur in
fog are generally more severe as the average crash [1]. According to NOAA [2], in the
United States there are approximately 700 annual fog-related fatalities, defined as occurring
when visibility is less than a 1

4 mile. Fog constitutes an equally important issue in France,
a smaller country, with over 100 annual fatalities attributed to low visibility, defined as
occurring when visibility is less than a 400 meters (≈ 1

4 mile). Indeed, fog causes similar
and significant problems on Northern America and French highways. The combination of
fog and smoke presence on a motorway was the cause of dramatic pile-ups in France, e.g.
on the A10 in 2002 near Coulombiers (58 vehicles involved, 40 injured, 8 deaths). Indeed,
even if the origin of both phenomena differs, the combination of their mutual effect on the
visibility is exponential, which leads to close to zero visibility areas. It should be stressed
that the solution lies not necessarily in better low visibility detection but in drivers’ response
to fog that they encounter. Indeed, the behavior of drivers in fog is often inappropriate (e.g.,
reduced headways, altered reaction times) but to understand the origins of these dangerous
behaviors is difficult [3]. Different countermeasures have been tested to mitigate the impact
of critically reduced visibility [4]. The California San Joaquin and Sacramento Valley regions
are particularly adequate test-beds for such measures, because of the well-known Tule
fog phenomenon. In the Stockton area of Caltrans District 10, the Caltrans Automated
Warning System (CAWS) employs roadside weather stations and visibility meters to provide
automated detection [5]. In District 6, Caltrans has installed the "Fog Pilot" system, which
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provides a high-technology solution every 1
4 mile along a 12-mile (20-km) portion of State

Route 99.

In addition to the safety problem, reduced visibility is the cause of delays and disruption in
air, sea and ground transportation for passengers and freight. On freeways, massive pile-ups
create exceptional traffic congestions which sometimes force the operator to momentarily
close the road. Fog-related road closures are not an uncommon subject for news headlines.
For example, the Heathrow airport was blocked for three days during the 2006 Christmas
time. Such events have of course important economic impacts [6]. According to [7], in 1974
fog was estimated to have cost over roughly £120 millions at 2010 prices on the roads of
Great Britain. This number includes the cost of medical treatment, damage to vehicles and
property, as well as the administrative costs of police, services and insurance, but they do
not include the cost of delays to vehicle passengers not directly involved in the accident.

An ability to accurately monitor visibility helps resolve these problems. Important
transportation facilities where safety is critical, such as airports, are generally instrumented
for monitoring visibility with devices that are expensive and hence, scarce. Cost is precisely
the reason why highway meteorological stations are seldom equipped with visibility
metering devices. In this context, using already existing and ubiquitous highway cameras is
of great interest, as these are low cost sensors already deployed for other purposes such as
traffic monitoring [8]. Furthermore, introducing new functionalities into roadside cameras
will make them multipurpose and thus more cost-effective, easing their deployment along
the roads. In the United States, this potential has been identified by US DOT and was
evaluated in the CLARUS Initiative [9], and these efforts may continue with the US DOT
IntelliDrive program. In France, a similar initiative has been launched between Ifsttar (French
institute of science and technology for transport, development and networks), Météo France
(French National Weather Service) and IGN (French National Geographical Institute), three
public research institutes dealing with road operation, weather monitoring and forecasting,
and geography and cartography, respectively. The French initiative aims at assessing the
potential of highway cameras to monitor visibility for different applications ranging from
safety hazard detection to air quality monitoring. In the future, such initiatives might make
it possible to monitor visibility reduction at the scale of a road itinerary. Prediction, which
will soon be possible for airports [10], might even be envisioned.

2. Objectives

2.1. Problematic

Reduced visibility in the atmosphere is directly related to light scattering by air molecules
and airborne particles. This tenet of physics is the basis of the operating principle of
visibility meters. There are two types of instruments for measuring atmospheric visibility:
transmissometers and scatter meters. The transmissometer extrapolates the attenuation of a
light beam emitted from a source to a receiver at a known path length in order to estimate
the distance for which the emitted light is attenuated by 95%. The transmissometer is also
used to calibrate the scatter meter. A scatter meter assesses the dispersion of a light beam
at a particular scattering angle, more often close to 40˚(forward-scatter meters). Visibility
meters can measure the meteorological visibility distance up to a few tens of kilometers with
an error of 20%. The annual statistics on fog occurrence in France, i.e. episodes where the
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meteorological visibility distance is lower than 1000 meters are obtained from 60 weather
stations distributed over the entire territory. Today, about 160 meteorological stations with
visibility measurements are available in real time. But as such, this data cannot be used
for predicting fog events and warning road authorities and hence drivers. Indeed, the local
nature of this phenomenon is not compatible with the current capacity of meteorological
agencies to monitor it accurately. Some studies seek to exploit the photosensitive cells of
fixed cameras to measure the visibility.

2.2. The potential of CCTV networks

A survey has been conducted by Météo France on the French motorway networks to estimate
the potential of existing CCTV networks to observe the visibility: In 2009, the French
motorway network was 8,372 km long and was equipped with approximately 2,000 cameras.
Accounting the fact that some are grouped together and some are dedicated to tunnel safety,
a potential of 1,000 cameras available to monitor the weather was estimated. The French
highway network is also equipped with cameras but they are less numerous. This whole
network covers the territory quite uniformly. Consequently, a roadside sensor network
constitutes a relevant mesh able to feed meteorological centers with geolocalized data.

2.3. Intelligent Transportation System

The term Intelligent Transportation Systems (ITS) refers to information and communication
technology (applied to transportation infrastructure and vehicles) that improves
transportation outcomes such as transportation safety, transportation productivity, travel
reliability, informed travel choices, social equity, environmental performance and network
operation resilience. The recent development of real-time data exchange systems between
vehicles and infrastructure allows linking operation centers, roadside sensors and vehicles
by means of so-called "ITS Stations". Such technology fosters a new generation of Intelligent
Transportation Systems. The objectives of this work is thus to design computer vision
methods, which can be implemented into camera-based surveillance systems connected to
ITS Stations, in order to detect and characterize reduced visibility conditions, so as to mitigate
the risk of accidents by alerting the drivers or by computing adaptive speeds related to the
offered visibility distance.

3. Background on meteorological visibility

3.1. Visibility sensor requirements

According to [11, 12], the "meteorological visibility distance" denotes the greatest distance
at which a black object of a suitable dimension can be seen in the sky on the horizon, with
a threshold contrast set at 5%. The meteorological visibility distance is thus a standard
dimension which characterizes the opacity of the atmosphere. According to [13], the road
visibility is defined as the horizontal visibility determined 1.2 m above the roadway. It may
be reduced to less than 400 m by fog, precipitations or projections. Four visibility ranges
are defined and are listed in Tab. 1. Based on these definitions, a visibility sensor should
assign the visibility range to one of the four categories and detect the origin of the visibility
reduction, i.e. it should detect fog, rain and projections. In this section, the focus is on
daytime fog detection and visibility range estimation using two complementary systems.
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Visibility range index Horizontal visibility distance (m)

1 200 to 400
2 100 to 200
3 50 to 100
4 < 50

Table 1. Ranges issued from the French standard NF P 99-320 on highway meteorology, in agreement with the international

practice.

3.2. Vision through the atmosphere

The apparent luminance of the road pavement L is given by Koschmieder’s law [14] which
adds to Beer-Lambert’s law a second term corresponding to the atmospheric veil:

L = L0e−kd + L f (1 − e−kd) (1)

where L0 denotes the intrinsic luminance of the pavement and L f the atmospheric luminance.
In a foggy image, the intensity I of a pixel is the result of the camera response function crf
applied to (1). Assuming that crf is linear, (1) becomes:

I = crf(L) = Re−kd + A∞(1 − e−kd) (2)

where R is the intrinsic intensity of the pixel, i.e. the intensity corresponding to the intrinsic
luminance value of the corresponding scene point and A∞ is the background sky intensity.

4. Detection and characterization of safety-critical visibility ranges

The first system is able to detect daytime fog and estimate safety-critical visibility ranges. To
be run, this system only needs an accurate geometrical calibration of the camera with respect
to the road plane.

4.1. Camera modelling

Assuming that the road is locally planar, the distance of a point located at the range d on the
roadway can be expressed in the image plane, assuming a pinhole camera model [15]:

d =
λ

(v − vh)
(3)

where λ = Hα

cos(θ)
and vh = v0 − α tan(θ). H and θ respectively denote the mounting height

and the pitch angle of the camera. α =
f

tp
is an intrinsic parameter of the camera based its

focal length f and the size tp of a pixel. v0 and vh respectively denote the vertical position in
the image of the projection center and of the horizon line (see Fig. 1).

Climate Change and Regional/Local Responses92



f

d

θ

S

X

Y
Z

C x

y

z
v

uvh

H

M

road 

plane

image

plane

θ

D

Figure 1. Modelling of the camera within the road environment. vh: image line corresponding to the horizon line in the image.

The relationship between the distance d on the ground and the distance D from the same
point M to the camera is as following:

D =
√

H2 cos2 θ + (d − H sin θ)2 (4)

4.2. Daytime fog detection

Following a change of d according to v based on (3), (2) then becomes:

I(v) = R − (R − A∞)(1 − e
−

kλ
v−v

h ) (5)

By taking the second derivative of I with respect to v, one obtains the following:

∂2 I

∂v2
(v) = kϕ(v)e

−

kλ
v−v

h

(

kλ

v − vh

− 2

)

(6)

where ϕ(v) = λ(R−A∞)
(v−vh)3 . The equation ∂2 I

∂v2 = 0 has two solutions. The solution k = 0 is not

physically plausible. The only useful solution is (7):

k =
2(vi − vh)

λ
(7)

where vi denotes the position of the inflection point of I(v). In this manner, if vi > vh,
daytime fog is detected and the parameter k is obtained. We deduce Vmet =

3
k

[11]:

Vmet =
3λ

2(vi − vh)
(8)
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To implement this principle, a region within the image that displays minimal line-to-line
gradient variation when browsed from bottom to top is identified by a segmentation
algorithm. A vertical band is then selected in the detected area. Finally, taking the median
intensity of each segment yields the vertical variation of the intensity of the image and the
position of the inflection point. Details of the method are given in [15]. It has been applied to
a sample image in Fig. 2(a). Even if there are many vehicles in the original image, the method
is able to ignore them and to detect fog presence, as well as to estimate the meteorological
visibility.

4.3. Estimation of the visibility distance

The previous method detects that the visibility is reduced by daytime fog and estimates
its density. In the same way, methods dedicated to other meteorological phenomena
quantification could be added. Nevertheless, to supervise these different methods, a generic
method is needed to estimate the visibility. To achieve this aim, we proposed to compute
the distance to the furthest visible object on the road surface. This distance is called the
mobilized visibility distance Vmob, which is close to the definition of Vmet if a 5% contrast
threshold is chosen [16]. Thus, a local contrast computation algorithm, based on Köhler’s
binarization technique and described in detail in [16], is applied to the image to compute
local contrasts above or equal to 5%. The obtained contrast map contains objects of the road
scene. A flat road may be assumed. As a matter of fact, along a top-bottom scanning line
of the local contrast map starting from the horizon line, objects encountered get closer to the
camera. Consequently, the algorithm consists of finding the highest point in the contrast map
having a local contrast above 5%. vc denotes the corresponding image-line. The distance to
this point can then be recovered using Eq. (3), which allows estimating Vmob [17]:

Vmob =
λ

vc − vh

(9)

However, the image may also contain vertical objects, which do not respect the flat world
assumption and alter the method. This scenario is the case in Fig. 2(b), where the vehicle
lights are detected higher in the image than the road surface elements. Another step is thus
needed to filter the vertical objects and correctly estimate the visibility distance. This task is
achieved using a background modelling method [17].

4.4. Camera specification

First, according to the sensor requirements given in section 3.1, the visibility system shall
detect visibility up to dmax (400 m in our case). By using Eq. (3), the surface covered by a
pixel at the distance d can be computed [15]:

∆(d) =
λ

⌊vh +
λ

d
⌋ − vh

−
λ

⌈vh +
λ

d
⌉ − vh

(10)

where ⌊x⌋ designates the whole part of x and ⌈x⌉ the integer greater than or equal to x.
We proposed this surface to be lower than 10% of dmax (40 m in our case), which is a good

Climate Change and Regional/Local Responses94



(a) (b)(a) (b)

Figure 2. Detection algorithms applied to a fog highway image: (a) The vertical yellow curve represents the instantiation of

(2); the horizontal red line represents the estimation of the visibility distance. The blue vertical segments represent the limits of

the vertical band analyzed. (b) Map of local contrasts above 5%.

compromise between accuracy and cost [18]:

∆(dmax) < 0.1dmax (11)

Second, the system must detect fog. Based on section 4.2, the horizon line must lie in the
image. Third, the visibility system shall detect visibilities lower than dmin (50 m in our case).
To run correctly, the corresponding location of the inflection point must lie in the upper part
of the image, i.e. vi must be lower than v0. Consequently, additional constraints on the
sensor are as following:

vh > 0 (12)

vh +
3λ

dmin
< v0 (13)

From (12) and (13), the following inequation is obtained:

sin−1

(

H

3dmin

)

< θ < tan−1

(

v0

α

)

(14)

The admissible solutions of Eq. (14) can then be used to solve Eq. (11). To fulfill the
requirements expressed in [13], we are thus able to specify relevant camera characteristics,
which are partly detailed in Tab. 2. In this table, b denotes the diameter of the camera matrix.
H denotes the sensor mounting height. f denotes the focal length of the camera optics (see
Fig. 1). tp denotes the pixel size of the camera matrix and dimy the width of the matrix. θ
denotes the pitch angle of the camera.

b [inch] H [m] f [mm] tp [µm] dimy [pix] θ [degree]

1/2 6 4.5 4.65 1360 28-29

Table 2. Technical solution for camera specification.
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Figure 3. Experimental verification of camera specifications: (a) experimental setup; (b) quadratic error of calibration with

respect to the number of considered pairs of points.

4.5. Experimental validation

4.5.1. Verification of Camera Specifications

First, an experimental verification of the camera specifications has been carried out to check
if we are able to reach the specifications. To achieve this aim, seven cones were set on a flat
road section following the experimental setup of Fig. 3(a). Using the perspective projection
model and the positions of the different cones, we are able to calibrate the camera:

(λ, vh) = argmin
n=1..7

√

√

√

√

n

∑
i=1

(

di −
λ

vi − vh

)2

(15)

where λ =
d1 − dn

1
v1−vh

−
1

vn−vh

. The quadratic error is plotted in Fig. 3(b) with respect to the

number of pairs of points taken into account in the calibration process. Three pairs of points,
i.e. four points on the ground, suffice to obtain a quadratic error which is smaller than 2%
at d = 136 m. This error is in line with the theoretical error at the same distance and hence
acceptable.

4.5.2. Implementation of the System

The complete image acquisition system has been installed in a van equipped with a
pneumatic pole. Using this vehicle, we have grabbed a sequence of images during sunrise.
Sample pictures of this fog episode are shown in Fig. 4(a). The visibility distance has
been estimated and is plotted in Fig. 4(b) with respect to the time. As one can see,
the visibility distance increases as well as the global illumination in the scene while fog
dissipates. The behavior of the system is good except at time t ≈ 50 min, where the
visibility is underestimated. This underestimation is due to the fact that the exposure time
is momentarily too high so that the images are overexposed and contrasts deteriorated.
Fortunately, the auto-exposure algorithm quickly solves the problem and the visibility
increases again up to the maximum value, which is above 400 m as expected.
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Figure 4. Implementation of the designed camera-based visibility metering system: (a) sample images acquired during a fog

episode; (b) visibility distance estimated during this fog episode.

5. Monitoring of meteorological visibility

With the second system, we are able to monitor a whole spectrum of visibility ranges (from
0 to 10,000 m). In this system, we calibrated a response function of the contrast within the
image with respect to reference visibility measurements obtained by external sensors. The
camera needs not be a high resolution one. However, the calibration is more complex and
needs at least one fog episode.

5.1. Contrast of a distant target

Let us consider an outdoor scene where targets are distributed continuously at increasing
distances from the camera. When we assume that the surface of the targets is Lambertian,
the luminance L at each point i of the target is given by:

L = ρi

E

π
(16)

where E denotes the global illumination and ρi denotes the albedo at i. Moreover, it is a
classical assumption to set L∞ = E

π so that the contrast of two Lambertian targets at distance
d becomes [19]:

C = (ρ2 − ρ1)e
−βd

≈ (ρ2 − ρ1)e
−

3d

V = ∆ρe
−

3d

V (17)
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Consequently, the contrast of a distant Lambertian target only depends on its physical
properties and on its distance to the sensor and on the meteorological visibility distance,
and no longer on the illumination. Such targets allow for computing contrasts in the scene
in a way which is robust to strong variations in illumination [19].

5.2. Probabilistic modelling

Let us denote φ the probability density function (p.d.f.) of observing a contrast C in the
scene:

P(C < X ≤ C + dC) = φ(C)dC (18)

The expectation of the contrast m in the image is expressed as [19]:

m = E[C] =
∫ 1

0
Cφ(C)dC (19)

Based on (17), C is a random variable which depends of the two random variables d and ∆ρ.
These two variables are assumed to be independent, which allows expressing Eq. (19) as [19]:

m = E

[

∆ρ
]

E

[

e
− 3d

V

]

= ∆ρ

∫ +∞

0
ψ(d)e−

3d

V dd (20)

where ∆ρ denotes the mean albedo difference between the objects in the scene and ψ denotes
the p.d.f. of there being an object at the distance d in the scene. Choosing a suitable target
distribution ψ allows us computing the expectation of the contrast using Eq. (20) with respect
to the meteorological visibility distance V.

5.3. Expectation of the mean contrast

In this paragraph, we seek an analytical expression of Eq. (20). To achieve this aim, we
assume a scene which contains n Lambertian targets with random albedos located at random
distances between 0 and dmax. For a given sample scene, we can compute the mean contrast
of the targets with respect to the meteorological visibility distance and plot the corresponding
curve. Sample curves are plotted in blue in Fig. 5 (n = 100 and dmax = 1000 m). We
can compute the mathematical expectation of the mean contrast and obtain the following
analytical model:

mu =
V∆ρ̄

6dmax

[

1 − exp
(

−
3dmax

V

)

]

(21)

where ∆ρ̄ is the mean albedo difference of the targets in the scene. We plot this model in
red in Fig. 5. When we do not have any a priori on the targets distribution in the scene,
this analytical model is the most probable with which to fit the data [19]. This fact is
experimentally assessed in section 5.5. At this stage, we can make a comparison with the
charging/discharging of a capacitor. The capacitance of the system is determined by the
distribution of Lambertian targets in the scene. The smaller the capacitance of the system is,
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Figure 5. Blue: curves depicting the mean contrast in random scenes with respect to the meteorological visibility distance.

Red: expectation of the mean contrast.

the faster the curves reach a 0.5 contrast. We thus define an indicator τ of the system quality
which is the meteorological visibility distance at which two thirds of the "capacitance" is
reached. A high value of τ also means a lower sensitivity of the model at low meteorological
visibility distances.

5.4. Model inversion and error estimation

In the previous section, we have computed an analytical expression of the mean contrast
expectation mu with respect to the meteorological visibility distance V. Ultimately, we would
like to compute V as a function of mu. To achieve this aim, we need to invert the mean
contrast expectation function (21). The inversion of this model exists and is expressed by
[19]:

V(mu) =
3mudmax

1 + muW

(

e
−1
mu

mu

)

(22)

where the Lambert W function is a transcendental function defined by solutions of

W(x)eW(x) = x [20].

5.5. Experimental evaluation

In this section, we present an experimental evaluation of the proposed model for visibility
estimation. To achieve this aim, we have collected ground truth data.

5.5.1. Methodology

5.5.1.1. Instrumentation

The observation field test we used is equipped with a reference transmissometer (Degreane
Horizon TI8510). It serves to calibrate different scatterometers (Degreane Horizon DF320)
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(a) (b)

Figure 6. Instrumentation of our observation field test: (a) the camera grabbing pictures of the field test;(b) the scatterometer

along with the background luminancemeter.

used to monitor the meteorological visibility distance in France, one of which provided our
data. They are coupled with a background luminance sensor (Degreane Horizon LU320)
which monitors ambient light conditions. We have added a camera which grabs images of the
field test every ten minutes. The camera is an 8-bit CCD camera (640 × 480 definition, H=8.3
m, θ = 9.8o, fl = 4 mm and tpix = 9 µm). Compared to the camera specified in section 4.4,
it is thus a low cost camera which is representative of common video surveillance roadside
cameras (cf. section 2.2). Fig. 6(a) shows the installed camera and its orientation with respect
to the field test. Fig. 6(b) shows the scatterometer and the background luminancemeter.

5.5.1.2. Data collection.

We have collected two fog events the 28th February and the 1st March 2009. The fog occurred
early in the morning and lasted a few hours after sunrise. During the same days, there
were strong sunny weather periods. Fig. 7 shows sample images of sunny weather and
cloudy weather and foggy weather. The corresponding meteorological visibility distances
and luminances are plotted in Figs. 7(d,e). Obviously, the meteorological visibility distance
ranges from 100 m to 35.000 m and the luminance ranges from 0 to 6.000 cd.m−2.

We have thus collected exceptional experimental data. Indeed, we met rapidly changing
weather conditions over a short period of time. The ranges of meteorological visibility
distance and luminance were very large. In the literature, works are dedicated to limited
ranges of visibility distances [17, 21]. For example, road safety applications are dealing
with 0-400 m [17] whereas people working on environmental issues are dealing with
meteorological visibility distances which are above 1000 m [21]. We are among the first
to have collected data encompassing both ranges. Moreover, since the data was collected
over a short period of time, we consider that the content of the scene did not change. For
example, we assumed that the phenology of the trees did not change, so that the amount of
texture in the scene without fog remains constant.

5.5.1.3. Location of Lambertian surfaces

To estimate mu and thus V, we compute the normalized gradient only on the Lambertian
surfaces of the scene as proposed in section 5.1. We thus need to locate Lambertian surfaces in
the images. To achieve this aim, we compute the Pearson coefficient, denoted PL

i,j, between the

intensity of pixels in image series where the position of the sun changes and the value of the
background luminance estimated by the luminancemeter. The closer PL

i,j is to 1, the stronger
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Figure 7. Samples of data collected in winter 2008-2009: (a) images with strong illumination conditions and presence of

shadows; (b) cloudy conditions; (c) foggy weather situation; (d) background luminance and (e) meteorological visibility distance

data collected in the field test during two days.

Figure 8. Mask of Lambertian surfaces on our field test: The redder the pixel, the higher the confidence that the surface is

Lambertian.

the probability that the pixel belongs to a Lambertian surface. This technique provides an
efficient way to locate some Lambertian surfaces in the scene. For our field test, the mask of
Lambertian surfaces is shown in Fig.8. The redder the pixel, the more the surface is likely to
be Lambertian.
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Figure 9. Visibility estimators: (a) the estimator is based on the contrast on Sobel gradient alone; (b) the estimator is based on

Sobel gradient weighted by Lambertian surfaces.

Having located the Lambertian surfaces, we can compute the gradients in the scene by means
of the module of the Sobel filter. For each pixel, we normalize the gradient Gi,j by the
intensity of the background. Since our camera is equipped with an auto-iris, the background
intensity A∞ is most of the time equal to 28

− 1, so that this step can be avoided. Each
gradient is then weighted by PL

i,j, the probability of a pixel to belong to a Lambertian surface

where no depth discontinuity exists (PL is mostly very small). Consequently, only relevant
areas of the image are used, and the scene need not be totally Lambertian. Finally, the
estimated contrast in the scene m̃u is given by [19]:

m̃u =
h

∑
i=0

w

∑
j=0

∆ρi,j exp

(

−

3di,j

V

)

≈

h

∑
i=0

w

∑
j=0

Gi,j

A∞
PL

i,j (23)

where ∆ρi,j is the intrinsic contrast of a pixel in Eq. (17), and h and w are respectively the
height and the width of the images.

5.5.2. Results

5.5.2.1. Contrast estimators

We have computed Eq. (23) for our collection of 150 images with different meteorological
visibility distances. For comparison purposes, we have also computed the simple sum
of gradients in the image without weighting the Lambertian surfaces. The results are
shown in Fig. 9. By using the Lambertian surfaces, we can see that the shape of the
distribution in Fig. 9(a) looks like the curve proposed in Fig. 5, which is very satisfactory.
Conversely, when all the pixels of the scene are used, the points are more scattered when the
meteorological visibility distance is above 2500 m (see Fig. 9(b)): When the sky is clear and
the visibility is high, the illumination from the sun strongly influences the gradients in the
scene. Consequently, the estimation of the visibility is altered. These two distributions show
the benefit of selecting the Lambertian surfaces to estimate the visibility distance.
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Figure 10. Data fitting with the mean contrast model. Dots: data. Red curve: fitted model.

5.5.2.2. Model fitting

We have to fit the mean contrast model (Eq. (21)) to the data shown in Fig. 9(a) using robust
regression techniques. To ensure a mathematical solution, we have fitted the model (Eq. (24)),
which is slightly different from the theoretical model. Three unknown variables a, b and dmax

have to be estimated, which can be easily done using classical curve fitting tools.

m̃u =
aV

dmax

[

1 − exp
(

−

3dmax

V

)

]

+ b (24)

This model fits well with the data (R2 = 0.91). In particular, we obtain dmax = 307.2 m. The
fitted curve is plotted in Fig. 10. We estimated a capacitance (as defined in section 5.3) of the
system τ ≈ 950 m.

5.5.2.3. Discussions

From the fitted model, we can now invert the model using (22) and estimate the
meteorological visibility distance Ṽ based on the mean contrast mu[19]:

Ṽ =
3dmax(b − mu)

(b − mu)W

(

ae
a

b−mu

b − mu

)

− a

(25)

After having estimated the meteorological visibility distance, we can compute the error on
this estimation. The results are given in Tab. 3. Since the applications are very different
depending on the range of meteorological visibility distances, we have computed the error
and the standard deviation for various applications: road safety, meteorological observation
and air quality. One can see that the error remains low for critical safety applications. It
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increases for higher ranges of visibility distances, and becomes huge for visibility distances
above 7 km. Different issues may be discussed. First, the model presented in this chapter is
relevant for uniform distributions of distances which happen in many environments, such as
highway scenes. The scene in which the experimental data used in this paper were collected
may be meet this assumption. Second, the Sobel operator is certainly not the best estimate
for the gradient. Indeed, it is a simple high-pass filter which is problematic because of
the impulse noise of camera sensors. Different filters may be used to enhance the images
beforehand, or to compute the contrast more robustly.

6. Outcome

First, a camera-based system has been developed to detect safety-critical visibility conditions.
Sample results based on data collected during a morning fog episode are shown in the Fig. 4.
When visibility is below 400 m, the accuracy of the system is expected to be 90%. The second
system has been assessed on the test site of Météo France in Trappes, where images have
been grabbed with visibility data (see Fig. 7). Based on our experiments, we are able to
obtained error estimates which are lower than 10% [19] as well.

We thus have at disposal two different techniques to estimate the visibility distance in
case of fog or haze. The first technique is dedicated to low visibility ranges but needs a
high-resolution camera along with a simple calibration process. The second technique is
not restricted to low visibility ranges and works with a low cost camera but needs a more
complex calibration procedure. It is clear that the complementarity between both approaches
must be studied so as to build a single system, which is easy to set up and deploy.

7. Potential applications

7.1. Winter maintenance

The monitoring of meteorological visibility has different applications for winter maintenance
[22]. First, the knowledge of a low visibility area is important for the safety of winter
maintenance operations. Second, a sudden drop of the visibility can be due to heavy snow
falls. The relationship between liquid equivalent snowfall rate and visibility has also been
investigated [23], which means that a camera-based visibility meter is potentially a good
snow sensor. Finally, meteorological models have been developed to forecast pavement
temperatures as well as snow height [24]. Nebulosity and fog are phenomena which alter
the prediction, since the radiative transfer between the pavement and the air is affected.
The assimilation of visibility data in these prediction models may be useful to increase the
accuracy of forecasts.

Application Highway fog Meteorological fog Haze Air quality

Range [m] 0-400 0-1000 0-5000 0-15000

Number of data 13 19 45 150
Mean error [%] 12.6 18.1 29.7 -

Std [%] 13.7 18.9 22 -

Table 3. Relative errors of meteorological visibility distance estimation with respect to the envisioned application.
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7.2. Fog nowcasting

The forecasting of the weather within the next six hours is often referred to as nowcasting.
In this time range, it is possible to forecast smaller features such as individual showers and
thunderstorms with reasonable accuracy, as well as other features too small to be resolved by
a computer model. [25] show that combining satellite-based forecasting of low clouds with
terrestrial measurements of humidity allows computing a probability of fog occurrence. A
camera-based visibility meter could easily substitute for a humidity sensor. Indeed, using
camera-based visibility estimation and meteorological data, [26] showed that visibility can
be predicted up to 15 minutes in advance with 1-km mesh meteorological data. Such
camera-based nowcasting methods may be good solutions to allow the re-routing of vehicles
before they reach a low-visibility area in a timely manner.

7.3. Pile-up prevention and mitigation

[27] has proposed a review of best practices in terms of mitigation of highway visibility
problems, in particular fog related issues. In this paper, he describes existing installations in
the USA dedicated to driver alert in case of low visibility on the highway. Apart from fog
dispersal techniques, the best practices are related to the timely alert of the drivers which
approach a foggy area. Then, depending on the fog density, different advisory speed limits
may be posted. In the same time, the public lighting is adapted. The component of these
systems are made of weather stations, CCTV cameras and Variable Message Signs (VMS).
More recently, Caltrans has installed the "Fog Pilot" system in District 6, which provides a
high-technology solution every 1

4 mile along a 12-mile (20-km) portion of State Route 99.
This centralized solution relies on the use of infrastructure to vehicle communications to
warn the drivers whose vehicles are equipped with a receiver, in case of sudden low speed
area. Thanks to the proposed camera-based visibility monitoring techniques, we are able to
build a decentralized fog-pilot, which makes use of CCTV cameras to monitor the visibility
and allows optimizing the speed of drivers approaching a low visibility area, as well as the
intensity of road studs. Based on best existing practices, its principle is to warn the drivers of
a foggy area with enough time, so that they can adapt their speed to the prevailing visibility
distance in the dangerous area.

8. Conclusion and perspectives

Reliable solutions to accurately monitor the meteorological visibility along road networks at
reasonable costs are still not available. The use of the cameras, which are multifunctional
sensors and are already deployed along the roadsides, is a promising solution. However,
progress in computer vision are still needed to obtain robust techniques, which are able to
fulfill the needs of transportation safety, of meteorology and of environment in terms of
observation.

In this chapter, we have presented two different camera-based systems to estimate the
visibility distance. These systems could be integrated in ITS stations to alert drivers as
well public authorities in case of fog hazard. The first system is dedicated to safety-critical
visibility ranges but needs a high-resolution camera along with a simple calibration process.
The second technique is not restricted to low visibility ranges and needs a low cost
camera but a more complex calibration procedure. In the future, it is obvious that the
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complementarity between both approaches must be studied so as to build a single system,
which will be easy to set up and to deploy. Second, the problem of night fog is still subject
to research. In particular, we would like to adapt our in-vehicle techniques of night fog
detection to visual surveillance. Third, we would like to develop an intelligent camera where
fog detection is implemented along with existing traffic applications (virtual loops, AID, etc.).
Finally, we would like to develop test beds for our sensing technologies and our decentralized
fog-pilot.
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