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1. Introduction

Both lasers and optical fibers technology appeared in the 1960s, being, from the start, close
related. Even though the latter gained increased visibility in telecommunications, first ex‐
periments using optical fiber sensors are reported from early 1970s. From then on, research
in optical fiber sensors has increased taking advantage of their potential when comparing
with “traditional” sensors. Although there are many well established techniques to manu‐
facture optical fiber sensors, the use of laser technology as increased as their cost diminishes
(at least for older, well matured laser sources technology) and new laser sources appeared.
This new tool has the advantage of producing well controlled light beams.

Nowadays, laser processing of optical fibers in the production of fiber-based sensors is an
important research theme. In particular, the use of infrared radiation has directed attention
as new applications were found and new short pulsed laser technology have been devel‐
oped. In this chapter we will describe the main technology used and the physical principles
involved. The key parameters in laser radiation interaction with the fiber materials will be
described as well as the most common types of fiber-based sensors that can be produced.
The application of ultraviolet (UV), near-infrared (NIR) and mid-infrared (MIR) radiation in
the fabrication of fiber grating(FG) sensors is analysed. The physical principles are described
and a comparison between theoretical modelling and experimental results is presented for
MIR radiation writing of long-period fiber sensors (LPFG). Micromachining with nanosec‐
ond (ns) pulsed near-infrared laser radiation is presented and illustrate an ongoing research
in the use of this type of laser to produce new cavity-based optical sensors. Experimental
work is presented and its potential application is analysed.

© 2013 M. P. Coelho et al.; licensee InTech. This is an open access article distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.



2. Laser interaction with optical fiber materials

Laser interaction with the materials in general and optical fiber material in particular, de‐
pends on several parameters. These are related with the laser source (its wavelength and
emission regime, mainly) and also on the characteristics of the material itself.

Generally speaking, the common fibers used as sensors are made of glass materials.  Al‐
though plastic and polymeric materials are also used, usually sensors are produced from
fibers  made  of  ultra  pure  chemicals  like  silicon  tetrachloride  (SiCl4),  germanium  tetra‐
chloride (GeCl4) and also phosphorus oxychloride (POCl3). The improvement of their opti‐
cal properties is accomplished by doping with germanium, erbium and ytterbium among
other rare earths. Nevertheless, in the purpose of this chapter, fused silica (pure or dop‐
ed)  will  be  considered as  the  typical  bulk material  for  laser  interaction regarding fiber-
based optical sensors.

The most common lasers emit either in the UV, visible or infrared (IR). However, UV and IR
lasers have been the major players in the field of processing optical fibers given that the re‐
sulting interaction mechanisms are more efficient for these wavelengths taking advantage of
higher absorption in those regimes.

The two main regimes as laser sources concerns are continuous wave (CW) and pulsed
emission. Recent year’s laser developments allowed laser sources to present a broad range
of available pulsed regimes, from milliseconds (ms) to femtoseconds (fs) pulse widths. This
availability has potentiated new ways of using the laser as a tool for optical fiber processing.

Under laser irradiation, and depending on the mentioned source parameters, the main phys‐
ical mechanisms can be divided in thermal and photonic (non-thermal) effects. These physi‐
cal processes are used to create different fiber-based sensors, as it will be described in the
following sections.

2.1. Thermal effects

Thermal processes arise from absorption of the laser energy in the material, and in general
apply for continuous wave (CW) operation, long pulse lengths and high-pulse-repetition-
frequency pulse trains. In this case, the absorbed radiation creates an excess of energy due to
the excitation of the lattice which is transformed into heat, increasing the material’s temper‐
ature from its surface to its bulk by heat conduction, so the most basic thermal effect is heat‐
ing, that depends on irradiation time and thermal diffusivity of the material.

Heating is the effect behind LPFG fabrication using CO2 laser, where the refraction index
change is achieved by heating a fiber submitted to a tensile stress. If the irradiance is high
enough, phase transformations are produced. For silica-base materials, melting is produced
when the irradiance has a magnitude of ~105 W/cm2 and depending on the irradiation time,
the melted material increases its depth into the bulk. Once the boiling point is achieved, if
the irradiance reaches values of >> (105-108) W/cm2[1] vaporization is initiated. This last step
is the basis of the thermal photoablation, which consists in the precise removal of material,
by surface vaporization or spallation (due to thermal stresses) [1].
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2.2. Photonic effects

Photoionization is a type of laser matter interaction by which a laser pulse modifies the fun‐
damental structure of a material through physical processes like: non- thermal excitation,
ionization and dissociation of atoms and molecules, depending on the light and material
properties. The simplest process is the single photon ionization (SPI) consisting in the ab‐
sorption of a single photon with resulting removal of one electron. This process is strongly
dependent on the wavelength, laying in the UV for the interaction with glass materials, and
requires low irradiance levels (< 107 Wcm-2) [1]. This effect is the basis of the laser induced
refraction index changes in FG fabrication where this kind of photochemical reaction is pro‐
duced on UV photosensitive Ge-doped fibers.

The mechanisms of photosensitivity can be explained by the interaction of UV radiation in a
special structure in the fiber’s bulk named Germanium oxygen deficient center (GODC),
which is able to absorb one or two photon. The photosensitivity mechanism is intrinsically
associated with the dopants incorporated during the silica-based optical fiber fabrication.
Therefore, it is plausible that the origins of this process are related with the germanosilicate
glass synthesis, in which a controlled sequence of chemical reactions that involves a mixture
of several gases at high temperature occurs accordingly with the reactions [2]:
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These reactions show that the presence of germanium promotes GeO formation. Truly, the
formation of GeO defects is promoted due to the thermodynamics of the gaseous germani‐
um redox reaction at the high synthesis temperature and is dominant, since the Ge-O bond
is weaker than the Si-O bond. Despite the possibility of other suboxides being formed, GeOx
{x=1 to 4}), the GeO is the most common sub-product inside the germanosilicate glass amor‐
phous structure, GeO2-SiO2, as a source of glass defects [3]. The GODC, occurs when a Ge
atom is bonded to a Si or Ge atom, in the absence of an oxygen atom, giving rise to a strong
absorption at 242 nm band [3]. The model of an oxygen vacancy neighbouring a Ge atom
was suggested, based on the analogy of the spectroscopic properties of this Ge-related defect
with those monitored on an oxygen vacancy in pure v-SiO2. This is consistent with the one
photon nature pathway, corresponding to the GODC’s triplet state andits intensity increases
linearly with the concentration of GeO2 [4].

The photosensitivity mechanism can also be triggered through a two photon absorption
mechanism, and its efficiency is affected by several parameters like light’s power density,
attenuation and light [5]. Despite the fact that pure silica glasses exhibits poor photosensitiv‐
ity to UV-laser light even if exposed to large accumulated fluence values close to 100 kJ/cm2,
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this can be reversed when a fs-laser beam at ≈800nm wavelength is used [6]. In this case,
strong permanent changes in the refractive index (2-6×10-3) are attainable.

The two photon absorption phenomenon is considered one of the multi-photon ionization
(MPI) processes which consist in the absorption of two, three or even five photons exciting
the electrons to the conduction band. The difference between the two processes can be ex‐
plained comparing the number of photoproducts versus the irradiation intensity [7]. Typi‐
cally, this is a high-intensity (I~1011-1013 Wcm-2) [7] and very fast process, lying in the fs-
range. Two regimes are distinguished, fs-UV and fs-IR, according with the wavelength
employed. In the UV regime, the main mechanism is the previously two photon absorption
while in the IR mechanism the three and five photon absorption are predominant.

Laser-induced optical breakdown is a process of photoionization which has the result of
plasma formation and photoablation. The main photoionization mechanisms are the already
mentioned SPI and MPI. For ps- and ns-pulses the optical breakdown is explained by the
avalanche model. It’s a damage mechanism that starts with one or more electrons in the con‐
duction band, heated by the laser field. The electron collides with the matrix, gaining
enough kinetic energy (by inverse Bremstrahlung) to free a second electron. The same process
repeats until the electron density approaches the critical plasma density ~109 e-/µm3, result‐
ing in photoablation. An inconvenient is that in the ns-time scale, most of the plasma energy
is transferred to the matrix being able to produce collateral thermal damage and fractures,
worsening the quality of ablation [8]. This effect can be avoided in the fs-scale, since there’s
no time for an avalanche fully develop, and MPI assumes equal importance to electron ava‐
lanche. Thus, the heat diffusion is frozen and thermal damages are eliminated. This process
is known as “cold ablation” [8].

Theoretically, according to the electron avalanche model, the laser fluence threshold for
ablation is strongly dependent to the laser wavelength, implying that this threshold should
increase slightly as the wavelength decreases but reported experimental data shows the op‐
posite. This could mean that other photoionization processes could be implied in optical
breakdown of silica and having in mind that lattice defects are more absorptive in the UV
than in MIR [8].

3. Fundamentals of optical fiber sensors

The understanding of the potential of using laser technology to create fiber-based sensors
depends also on the understanding of the requirements those sensors have. The process of
interaction must lead to a certain change in the fiber properties that must produce the re‐
quired sensitivity to an external change. In this section, the fundamentals of the most com‐
mon fiber-based sensors is presented with focus on those being targeted as able to be
produced by laser irradiation. Cavity-based sensors and refractive-index modulated sensors
principles will be described.
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3.1. Optical fiber grating sensors

FGs are optical devices based in the principle of photo-refractive effect first discovered by
Hill et al. [9]. Since then, their development had a significant impact on research and devel‐
opment of telecommunications systems and fiber optic sensors. It use as sensing element is
advantageous due to the intrinsic characteristics of the fiber sensors, such as multiplexing,
remote sensing, high flexibility, low propagating loss, high sensitivity, low fabrication cost,
weight and compactness, high accuracy, simultaneous sensing ability, and immunity to elec‐
tromagnetic interference.

FGs are often classified into two types: Bragg gratings (also called reflection or short-period
gratings), in which coupling occurs between modes travelling in opposite directions; and
transmission gratings (or LPFGs), in which the coupling is between modes travelling in the
same direction. These optical devices are comparatively simple and in its most basic form, it
consists on a periodic modulation of the properties of an optical fiber (usually the refraction
index of the core). This can be made by permanent modification of the refractive index of the
optical fiber core or by the physical deformation of the fibre. In this section, it is presented
the fundamental aspects of both types of gratings, and their sensing application.

3.1.1. Fiber Bragg grating

FBGs are spectral filters based on the principle of Bragg reflection. These periodic structures
operate in reflection mode and are manufactured with a period of less than 1µm. Their sub-
micron period provide coupling between the modes that propagate in opposite directions.
The principle of operation of these optical devices is schematized in Figure 1. A standard
FBG consists of a refractive index modulation in the core of an optical fibre that acts to cou‐
ple the fundamental forward propagating mode to the contra-propagating core mode. When
a broad-spectrum light beam inside in the fiber grating, a narrow wavelength range is re‐
flected and all other wavelengths are transmitted. The reflected light signal will be centered
at the Bragg wavelength. The spectral response of the FBG is governed by the phase match‐
ing condition, λB = 2neff.Λ, where λB is the Bragg wavelength, neff the effective refractive index
of the fiber core and Λ the Bragg grating period [10]. Any change in the modal index or gra‐
ting pitch of the fiber caused by strain or temperature results in a shift of the Bragg wave‐
length.

Figure 1. Schematic representation of Fiber Bragg grating principle of operation.
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Consider a uniform Bragg grating formed within the core of an optical fiber. The refraction
index profile can be expressed as n(x) = Δn.cos(2π/Λ), where Δn is the amplitude of the in‐
duced refractive-index perturbation (typically, 10-5–10-2) and x is the distance along the
fiber’s longitudinal axis. The coupled-mode theory analytical enables the description of the
reflection properties of Bragg gratings. The reflectivity of a grating with length L and con‐
stant modulation amplitude and period is given by R(L,κ) = tanh2(κ.L) [11] were the cou‐
pling coefficient for a single mode fiber is κ = π.Δn/λ.

FBGs have been applied in telecommunications[12] and also for a wide variety of sensing
applications in several fields [12]. However, FBGs has practical implementation limitations,
including the needs of special post-processing for sensing of external refractive index and
reduction of the sensor’s mechanical strength [13].

3.1.2. Long period fiber gratings

LPFGs are produced by inducing a periodic refractive index modulation (tipically 10-4) in
the fiber core with periods typically in the range from 100 µm to 1000 µm [14]. These optical
devices operate in transmission mode and their large modulation period promotes the light
coupling between co-propagating modes of the optical fibre. In the case of single mode fi‐
bers, this takes place between the fundamental and cladding modes, in the same direction.
This principle is illustrated in Figure 2. The cladding modes are quickly attenuated resulting
in a series of attenuation bands in the transmission spectrum. Each attenuation band corre‐
sponds to coupling to a different cladding mode. The phase matching wavelengths are gov‐
erned by the expression λres

m = (neff,co– neff,cl
m).Λ [10,15], where Λ is the grating period, neff,co

andneff,cl are the effective refractive indexes of the core and mth-cladding modes, respective‐
ly. The refractive index sensitivity of LPFGs arises from the dependence of the coupling
wavelength upon the effective index of the cladding mode.

Figure 2. Schematic diagram of long period fiber grating.

Light transmission through the core follows a sinusoidal function of the core refractive in‐
dex modulation for the wavelengths in the resonance [16] is given by T = cos(D.L/2), where L
is the grating length and D is a coupling coefficient proportional to the core index modula‐
tion. The bandwidth of the resonance dips depends on both the coupling coefficient and the
difference between the core and cladding indexes:
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External changes in parameters like refractive index, temperature or strain can affect the
terms in the ruling equations and consequently shift the attenuation dips and alter their
bandwidths [14]).

These optical devices are very sensitive to changes in physical parameters, such as, tempera‐
ture, strain, bending, torsion, and refractive index of the surrounding medium [17]. This
makes possible the use of the LPFGs as a multi-parameter sensor [16]. Their sensibility of to
external environment parameters is determined by the magnitude of the perturbation in the
refractive index, the period of the grating, and its length.

Compared to other optical devices, LPFGs have a number of unique advantages such as low
insertion losses polarization independence, high temperature sensitivity, and relatively sim‐
ple fabrication. A further advantage of these devices is their higher sensitivity to the envi‐
ronmental refractive index change without the need for access to the evanescent field, as in
the case of the FBGs. The extreme sensitivity of the LPFGs to environmental changes could
be a disadvantage in telecommunications devices (cross sensitive problems).

3.2. Cavity based optical fiber sensor

Optical fiber Fabry–Perot (FP) interferometric sensors are the main cavity-based type of fi‐
ber-sensors and demonstrate a great versatility in different applications [18,19]. The cavity-
based sensors are particularly attractive due to its inherent advantages, including small size,
relatively low temperature cross-sensitivity and corrosion resistance, high sensitivity, high
frequency response and immunity to electromagnetic interference.

In its simplest form, the FP cavity consists in two reflective surfaces arranged in parallel
forming a resonant cavity. The reflections at the two end surfaces of the cavity create an in‐
terference signal which is a function of the length and refractive index of the cavity. Changes
in environment causes a phase shift in the interference pattern and, as a result, a fiber FP
sensor is capable of measuring various parameters including temperature, pressure, strain
[20]. Considering a general analysis, the transmission function is [13]:
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being R the reflectivity of the surfaces, assuming that both are equal, and that the phase dif‐
ference between each succeeding reflections is φ = 4π.n.L.cos(θ)/λ.

The principle of a sensor based in devices like these is based in the fact that changes on the
cavity distance (or angle) or in the refractive index of the different media produces a change
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in the transmitted signal (or reflected, since, the reflected signal is equal to 1-T, not consider‐
ing absorption). The resolution of the sensor can be evaluated through a parameter named
finesse, F, relating the distance between peaks, Δλ, and the full-width half-maximum of the
peaks, δλ:F = Δλ/δλ. Naturally, real fiber sensors are more complex and the applied theory
differs from case to case.

Traditionally, FP cavities have been divided in intrinsic (where the sensing element is the
fiber itself), extrinsic (two fiber pieces physically separated forming a cavity bounded typi‐
cally with a capillary glass tube) or hybrid (splicing sections of different types of fibers, for
example)[18,21-23]. However, other methods of creating these cavities have been researched
like chemical etching and laser processing.

Chemical etching is an efficient and low cost way of producing FP cavities in optical fibers,
but the control of the cavity length is less accurate and depends on the precise control of the
process, mainly the duration of the etching[24].

Recent methods use laser beams to produce the cavities, either by removing material lateral‐
ly in the fiber [25] or opening holes on the fiber’s end [26] as schematized in Figure 3. Ran et
al. present an interesting example [26] of a refractive index sensor based on a cavity created
by a 157 nm wavelength laser beam on the end of an optical fiber. The micropatterned fiber
is then spliced to another fibercreating an air cavity. With this geometry (Figure 3(a)), the
refractive index measures can be accomplished without the need of filling the micrometric
cavity. In this case, reflection in a third interface must be considered and equation (1) re‐
placed accordingly [20,26], and the analyzed signal is the reflected instead of the transmit‐
ted. This type of sensor, with a cavity formed from a hole with a depth of around 20µm and
56 µm diameter (and 1 mm distance to the tip), allowed to measure refractive indexes of liq‐
uids with a resolution of ~4x10-5, and is considered as the guideline for the research present‐
ed in section 5.

Figure 3. Schematic of two possible configurations for cavity-based optical sensors.

4. FGs sensors fabrication using laser radiation

FGs are important fiber-based sensors. Traditionally they are produced by arc-discharges or
UV-exposure. However, in the last years the use of CO2 lasers, emitting in the MIR, and fs
lasers, emitting in the NIR, to write FGs has emerged as an important alternative. In this sec‐
tion, the main laser manufacturing techniques of fiber grating sensors are presented, consid‐
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ering UV, MIR and NIR radiations. In this scope, an analytical theoretical model for the
writing of LPFG by MIR radiation is presented and compared with experimental data.

4.1. FG writing using UV lasers

The use of UV laser radiation was in the base of both FBG and LPFG development. The for‐
mation of gratings in an optical fiber was first reported in 1978 by Kawasaki et al. [27] using
an argon-ion laser at 488 nm UV wavelength. A few years latter, the first LPFG was intro‐
duced in 1995 by Vengsarkar who exposed photosensitive optical fibers to 242-248 nm
wavelength UV krypton fluoride, KrF, laser light [28].

Although the first FBGs have been manufactured by internal writing [27] (using the interfer‐
ence between the transmitted beam and reflected beams) and holography (two overlapping
UV light beams interfere producing a periodic interference pattern) [29], the phase-mask
technique has quickly become usual, and even used (in a similar way) from the start for
LPFG writing.

Usually, the phase-mask is made from a flat piece of silica glass (transparent to UV radia‐
tion) where a one dimensional periodic surface relief is etched (using photolithographic
techniques) in one of the surfaces. Thus, the phase-mask becomes an optical element with
the capability to diffract the UV beam in transmission. The interference of the transmitted
beams corresponds to different diffraction orders in the proximity of the surface, originating
a fringe pattern, and leading to Bragg gratings fabrication by modulation of the refractive
index in the core of the optical fibre. The profile of the phase grating is chosen such that the
zero-order diffracted beam is suppressed to less than 1% of the transmitted power. In addi‐
tion, the principal beams diffracted by the phase-mask correspond to plus and minus first
orders, containing each one, typically, more than 35% of the transmitted power. Then the
produced interference pattern photo-imprints a refractive index modulation in the core of
the photosensitive optical fibre placed in contact, or in close proximity, immediately behind
the phase mask. Typically, the fringe pattern is focused along the fiber’s core with the help
of a cylindrical lens. The phase-mask technique has the advantage of greatly simplifying the
manufacturing process for Bragg gratings, yet yielding high performance gratings. In com‐
parison with the holographic technique, the phase-mask technique offers easier fiber/laser
alignment, reduced stability requirements on the writing apparatus and lower coherence re‐
quirements on the UV laser beam.

Another writing method uses the point-by-point technique. In this case, single UV laser
beam is used to imprint the grating into the fibers equentially along the fiber’s length. The
incident laser beam is focused on the optical fiber core or cladding (for either FBG or LPFG,
respectively) using a lens. The periodic irradiation is accomplished by computer control of
the laser beam and the movement of the fiber, so the periods are inscribed. Another way to
produce the periodic inscription is by scanning the laser beam focus over the optical fiber,
not only to produce the longitudinal modulation but also to produce each transversal refrac‐
tive index change zone. This process is illustrated in section 4.2.2 regarding MIR irradiation
techniques. Figure 4 illustrate both writing techniques.
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The mentioned methods apply independently of the UV laser used, and thus from the physical
mechanisms involved (see section 2). However, laser technology significantly differs, a charac‐
teristic of producing FG using UV laser radiation. Usually, excimer lasers are used to write FGs
through the single- or double-photon low energy physical principles described in section 2.
Wavelengths of 488 nm, and in the ranges 333 nm to 364 nm or 244 nm to 288 nm are typical ei‐
ther for FBGs or LPFGs. Besides applied wavelength, the required irradiances depend strongly
in the optical fiber being considered (mainly its photosensitivity characteristics) but can rough‐
ly being considered in the range from a few W/cm2 to tenths of MW/cm2 [7].

Figure 4. Illustration of (a) phase-mask and (b) point-by-point writing techniques.

Regarding multiphotonic high-excitation energy UV irradiation, this is accomplished using
the (relatively) new fs-pulsed laser technology, typically emitting with wavelengths lower
than 248 nm. In these cases, irradiances are in the order of GW/cm2 or higher [7]. This tech‐
nology based in fs-pulses allows obtaining excellent quality FGs mainly to the laser high
spatial uniformity [7]. However, this technology is still very expensive which limits its
broader use when comparing with other technologies (either in UV or IR).

4.2. LPFG writing using CO2 lasers

The use of CO2 lasers to produce LPFGs was first reported by Davis et al. [30] and Akiyama
et al. [31] in 1998. From then on, the application of this technology has lead to an increasing
research on its application for the development of new optical fiber sensors [32].

Using this type of MIR emission laser has several advantages regarding the other two well
established methods (UV lasers and arc discharges). The gratings can be inscribed directly in
most telecommunication fibers, support high temperatures without vanishing (in opposition
to those produced by UV) the process has high repeatability and predictability (in opposi‐
tion to the arc-discharge method). Also, since CO2 laser systems are commonly used to proc‐
ess several materials and have a long established industrial application, available systems
are robust and low-price.

The application of MIR laser radiation to produce a LPFG has physical principles similar to
the ones considered for arc-induced LPFGs [33]. Both rely in thermal effects acting in the fi‐
ber bulk materials. However, while the latter can be considered as a volume effect, being ap‐
plied along the transversal section of the fiber, between the two electrodes, the material’s
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high superficial absorption considered in MIR irradiation promotes heat conduction as a
major player in the physical mechanisms involved.

4.2.1. Physical mechanisms

Considering a standard silica-based optical fiber under tension and irradiated by a (Gaussi‐
an) 10.6 µm wavelength beam emitted from a CO2 laser, two main phenomena must be con‐
sidered: the thermal heating due to the interaction between the photons and the glass
molecular structure and the stress due to the differences between a relatively low-viscosity
doped silica core and a relatively high-viscosity pure silica cladding [34]. Differences be‐
tween core and cladding thermal expansion coefficients and viscosity lead to residual ther‐
mal stresses and draw-induced residual stresses. These effects are localized and, when
periodically induced in the fiber’s length, can be responsible for the creation of the gratings.
This effect is due to the refractive index change resulting from frozen-in viscoelasticity [35].

The temperature distribution T(r,z,t), with r2 = x2 + y2 for laser heating of a homogeneous me‐
dium can be obtained by solving the 2D heat flow equation. Considering K = K(T), defining
the thermal diffusivity k [m2 s-1] as k = K/(ρ Cp), where ρ is the density, Cp the specific heat, K
the thermal conductivity and assuming them constants, the resulting temperature can be ap‐
proximated for Gaussian elliptical laser beams through [36-40]:
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being R the reflectivity at the air/fiber interface for the assumed wavelength, P the laser
power, aT the absorption coefficient (assumed constant) and wx and wy the beam's radii at
focus (for each axis). With the temperature, T, the resulting residual thermal stresses can be
calculated using [37]
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beingrc is the radius (cladding or core), E is the Young’s modulus and υ the Poisson’s ratio.

If the core is the lower viscosity glass (e.g. Ge-doped silica core with pure silica cladding),
the residual axial elastic stresses in the cladding and core, σcl and σco, respectively, resulting
from a draw tension F, over the equivalent cross-sectional areas Acl and Aco can be obtained
from [37]:
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Taking in consideration the mentioned stresses, the refractive index change in a silica-based
optical fiber can be approximated by the relation [35] ∆n ≈ -6.35×10-6σ, where σ represents
the overall (both thermal and drawn-induced) residual stresses (in MPa) in the fiber’s axial
direction. Accordingly with Yablon [34], stresses in the other directions can be neglected.

Besides stress-related refractive index change, localized heating can induce microdeforma‐
tion of the fiber and also changes in its glass structure. The later is likely to occur in the core
for which the fictive temperature (below the fictive temperature the glass structure doesn’t
change) is lower [33,41]. As an example, it can be found that, for a Ge-doped core, the fictive
temperature ranges from 1150K and 1500K [41].

These analytical equations don’t consider all the physical phenomena (e.g. convection and
radiation losses) and were developed assuming several simplifications (mainly, neglecting
the temperature dependence of the glass parameters). However, their capability of being
used as an engineering tool to develop fiber optic sensors has been demonstrated [40]. A de‐
tailed analysis can be made using numerical methods and considering that the absorption
coefficient is temperature dependent, e.g. accordingly with MacLachan and Meyer [42].

4.2.2. Irradiation methodologies

Since there is still no phase mask available for CO2 laser radiation, methodologies rely basi‐
cally in the point-by-point technique. Nevertheless, several methodologies have been tested
since the first experiences in 1998 and are resumed in the schematic of Figure 5. As an exam‐
ple, Davis [30] and Akiyama [31] both have written each single period of a grating by focu‐
singthe laser beam by means of spherical lenses. Spots had dimensions of about 140 µmand
translation stages moved the fiber under the laser spot. They used a CW laser, and the single
pulse duration was defined through a computer-controlled shutter.

Usually, CW CO2 laser technology is chosen due to its availability and cost. Low power la‐
sers and mechanical shutters allowing hundreds of ms pulses perform well and accomplish
the required performances. Q-switch CO2 lasers [43] have also been reported by Raoet al.
[44]. In this case, shorter pulses are available at high frequency rate (in the order of kW).
Nevertheless, since fluence is the main parameter involved in the interaction process, setting
laser power, pulse duration and spot radius should lead to similar results [40].
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Figure 5. Schematic illustrating the different irradiation methodologies that can be applied for each available opera‐
tional parameter.

Regarding the way each refractive index modulation is created, there are mainly two op‐
tions: a static irradiation, for which the laser is applied for a determined amount of time, and
a dynamic irradiation where the laser beam is scanned over the region where the refractive
index change is to be created. In the first case, basically, one must ensure that the region is
fully irradiated (i.e. the focused spot is larger that fiber’s diameter) while in the scanning
procedure requires the opposite (spot size smaller that the fiber’s diameter).

Figure 6 schematizes the two situations considered for the static procedures and the one for
scanning. For the latter (Figure 6(a)), the usual procedure is to have the laser beam focused
in a small spot and scanned it over the fiber using a galvanometric mirror. If two of such
mirrors are used, one of them can be used to move the beam longitudinally and thus write
the full LPFG without moving the fiber. However, these scanners and associated optics are
expensive, and accomplishing small spots is difficult for the considered wavelength. The dif‐
fraction limited spot radius, wd, resulting from focusing an initial beam of wavelength λ and
radius w0 using a lens of focal distance f is: wd = 1.22λ.f/w0.

Figure 6. Illustration of (a) dynamic scanning and static (b) circular and (c) elliptical spots procedures in creating LPFG
in an optical fiber.

Figure 7 shows the diffraction limited spot radius values for a 10.6 µm wavelength beam fo‐
cused by different lenses. Two situations are plotted: one considers that the laser has an ini‐
tial 3.5 mm radius (a usual value) and the other that this value doubles (e.g. using a 2x beam
expander). Also plotted is the dimension (cladding radius) of a common optical fiber (for the
case, the SMF-28, already considered previously). The plot indicates that only for the lowest
focal lengths (< 20 mm, averaging for the two situations) one can obtain spot sizes smaller
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than the optical fiber radius. The common situation is to use focal lengths in the order of 50
mm, and typically spot sizes are in the order of hundreds of microns. This leads to the fact
that usually a static approach is used. Since a circular spot creates (potentially) larger affect‐
ed zones (Figure 6(b)) and, for smaller beams makes it more difficult to align relatively to
the fiber, elliptical beams (Figure 6(c)) are often the preferable choice. This is accomplished
by using a cylindrical lens with its axis perpendicular to the fiber’s axis.

Figure 7. Diffraction limited spots for w0 = 3.5 mm or w0 = 7.0 mm CO2 laser beam radius focused by different focal
length lenses.

While no major difference in the LPFG performance has been reported regarding the above
mentioned different techniques, the single–side and symmetric exposure to the laser radia‐
tion were compared by Oh et al. [45], demonstrating that the polarization-dependent loss of
the first fabrication method (1.85 dB at 1534 nm) could be significantly reduced to 0.21 dB by
applying the second method. Nevertheless, due to its simplicity, the single-side exposure is
the most commonly used methodology and the accomplished performance still fulfils the
usual requirements.

The same techniques, applied with different parameters (e.g. laser power and applied
weight) can produce different devices like based on tapers or grooves along the fiber (i.e.,
zones were the cladding diameter is reduced) [46]. Other possible advances can be accom‐
plished in the future regarding the writing of non-uniform (or “chirped”) LPFG, where the
period changes along the grating, and direct writing by MIR interferomety [46].

4.2.3. An example

Considering a standard single-mode fiber, SMF-28 [47], consisting of a core of 3.5 mol% Ge-
doped SiO2 and a pure fused silica cladding and irradiating with a common CO2 laser a sim‐
ple example can illustrate the application of the formulae and also correlate with
experimental data. Table 1 presents the fiber’s main parameters considered for the calcula‐
tions and their references. Values from Yang et al. [36] are considered for the 10.6 µm wave‐
length of a CO2 laser and equals for both the core and the cladding. This assumption can be
made mainly since the Ge concentration in the fiber’s core is very low [7,48,49].
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Using a static asymmetrical irradiation with a CW CO2 laser and a cylindrical lens to have a
wx = 0.15 mm and wy = 1.75 mm elliptical spot on the fiber, the implemented setup is schema‐
tized in Figure 8(a) and the considered referential in Figure 8(b). In practice, a Synrad 48-2
laser and a 50 mm focal length lens were used. The laser operation was computer controlled
with emissions in the order of hundreds of ms. Experimental set-up also consisted of a
broad band light source (Thorlabs S5FC1005S) and an optical spectrum analyzer (OSA) to
monitor the LPFG fabrication, while a fast camera (PCO SensiCAM), perpendicular to the
irradiation axis, allows to optically visualize the process. The irradiated zones were ana‐
lyzed using an optical microscope with amplifications up to 1,000×.

Parameter Core Cladding

Radius, w (μm) [47] 4.1 62.5

Refractive índex (@ 1550nm, 300K), n [7] 1.449 1.444

Young’s modulus, E (GPa) [49] 70.8 72

Poisson’s ratio, ν [49] 0.165 0.173

Reflectivity (@ 10.6 μm), R [36] 0.15

Density, ρ (kg/cm3) [36] 2.2×10-3

Specific heat, Cp (J/kg K) [36] 703

Thermal diffusivity, K (m2/s) [36] 2

Absorption coefficient (@ 300K), aT (cm-1) [36] 250

Table 1. Optical fiber parameters considered for the calculations.

Figure 8. a) Schematic apparatus of a LPFG writing by laser and (b) optical fiber cross-section indicating the consid‐
ered referential and the interfaces between the different regions: A – irradiated surface, B – core/cladding interface
(upper), C – core/cladding interface (lower) and D – bottom surface.

Figure 9(a) shows a microscope photo of an irradiated fiber, part of a 25 mm length grating
with a period of 500 µm and Figure 9(b) the resulting relative transmission spectrum.Be‐
sides the general conditions previously mentioned, a weight of 16 g was applied and a laser
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power of 6W was delivered for the duration of 600 ms. In this image it is possible to observe
an affected area along the fiber’s axis of about 130 µm. Also visible is a (small) micrometric
deformation of the fiber.

Using equation (4), one can obtain the temperature distribution at the different regions illus‐
trated in Figure 8(b). Figure 10 shows this distribution along the fiber’s axis as well as the
equivalent zone regarding the size of the visible affected zone observed in Figure 9(a). From
the curves it is clear that the temperature differences along the core are negligible (in depth,
the core can be considered at the same temperature) and above the fictive temperature. In
the opposite, the cladding shows a significant temperature difference between the fiber’s
front surface (laser incidence) and its back surface (about 230K).

Figure 9. Picture showing (a) an irradiated zone belonging to a 25 mm LPFG with 500 μm period and (b) respective
relative transmission. (600 ms exposure time, 6 W laser power).

Figure 10. Temperature distribution at the fiber’s axial direction at t = 0.6 s. The curves were obtained at the optical
fiber's front surface, core/cladding interfaces (upper and lower) and at the back surface of the fiber, and x = y = 0 mm
(see Figure 8).

Using the set of equations (7), the residual axial elastic stresses in the cladding and core are
approximately 0.05 MPa (cladding) and 12.57 MPa (core). Adding these values to the residu‐
al thermal stresses calculated using equation (6) the resulting residual stresses can be ob‐
tained. Figure 11(a) plots these values for x = 0 along the z-axis. The asymmetry is clearly
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visible (mainly in the cladding). However, it has no significant impact in the refractive index
profile (obtained by adding the refractive index change ∆n to its initial value) resulting from
the process as it can be observed in the plot in Figure 11(b).

Figure 11. (a) Total residual stress and (b) refractive indexes (before and after laser irradiation) profiles, for the condi‐
tions considered.

Also evident is the imposing nature of the thermal component. However, if the drawing
force increases, the balance between residual stresses changes. Figure 12 plots the refractive
index change Δn calculated for the core and cladding by increasing the weight. For lower
weights, the core’s refractive index increases while for weights higher than approximately
60 g, it diminishes. At this value, the refractive index modulation is due mainly to the
change in the cladding (which has almost no change with the weight value).

Figure 12. Refractive index change (core and cladding) with increasing weight, for the conditions considered.

4.3. Multi-photonic NIR laser writing of FG sensors

Besides single UV photonic absorption and MIR thermal effects, fs-pulse duration NIR (fs-
NIR) lasers appeared in the last years as alternative sources to write LPFG [7,50,51] and FBG
[50,52]. In this case, the high peak power irradiation (typically in the order tenth’s of thou‐
sands of GW/cm2) produced by the fs-NIR laser induces high refractive index changes in the
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bulk glass material. This effect is considered as resulting from a non-linear multi-photonic
absorption/ionization process in which material compaction and/or defect formation (de‐
pending on the intensity of the exposure) can occur [52]. Typically, 800 nm wavelength
Ti3+:Al2O3 lasers are being used with pulses in the order of hundreds of fs. This laser makes
use of the five-photon mechanism interaction with the silica-based optical fiber and 7.8 eV
band-gap energy for the common 3 mol% Ge-doped fused silica core considered in the ex‐
amples presented in this chapter [7].

Two types of writing procedures have been researched so far: one using a phase-mask proc‐
ess and the other a point-by-point writing. Both are similar to the techniques described pre‐
viously for UV and MIR radiation writing. Thermo-stability (up to the glass transition
temperature) of both laser written FBG and LPFG, and the ability of record in different types
of fibers, as been reported as the main advantage of this technique. However, FBG fabricat‐
ed using phase masks have strong cladding-mode absorption, only removed with careful
relative positioning between the phase mask and the fiber, as well as with the choice of a
special high order pitch phase mask [7]. High sensitivity to alignment is also reported [7,52]
as one of the major drawbacks in fs-NIR technique regarding LPFGs, not only using masks
but also in point-by-point writing. Nevertheless, the latter technique is being researched to‐
wards its application in the development of non-uniform (or “chirped”) Bragg gratings [53]
and direction-sensitive bending sensors [54].

5. NIR laser micromachining for cavity-based sensors

In recent years fiber micromachining has experienced an increasing development in the con‐
text of fiber sensing, the focus being made in creating intrinsic fiber optic structures, such as
Fabry-Perot cavities, diffraction elements in the fiber end face, etc. To do so, the most tradi‐
tional technique is based in the use of chemical etching. However, this technique (as others)
is characterized by having low flexibility in its use. In the present, the preferred fabrication
technique relies on laser etching, most notably fs or UV laser machining. This is a novel ap‐
proach (basically following the principles already described in previous sections) being con‐
sidered as having a huge potential, but the required equipment is complex and highly
expensive. To overcome the present limitations the authors have been researching in apply‐
ing ns-NIR pulses [20]. In this section this new technique is presented and its different appli‐
cations illustrated. Based in the available experimental data, this optical fiber processing
technique is analysed and its potential evaluated.

5.1. Laser micropatterning

Laser micropatterning refers to a material-removal process where micron-level features are
fabricated in materials using a highly focused laser beam with high energy density, which is
scanned over the material to create a specific feature. Ultra-fast lasers have pulse duration in
the ns- through the fs-range which creates material removal by a vaporization process that
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limits material heating and allows materials to be micromachined with less dependence on
laser wavelength absorption.

Micropatterning of hard materials, like glass, with pulsed lasers delivers the highest energy
in the shortest possible time, thus reducing the material shock/impact effects. Applying laser
energy over a relatively long time results in distortion of the microfeature, and other un‐
wanted results, such as a large heat-affected zone, recast material, microcracking of the sur‐
face or inner walls or the laser beam not penetrating completely through the material
thickness. These effects can be reduced by using a short (<ms) pulse length.

One of the simplest ways to produce micro-patterns is to apply the concepts of laser drilling
and appropriated scanning strategies. Traditional laser drilling techniques are: single pulse
drilling, percussion (multiple pulses) drilling and trepanning. In this sequence, the required
number of pulses increases, which can increase the machined volume.Basically, material re‐
moval in laser hole drilling relates with the vaporization of the material.

When dealing glass materials used in the development of fiber-based sensors, the laser inter‐
action is conditioned by two important parameters: the wavelength and duration of the laser
pulses. Since thermal impact can cause cracks in the glass after laser irradiation, UV radia‐
tion, having photon energies similar with those of glass, allows material removal by photon‐
ic processes without heating the material. Another possibility is to use ultra-short pulses
(<ps), so even in the NIR, photonic processes predominate over thermal effects. However,
recent studies demonstrated that nanosecond pulses [14,20], in the NIR, can effectively be
used to replace UV and fs-lasers in processing silica-based materials.

5.2. Results on nanosecond NIR pulses micropatterning

In 2011, Nespereira et al. [20] have presented the first results in creating micrometric holes in
optical fibers using nanosecond NIR radiation. Since the tested optical fibers (standard com‐
munication silica-based fibers) have reduced absorption in the NIR (absorption coefficient
around 1 dB/km) [47], the analysis made in section 4 regarding MIR interaction (with either
core or cladding) cannot be made. So, although more research is needed (in particular to
fully understand the physical principles involved), experiments allowed determining the
conditions to vaporize the required amount of material. Holes with few microns and depths
higher than 10 µm were accomplished with multiple superposed shots. The analysis demon‐
strates the possibility of writing patterns and the potential in the development of fiber-based
sensors.

5.2.1. Experimental procedures

Figure 13 illustrates the setup implemented and shows a picture of its implementation. Two
main paths can be considered: an irradiation path, combining the laser source and an objec‐
tive, and an observing path, were light reflected by the targeted fiber is observed by a CCD
camera. Together with the fiber, a dichroic mirror is common to both paths allowing reflect‐
ing the emitted NIR laser beam, and transmitting visible light reflected by the fiber.
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The irradiation procedure was based on a pulsed Nd:YAG laser (BMI model: 5012 DNS 10c)
operating at 1064 nm wavelength with a pulse width of 7 ns and 10 Hz repetition rate. The
beam has a radius of 3.5 mm and is reflected by a dichroic mirror and focused into a SMF-28
optical fiber. The focusing optics is a 10x objective (ThorLabs LMH) with 0.25 numerical
aperture, 20 mm effective focal length, designed to transmit high-power 1064 nm laser radi‐
ation and focus it to a diffraction-limited spot [20]. Thus, the spot radius on the fiber top is
estimated to be about 3.7µm. However, since the laser beam quality is low, having a M2 pa‐
rameter higher than 2 (a Gaussian beam has M2 = 1), the incident beam is expected to be fo‐
cused into a 7.5 µm spot radius (M2. wd).

Figure 13. (a) Schematic and (b) photograph of the setup used for nanosecond pulsed NIR laser micropatterning of
optical fibers.

Several operational parameters were considered. Besides changing the incident laser energy,
the number of superposing pulses changed and it was also tested moving the fiber towards
the focus after each pulse. Also tested was the impact of diminishing the spot size just at the
laser’s output, i.e. changing the depth of focus. This was accomplished with an iris dia‐
phragm which allowed changing the beam from its initial 3.5 mm radius to about 2mm.

5.2.2. Results and analysis

Analysing the resulting data, tests [20] proved that single pulse drilling isn’t effective in re‐
moving significant amount of material, especially when high depth is required. One laser
pulse can produce a perfect round hole at the fiber’ssurface but with a depth less than 1 µm.
However, increasing the number of superposing pulses lead effectively increased the hole’s
depth, while also increasing its diameter (Figure 14). As it can be seen, after about 8 pulses
there isn’t a significant change in the hole’s diameter. However, its depth keeps increasing.
More than 20 pulses damaged the fiber (cracks and breakage occurred).

The latter results were obtained with energy of 1.8 mJ and a 2 mm radius vignetted beam.
Contrary to what could be expected the beam’s size has low impact in the characteristics of
the hole: its diameter only varies between 25 µm and 31 µm, while the depth can be consid‐
ered constant. However, the quality of the holes changes, being better for lower beam sizes
as it can be seen in Figure 15 for the same energy and 10 laser pulses/hole. Also unexpected
was the fact that increasing the laser energy, for a determined number of superposed pulses,

Current Developments in Optical Fiber Technology394



or moving the fiber after each pulse, did not significantly alter the results. This can be a clear
indication that some optical breakdown is the physical mechanism responsible by vaporis‐
ing the material since once delivered enough energy to reach the breakdown threshold any
further increase will not contribute for the process.

Figure 14. Measured hole’s diameter and depth for different number of laser pulses per hole. (2 mm radius vignetted
initial laser beam with 1.8 mJ incident energy).

Figure 15. Measured hole’s diameter and depth for different emitted laser beam diameter. Tests considered ten 1.8
ml laser pulses/hole.

These tests were made by irradiating the top of the fibers and the technique demonstrated
that it is possible to obtain not only cavities for FP fiber sensors but also that different pat‐
terns can be inscribed (Figure 16(a)). Using the same parameters, it is also possible to micro‐
structure the lateral side of the fiber. Figure 16, (b) and (c), shows the front and lateral views,
taken by a microscope, of two holes opened in the side of a SMF-28 optical fiber.

Future work will focus in using nanosecond NIR pulses micropatterningto produce fiber
sensors and also in studying and modelling the physical processes that rule the interaction
phenomena. One possible alternative to the production of SPR sensors, while maintaining
the same physical principle, is to replace the a posteriori metallization of the holes by direct
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formation of metallic nanoparticles simultaneously with the laser micropatterning of the fi‐
ber’s top. This would require a metallic ion-doped fiber top. Nevertheless, some successful
experiences were already made using NIR laser radiation, in the ns-pulse regime to obtain
gold and copper nanoparticles in glass substrates [55,56]. Also, opening apertures along the
fiber’s length can lead to the development of new optical fiber sensors either by exposing
the core or by giving access to inner hollow regions in photonic-crystal fibers.

Figure 16. Examples of (a) different patterns written on the optical fiber’s topand (b) front and (c) lateral views taken
with an optical microscope for an example of two holes opened on the lateral side of a Corning SMF-28 fiber.

6. Conclusions

Laser technology plays an important role in the development of fiber-based optical sensors
as its characteristics allow obtaining, in a controlled way, high quality features with good
repeatability. Although some techniques are already well established, there still are many
improvements and developments being researched. In particular, the use of IR radiation still
presents challenges to overcome and promising new sensors are expected to be developed
in a near future.

The use of MIR radiation in the writing of LPFG, namely through the use of CO2 laser sys‐
tems, has proven to be an efficient tool. However, detail research in the study of the physical
mechanisms involved in the process is still being done while its use to create new sensors is
a parallel activity in photonic fields. As an engineering tool, a set of analytical expression
were presented in this chapter which can give indications to the manufacturing process re‐
garding the required operational parameter to accomplish a determined LPFG.

Recent advances in fs-pulses UV and NIR laser technology were described. In particular, in‐
scribing FBG and LPFG is being researched, although some drawbacks are identified which
limits its application. Besides that, an innovative technique that uses ns-NIR laser radiation
to micropatterning optical fibers has been presented. These new results are challenging be‐
cause the irradiated silica-based fibers are mainly transparent to NIR radiation and therefore
the usual explanation based in direct heating by molecular or matrix vibrations induced by
the laser beam (as in the previous section) should not hold. This leads to the necessity of a
further in-depth analysis of the physical mechanisms involved. Nevertheless, the develop‐
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ment of this technique opens new opportunities in the design of new cavity-based optical
fiber sensors which are expected to appear in a near future.
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