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1. Introduction

Mathematical theory of infinite dimensional Hilbert spaces and the theory of operator
algebras acting in such spaces (or C∗ algebras in a more abstract approach) provide
a standard setting for the formulation of modern quantum mechanics. On the other
hand, experimental and theoretical progress achieved in the field of quantum information
theory in the last two decades has indicated the practical and technological importance
of low-dimensional quantum systems, where only a few basic modes play a significant
role. Such modes can often be effectively decoupled from the rest of the system and
controlled separately, providing physical realizations of qubits, qutrits and other basic
information carriers. Regardless of concrete physical realization, be it photon polarization,
electron or nuclear spin, charge in Josephson junctions to name just a few, the mathematical
description of such systems requires only finite-dimensional Hilbert space language and
finite-dimensional matrix algebras. Such structures are in principle computationally
manageable in sharp contrast to the infinite dimensional ones.

It has to be pointed out, however, that there is a lot of misconception concerning the above
mentioned “manageability” notion in today’s quantum information literature. For instance,
one of the most fundamental errors appearing in innumerable papers is to indiscriminately
resort to the spectral resolution technique for hermitian matrices. Such an operation
cannot be considered computationally effective if the size of the matrix exceeds 4: then it
unavoidably involves solving an algebraic equation of degree 5 or more. Such task can be
achieved only by an approximate numerical process, and therefore any emerging questions
can be answered only up to numerical precision. The latter can be critical, for example, in
checking whether a hermitian matrix has a negative eigenvalue.

Fortunately, in many situations similar to the one just described there are other alternative
ways to obtain a precise answer, avoiding the approximate numerical computations. This
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is achieved by limiting oneself to the so-called finite rational computational procedures,
involving only finitely many arithmetic operations on initial data so that the data as well
as all intermediate and final computational results belong to the same number field. In
particular, the use of transcendental functions is thus excluded.

The present chapter will be devoted to a review of a few such procedures, important for
applications in quantum information theory. We will concentrate on the questions concerning
not only the effectiveness of such procedures, but also on more detailed computational
complexity issues. To describe better the subject of our considerations and to fix the
terminology, let us consider the already invoked example of checking whether a given
selfadjoint matrix has a negative eigenvalue, which in particular is a crucial ingredient in
entanglement detection procedures. Note that the problem is posed so that the precise
knowledge of the eigenvalue is not essential, it is its sign that matters.

Let A be a hermitian matrix in question and H be the respective Hilbert space. One can
formulate the negative eigenvalue problem in an equivalent form by asking whether A is or is
not positive semidefinite. As it is well known, positive semidefiniteness can be characterized
by several equivalent criteria, each of them being an example of a different effectiveness or
complexity issue. The list of relevant criteria is the following.

1. For each normalized vector |ψ〉 ∈ H one has 〈ψ | Aψ〉 ≥ 0. The test based on this criterion
is ineffective as it involves infinite number of conditions to verify, one for each |ψ〉.

2. All eigenvalues of A are nonnegative. As we have argued above, such test cannot be
considered an effective one either. In general, the correctness of the answer hinges upon
the numerical precision being used. We can call such tests asymptotically effective, meaning
that increased numerical accuracy can yield the definite yes/no answer, but no a priori
fixed precision is sufficient for the correctness of the whole class of such tests.

3. All principal minors of A are nonnegative. This is certainly an effective criterion as it
involves the evaluation of finitely many subdeterminants of A. The computation of a
determinant itself is a finite rational procedure. Note however, that direct application of
the present criterion requires the evaluation of nearly 2n minors, n being the size of A.
Although finite, this number grows very rapidly with n, making the test inefficient. In
practical terms, it may easily take years to complete such a test on the fastest computers,
even for A of moderate size. For example, if A results from an application of some
entanglement test to a mixed state of a system composed of merely 6 qubits, then n = 64
and hence the number of minors to compute is about 264 ≈ 1019. Assuming that our
computing device can evaluate 106 minors per second on average, the time required to
complete such a test would be of the order of 105 years. We characterize the computational
complexity of such procedures by saying that they are nonpolynomial in n. Problems for
which only nonpolynomial solution methods are available are termed intractable.

4. While the test of positive definiteness (Sylvester’s criterion) is much simpler, for it involves
only n leading principal minors of A, it has no counterpart for positive semidefinite
matrices. However, one can easily check that the following recursive procedure based
on Gaussian elimination can be used in this case. By A11 we denote here the submatrix
of A = [aij] obtained by the deletion of its 1st row and 1st column.

(a) If a11 < 0 then A is not positive semidefinite.
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(b) If a11 = 0 then A is not positive semidefinite unless its entire 1st column is null and
A11 is positive semidefinite.

(c) If a11 > 0 then we first perform row-elimination of the entire 1st column of A. Then
A is positive semidefinite iff the resulting A11 is such.

This is again a finite rational procedure. The largest computational effort in completing
such a check is needed when there are no 0 entries in the first column of A and, likewise,
no zeros are produced in A11 by the elimination. Then the recursive check uses the variant
(c) repeatedly, so that the total number of arithmetic operations performed is of the order
of n3. The complexity of the method is thus polynomial and its efficiency is much higher
than that of criterion 3. If as before n = 64, the test will complete in less than 1 second,
assuming the computer speed of 106 rational arithmetic operations per second.

Positive semidefiniteness is certainly a very simple issue, however the above example
highlights a few characteristic aspects of computational complexity. Mathematical problems
often admit many different solution methods which, similarly as in our example, may range
from ineffective to very efficient ones. Effective procedures however can often prove useless
in practice if the computational effort involved grows too fast with the size of input data. The
complexity of problems themselves can be characterized relative to the most efficient solution
methods known for them. In some cases theoretical complexity bounds can be derived for
classes of problems.

In the next section we provide a brief review of fundamental notions of computational
complexity theory.

2. Basic notions of computational complexity theory

In theoretical computer science, algorithms are classified according to their time or space
complexity. Time complexity gives an estimate of how does the number of elementary steps
in the algorithm scale with the size of input data defining an instance of the problem.
Space complexity refers to the scaling of the amount of workspace or extra memory (in
one convention the memory storing input data is not counted) needed in the course of
computation. The complexity of problems is related to their inherent difficulty and is
a theoretical estimate of the computational cost indispensable for their solution. Often
only some lower or upper complexity bounds are known for classes of problems. The
complexity theory uses the formalism of abstract Turing machines to ensure the universality
of conclusions.

It is not our goal to review the complexity theory in its general abstract formulation here,
but rather to provide necessary intuitions for an unacquainted reader. Those familiar with
computational complexity may well skip the current section.

The scaling of solution time or workspace with problem size is expressed using the “big O”
notation.

Definition 1. For two functions f , g : N → R one writes f (n) = O
(

g(n)
)

for n → ∞ if and
only if

∃ M ∈ R and n0 ∈ N such that | f (n)| ≤ M|g(n)| for n > n0 .
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For example, standard square matrix multiplication requires O(n3) arithmetic operations,
n being the matrix size. Since no extra memory beyond that for data storage is needed
for performing the multiplication, the space complexity here is O(n2). The Fast Fourier
Transform performs O(n log n) arithmetic operations on an n element data vector. Evaluation
of a determinant directly from its definition would involve the summation of n! terms,
however more efficient method using Gauss elimination reduces the effort to O(n3)
arithmetic operations. Evaluation of a permanent on the other hand appears more complex
(except for the case of computations over Z2, where −1 ≡ 1(mod2) and hence det A = per A):
the best methods known so far [8, 23] have the complexity of O(n2n).

One of the objectives of the theory is to identify complexity classes, consisting of problems
which can be solved by using only limited type of computational resources, which are
abstractly characterized by restricted classes of Turing machines, most notably the classes
P and NP. The class P consists of problems which can be solved by a deterministic Turing
machine executing a number of steps bounded by a polynomial in the input data size.
The class NP on the other hand consists of problems solvable in polynomial time by a
nondeterministic Turing machine. As the latter can be simulated by a deterministic machine in
exponential time, NP is often conventionally (yet not quite correctly) identified with the class
of problems solved by exponential (nonpolynomial) time deterministic algorithms. Strictly
speaking however, the essential feature of NP problems is that given a random candidate for
a solution it takes no more than polynomial number of steps to verify its correctness or to
reject it. Exponential time deterministic algorithms in NP can be thought of as performing
an extensive “blind” search in the space of potential solutions (which is the actual source
of nonpolynomial complexity) checking each of them at low (i.e. polynomial time) cost. In
contrast, problems in P admit “clever” constructive solution methods.

In practical terms, problems of type P can be solved relatively fast regardless of their size,
while for the NP type ones solution times become impractically long even for moderate size
of input data, c.f. our discussion of positive semidefiniteness verification in the previous
section. The distinction between efficient and inefficient methods is often used as a synonym
for that between P and NP classes.

Obviously P ⊂ NP, but it is a famous open question (although today hardly believed to
hold true) whether P = NP. The quest for an answer to the latter has led to the definition
of various special complexity classes, in particular the class of NP-complete problems, NP-C.
We say that a problem π can be polynomially transformed to another problem π

′, in written
π ∝ π

′, if the solution of π for input data of size n can be obtained by means of the execution
of an algorithm for π

′ at most a polynomial in n number of times on new data translated
from the original input with at most polynomial effort. So if π

′ ∈P (resp. in NP), then any
π such that π ∝ π

′ is necessarily also in P (resp. NP).

Definition 2. A problem π is NP-complete iff

(i) π ∈ NP;

(ii) ∀ σ ∈ NP σ ∝ π.

If π satisfies only condition (ii), it is said to be NP-hard.
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It may appear that NP-C can well be empty, but it is not so as shown by Cook in [7]. The
first NP-C problem identified by Cook was the satisfiability of Boolean functions: given a
Boolean function F in variables x1, . . . , xn doest there exist a truth/false assignment to all xi

making the value of F true? Cook’s proof gives a method of how to cast, at polynomial cost,
an arbitrary nondeterministic Turing machine into the one computing Boolean functions.

Knowing at least one NP-C problem it becomes easier to identify other ones: if π ∈NP
is such that σ ∝ π for some σ ∈NP-C, then π ∈NP-C. The list of known NP-complete
problems exceeds now 3000 items. By definition, providing a polynomial time solution to any
single NP-C problem would automatically prove that P=NP. Because of this, NP-complete
problems are considered the hardest among NP ones. In other words, it is generally believed
that the search for exact polynomial time solution methods of NP-C problems is a waste of
time. On the other hand, there are numerous problems of practical interest for which neither
a proof of NP-completeness nor an efficient polynomial time solution method are known.
The most notable example is the problem of finding factors of large integers.

It is interesting that a large class of problems in matrix theory which possess an efficient
solution can be reduced to an evaluation of a small number of determinants or, equivalently,
can be expressed, as above, in terms of Gaussian elimination or — still more elementary
reduction — by a series of matrix multiplications. This point of view motivates the interest
in the design of fast matrix multiplication algorithms. Perhaps the best known schema of this
kind is due to V. Strassen (1969) and its complexity is O(n2.81), while more recent method of
Coppersmith and Winograd (1987) improves the efficiency to O(n2.367), the theoretical lower
bound being O(n2).

An example of NP-complete matrix algebra problem is the following [5]: given an n × m
matrix A over Z with n ≤ m, decide whether there exist a vanishing n × n subdeterminant of
A. The evaluation of a permanent is NP-hard, for it is most likely not in NP class. Again, the
existence of a polynomial algorithm for the computation of per A would infer the equality
P=NP. Many complicated counting problems in combinatorics and graph theory can be
reduced to an evaluation of a permanent. Actually, permanent evaluation is #P-complete,
meaning that all counting functions which can be defined in terms of NP problems can be
polynomially reduced to it, [25].

Another important complexity category, from a physicist’s point of view, is the so-called BPP
class (bounded error probabilistic polynomial time) consisting of decision problems solvable
in polynomial time by a probabilistic Turing machine, with the probability of producing wrong
answer bounded from above by a constant 0 ≤ p < 1/2. Less formally, this class corresponds
to Monte Carlo algorithms likely to yield correct answers and running in polynomial time.
Such conditions guarantee that in practice one can perform a relatively short series of
independent runs of the method to learn the correct answer with very high probability. By
Chernoff bound, the probability that incorrect answer appears in a series of runs most of the
time decays exponentially with the series length. If instead of probabilistic one uses quantum
Turing machines, the resulting class is called BQP (bounded error quantum polynomial time).
It is shown that BPP⊂BQP, but little is known so far about the relation of either of the classes
to NP.

Finally, PSPACE is a class of problems solvable by deterministic Turing machines using
at most polynomial in the data size amount of workspace. It is proved that adding
nondeterminism does not alter this class, namely PSPACE=NPSPACE. NP is thus clearly
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Figure 1. Hypothetical relations among complexity classes.

contained in PSPACE since using workspace of nonpolynomial size would automatically
require nonpolynomial time. Fig. 1 summarizes what has been said above about the
complexity classes.

Last but not least, there are problems which are provably undecidable, meaning that no finite
algorithm can ever resolve them. Among such tasks there is the fascinating tiling problem
[26].

Let us mention also that to date no general effective criteria are known for one of the most
fundamental decision problems in quantum information, namely the determination whether
a given mixed state of a bipartite system is entangled or not. All known exact methods,
apart from those for low-dimensional systems, namely for n = 4 = 2 × 2 and n = 6 = 2 × 3,
involve infinite number of computational tests (local actions of positive maps or, equivalently,
evaluation of expectations of entanglement witnesses). Moreover, no effective method is in
sight despite the two decades of intensive research efforts worldwide.

3. Some computational problems of quantum information theory

Quantum information (QI) theory regards quantum states as information carriers and
quantum evolution of states as acts of information processing. As we have already mentioned
in the Introduction, QI research focuses on low-dimensional quantum systems, qubits, qutrits
and likewise, which appear to be most interesting from the point of view of potential future
large-scale technological applications. Such low dimensional structures can be combined
into multipartite quantum systems, realizing quantum registers and memories. Namely,

given a low-dimensional Hilbert space, e.g. H2 ≃ C
2 for a qubit, the space of the compound
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multipartite system is then

H = H2 ⊗ · · · ⊗H2 = H
⊗n
2 ≃ C

2n

.

Genuinely quantum properties of such systems, most importantly the entanglement of
their states, are proved to underlie the extraordinary efficiency of quantum information
processing, surpassing that of the classical one. In what follows we shall silently assume
finite-dimensionality of all quantum systems in question.

Let us recall that pure states of a quantum systems are represented by vectors in the
respective Hilbert space, |ψ〉 ∈ H, while observables, i.e. measurable physical quantities,
correspond to selfadjoint operators acting on H, i.e. A ∈ B(H) such that A = A∗. In
the finite-dimensional setting they can be identified with Hermitian matrices in the matrix
algebra Mn(C), n = dimH. In passing to mixed states one replaces pure states with the
corresponding 1-dimensional projection operators, |ψ〉〈ψ| ∈ B(H), and one defines the
mixed states as statistical sums of mutually orthogonal projections, ̺ = ∑ pi|ψi〉〈ψi| with real
positive pi summing up to 1. So defined, mixed states are quantum counterparts of classical
discrete probability distributions. Their representatives are called density matrices. It can be
easily seen that density matrices form a convex subset Σ = Σ(H) of B(H) characterized by
positive semidefiniteness and normalization of trace1

̺ ∈ B(H) such that ̺ ≥ 0 and Tr ̺ = 1 .

According to the postulates of quantum mechanics, dynamical evolution of quantum systems
is described by the Schrödinger equation, which, when reformulated for mixed states, takes
the form of von Neumann equation

˙̺ = −i[H, ̺] = −i(H̺ − ̺H) .

Here H denotes the Hamiltonian of the system in question and we have assumed the
convention h̄ = 1. This equation is solved by

̺(t) = U(t)̺(0)U∗(t),

where the unitary propagator has the form U(t) = e−iHt.

Often, when the continuous time dependence of the system state is not the main issue, one
resorts to discretized dynamics, using e.g. the “time one” mapping, ̺′ = U̺U∗. It turns out
that general quantum operations, providing an adequate mathematical description of complex

1 More consistently, mixed states should be regarded as elements of the Hilbert-Schmidt dual of B(H), that is linear
functionals on B(H) acting on observables of the system by expectation ̺(A) = Tr(̺A). For finite-dimensional H

both B and B
∗

are in fact identical with Mn(C), the algebra of complex n × n matrices.
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multi-stage quantum processes, experiments or computations acting on system states have a
more general form of an operator sum

Φ(̺) = ∑ Ki̺K∗
i . (1)

These include, for instance, quantum measurements or transmission of states through noisy
quantum channels. The above so-called Kraus representation is the most general form of a
linear completely positive map Φ : B(H) → B(H). From the point of view of quantum theory
we are interested in the restriction of Φ to the set of density matrices Σ(H). Complete
positivity of Φ ensures that it preserves positivity of states, while an extra assumption is
needed to guarantee the preservation of trace, namely ∑ K∗

i Ki = I, where I denotes the
identity matrix. So, for such Φ we have Φ : Σ → Σ. In QI theory such maps represent general
quantum communication channels and typical questions studied in this context concern e.g.
the effect of Φ on the initial entanglement of the transmitted states, the impact of noise,
decoherence, etc. Let us mention also that Kraus representation, though very useful, has the
defect of not being unique for a given quantum map Φ.

It should be stressed that quantum operations in the above sense are as a rule nonunitary.
Even in the simplest case of Φ represented by two unitary (up to scaling) Kraus terms,
Φ(̺) = U̺U∗ + V̺V∗, the action of Φ is not unitary unless U = V up to a constant factor.
However, this is does not pose a contradiction with postulates of quantum mechanics. Let us
sketch briefly a typical open system scenario leading to nonunitary dynamics.

Suppose that we realistically consider a quantum system not as isolated one, but as remaining
in contact with an external bath, so that the underlying Hilbert space has the structure H =
HS ⊗HB, with HS and HB being respectively the system and the bath spaces. It is natural
then to cast the overall Hamiltonian in the following form:

H = HS ⊗ IB + IS ⊗ HB + HI ,

where HS and HB are the Hamiltonians describing the evolution of the system and bath
alone, HI represents the interaction between them and IS, IB are the respective identity
operators. While the overall system dynamics is unitary

̺(t) = U(t)̺(0)U∗(t) , U(t) = e−iHt ,

it is intractable in such an exact form due to typically huge number of degrees of freedom
of the bath. It is then natural to pass to a statistical description of the system evolution
by averaging the bath out, assuming in addition that initially the system and the bath are
decoupled, that is

̺S(t) = TrB

(

U(t) ̺S(0)⊗ ̺B(0)U∗(t)
)

= ∑
α

Aα(t)̺S(0)A∗
α(t) , (2)

where the Kraus operators emerge as Aα = cα〈βi|U|β j〉 with α enumerating index pairs (i, j)
and |βi〉 being the bath basis states. This is clearly a nonunitary evolution unless all Aα are
the same up to scalar factors — an unlikely event.
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Nevertheless, there may exist a smaller subspace HDF of HS where the reduced dynamics
(2) actually is unitary. This is equivalent to saying that there exists a basis of HS in which all
Kraus operators Aα have simultaneously the block form

Aα =





sαV 0

0 Ãα



 , (3)

where V is unitary on HDF, sα are scaling factors and Ãα are arbitrary operators on H
⊥

DF,
the orthocomplement of HDF in HS. Such a space is called decoherence-free as the coherent
state evolution in this space is isolated from the destructive impact of the bath.

Similarly, one can derive conditions for the existence of a decoherence-free subspace in the
framework of Markovian approximation of an open system dynamics, and they turn out to
have a form consistent with (3) above. Let us recall that the following master equation in the
Gorini-Kosakowski-Sudarshan form provides the most general description of a completely
positive Markovian time evolution of a quantum system interacting with its environment
[11, 20],

˙̺ = −i[H, ̺] +
1

2 ∑
ij

cij

(

[Fi, ̺F∗

j ] + [Fi̺, F∗

j ]
)

, (4)

where the sum collects all the terms responsible for nonunitary decohering dynamics. Thus
H is the system Hamiltonian, the operators Fi are the so-called error fields and they represent
the coupling of the system with its environment, while the hermitian structure matrix [cij]
carries other physically relevant information. Now, if HDF is to be a decoherence-free
subspace, then for any ̺ supported on it the second term in (4) must vanish identically,
so that the resulting dynamics is purely unitary. If one assumes certain robustness, or generic
property in the terminology of [18], of this subspace, meaning that the vanishing of the
nonhamiltonian part is not the result of some fine-tuning among structure parameters cij

but rather the effect of simultaneous vanishing of all individual terms, it can be seen that
HDF must be spanned by common eigenvectors of all error fields. In particular, [Fi, Fj] = 0
on HDF.

Let us now go back to general quantum operations represented by completely positive
trace preserving maps in the form (1). As we have seen, the basic issue in the search
for decoherence free subspaces is the identification of common eigenvectors of all Kraus
operators Ki and maximal common invariant subspaces spanned by them. For reasons
outlined in the introduction, it is impractical to approach this problem by means of direct
evaluation of eigenvectors. As a rule, such computations are prone to numerical errors
and hence the precise identification of common eigenvectors cannot be achieved this way. In
section 5, we will describe an alternative constructive method based on simple linear algebra,
the so-called Shemesh criterion, which allows one to identify common invariant subspaces
of several operators.

We shall conclude this section by mentioning three more situations where the identification
of common invariant subspaces plays a significant role.
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1. Characterization of irreducibility of quantum operations, [14, 15]. Irreducible quantum
operations (superoperators) appear as a natural generalization of the notion of positive
semidefinite irreducible linear operators, treated in particular by Perron-Frobenius theory.
The latter provides a very useful and simple characterization of the spectra of irreducible
operators. It turns out that if a quantum operation Φ is given in terms of Kraus
representation (1), then it is irreducible if and only if the operators Ki do not share a
nontrivial invariant subspace. In other words, no decoherence-free subspace exists for an
irreducible Φ.

2. Identification of sufficient algebras of observables, [12, 13]. To identify an unknown
quantum state ̺, an experimenter has to perform a number of measurements on the
system in question, collecting data that can be used subsequently in the estimation of
̺. Each of these measurements returns an expectation of the measured observable Ai

in the state ̺, that is the quantity Tr(Ai̺). A natural question that emerges is how to
optimize such a data collection, namely how to choose observables Ai to obtain maximum
information with the least experimental effort. Sufficiency of an algebra generated by a
finite collection of observables A = A(A1, . . . , Ap) means that the information acquired
in the measurement process Tr(Ai̺), i = 1, . . . , p, characterizes the state ̺ completely.
One of the rationally verifiable conditions which can be used here is based on Burnside’s
theorem, which allows one to check whether a given set of observables generates the full
matrix algebra Mn or not. This question can again be related with the existence of a
common invariant subspace for the generators of A.

3. Error correcting codes, [6, 17]. This is a more general case than that of the existence
of a decoherence-free subspace. Here, one is interested in establishing the existence of
a subspace HEC, the subscript EC for error correcting, of HS on which the action of
the channel Φ can be effectively inverted, namely, there exists a quantum operation Θ

such that for states ̺ supported on HEC one has Θ(Φ(̺)) = ̺. The motivation behind
such a demand is that the basis states of HEC can be regarded as “code words” which
can unambiguously be unscrambled after transmission through the generally corrupting
channel Φ, and thus they can be used to safely encode portions of information to be sent
through the channel. As shown in [17], the necessary and sufficient condition for the
existence of an EC subspace for an operation Φ resulting from (2) can be phrased in the
following simple algebraic form involving the Kraus operators Aα: there exists a basis of
HS such that for all α, β

A∗
α Aβ =





rαβ I 0

0 Ã∗
α Ãβ



 ,

where as before Ãα, Ãβ are arbitrary operators on H
⊥

EC and R = [rαβ] is a scalar matrix. I
in the upper left block is the identity on HEC. Note that the decoherence-free subspace is
a special case of an EC space, since then from (3) it follows that the matrix R has a very
special form rαβ = s̄αsβ and therefore has rank 1.

4. Characteristic and minimal polynomials

As we have mentioned in the introduction, the precise determination of eigenvalues of a
matrix by means of a finite rational computation is in general impossible. The same is true for
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eigenvectors. One can nevertheless rationally acquire exact knowledge about some spectral
properties of a matrix, for instance by studying its characteristic and minimal polynomials.
Numerous methods for obtaining the polynomials can be found in algebraic literature, and
we are going to recall two of them here.

For an n × n complex matrix A let

χA(λ) = det(λI − A) = λn + p1λn−1 + · · ·+ pn−1λ + pn

be its characteristic polynomial. We will describe the method of undetermined coefficients
— an efficient algorithm yielding the numbers pi. The procedure begins with the evaluation
of auxiliary constants

Dk := χA(k) = det(kI − A) , k = 0, 1, . . . , n − 1 .

Next the following system of linear equations in the unknowns p1, . . . , pn is formed



























pn = D0

1n + p11n−1 + · · · + pn = D1

2n + p12n−1 + · · · + pn = D2

· · · · · · · · ·

(n − 1)n + p1(n − 1)n−1 + · · · + pn = Dn−1

or equivalently











1n−1 1n−2
· · · 1

2n−1 2n−2
· · · 2

...
...

. . .
...

(n − 1)n−1 (n − 1)n−2
· · · n − 1





















p1

p2
...

pn−1











=











D1 − D0 − 1n

D2 − D0 − 2n

...
Dn−1 − D0 − (n − 1)n











.

Writing Sn−1 for the matrix on the left hand side, the solution can be expressed in compact

vector notation as p = S−1
n−1D. Note that Sn−1 is a constant matrix whose inverse can be

computed and stored beforehand and used repeatedly for various input matrices A. The
computational cost is thus limited to the determination of the vector D, and hence is bounded
by O(n4). For comparison, direct expansion expressing the coefficients pi by the sums of i-th
order principal minors of A results in the computation scheme of complexity O(2n).

The minimal polynomial of a A is defined to be the least degree monic polynomial µ (i.e.
with the leading coefficient 1) which annihilates A, µ(A) = 0. Alternatively, it can be given
in the form

µA(λ) = (λ − λ1)
r1
· · · (λ − λk)

rk ,

where λi are distinct eigenvalues of A and ri denotes the order of the largest Jordan block
for λi in the canonical representation of A. Clearly µA divides χA.
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One obvious direct method consists in checking the sequence of matrices

I, A, A2, . . . , Ar

for linear independence, systematically for r = 1, 2, . . .. The least r for which the sequence
turns out to be linearly dependent is the degree of the minimal polynomial µA, and the
respective vanishing linear combination

cr I + cr−1 A + · · · + c1 Ar−1 + c0 Ar = 0

yields, after dividing by c0, the coefficients of µA. This task can be realized by applying
Gauss elimination to the r × n2 matrix whose rows are the reshaped matrices I, A, A2, . . ., i.e.
row vectors obtained by arranging the elements of Ai lexicographicaly row after row. The
complexity of such process is O(n4).

An equivalent method often used in practice is a variant of Krylov subspace algorithm, based
on the following classical theorem.

Theorem 1. For a linear map A : V → V let W1, . . . , Wk be subspaces of V such that

i) W1 + · · ·+ Wk = V, the sum not necessarily being direct,

ii) each Wi is invariant for A,

iii) the restriction A|Wi
has minimal polynomial mi.

Then the minimal polynomial µA of A on V is the least common multiple of m1, . . . , mk.

The algorithm has the following steps.

1. Pick nonzero v ∈ V and iteratively compute its Krylov subspace relative to A,

W = Span{v, Av, . . . , Ad−1v} .

That is, d is the smallest number such that the vectors v, Av, . . . , Adv are linearly
dependent, namely

Adv = c1 Ad−1v + · · · cd−1 Av + cdv .

By construction, the subspace W is invariant for A. It is not difficult to justify that

m(λ) = λd − c1λd−1 − · · · − cd−1λ − cd

is the minimal polynomial of the restriction A|W .

2. Set W1 = W and m1 = m. If W1 = V we are done, otherwise pick v′ 6∈ W1 and repeat step
1 to obtain W2 and m2 and so on. The construction terminates when W1 +W2 + · · ·+Wk =
V.
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3. Find µA as the least common multiple of m1, . . . , mk. This can be done rationally by using
Euclid’s algorithm repeatedly to find first GCD of pairs of polynomials mi.

Most of the computational effort resides here in the construction of Krylov subspaces. For
each new vector Aiv added to W linear dependence is checked by Gaussian elimination.
Altogether no more than n such checks are performed so the complexity bound is O(n4).

Let us conclude this section by mentioning some exemplary problems in quantum physics,
where knowledge of spectral and minimal polynomials plays a role. Firstly, it is the design
of optimal setups for stroboscopic tomography of states [12, 13]. Namely, one has to find
a minimal set of observables and design a stroboscopic measurement, i.e. one performed at
preselected time instants when the measured observables are subdued to time evolution, the
objective being to collect information sufficient for the complete reconstruction of a quantum
state with least experimental effort. To this end, Krylov subspaces of the observables relative
to the generator of the dynamics have to be constructed. The degree of the minimal
polynomial of the dynamics generator is one of the essential parameters appearing in the
design process.

Second set of examples is related to the construction of common invariant subspaces for
families of operators, which finds application e.g. in the identification of decoherence-free
subspaces in open quantum systems. This problem will be discussed in detail in the
next section. It turns out that the construction of such common invariant subspaces
can be simplified considerably if one of the operators has nondegenerate spectrum. The
former property can be tested for an operator A by analyzing the GCD of its characteristic
polynomial and its derivative: the eigenvalues are simple iff χA and χ′

A are relatively prime.
To detect diagonalizability, one has to perform a similar test on the minimal polynomial of
A. An alternative for the Euclidean GCD algorithm is the singularity test of the so-called
associated Sylvester matrix [27].

5. Common invariant subspaces

The problem we are going to discuss now in its simplest version can be formulated as follows:
given two square matrices A, B ∈ Mn decide whether they have an eigenvector in common.
We are interested, of course, in finite rational procedures solving this problem. As it was
indicated in the introduction, naive direct approach by literally finding the eigenspaces of
A and B and comparing them is useless because of finite accuracy of numerics. We will be
concerned with a more general formulation of the problem, namely we will ask whether two
matrices share an invariant subspace of dimension k and how to find such subspace.

In what follows, we will discuss certain finite rational computational procedures detecting
the existence of common invariant subspaces for pairs of operators. There are no known
direct generalizations of such procedures to work for more than two operators at a time.
However, if one can constructively obtain common invariant subspaces for all pairs of
operators in the set A1, . . . , Ap, then taking their intersection one obtains a candidate for
the global solution. It has to be verified though, because the resulting space need not be
invariant for some (or any!) of the operators Ai. The computational complexity of such
a construction will add a factor p2 to that of the process performed for a single pair of
operators. The intersection of p2 subspaces of dimensions bounded by n can be constructed
in time bounded by p2n3.
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5.1. Shemesh criterion and related methods

The basic tool in the detection of common invariant subspaces is the so-called Shemesh
criterion [24]. We use here the standard notation [A, B] for the commutator of matrices A
and B.

Theorem 2 (Shemesh 1984). Matrices A, B ∈ Mn possess a common eigenvector if and only if the
subspace

N =
n−1
⋂

k,l=1

ker
[

Ak, Bl
]

(5)

is of positive dimension. Moreover, N is invariant with respect to both A and B and restrictions of
A and B to N commute. Every common invariant subspace of A and B (on which they commute) is
contained in N.

Let us remark that n above can be replaced by r and s — the degrees of minimal polynomials
of A and B, respectively.

We shall analyze now the complexity of a direct method of checking Shemesh criterion and
that of constructing N — the maximal common invariant subspace of A and B. Let us stress
here that while the existence of a 1-dimensional common invariant subspace (corresponding
to the common eigenvector of A and B) in N is guaranteed by the criterion, it does not answer
any questions concerning k-dimensional common invariant subspaces, 2 ≤ k < dimN, not to
mention the problem of constructing them by finite rational procedures. Such procedure can
be nevertheless easily obtained for the space N. Let us also indicate that no finite rational
method should be expected to yield the common eigenvector in N. If there were one, we
would have a finite method to compute exactly the corresponding eigenvalues of A and B
which is, in general, unfeasible.

To estimate the complexity of Shemesh’s criterion, let us first note that computing the
commutator [A, B] has the same complexity as matrix multiplication2, namely O(n3). The
number of commutators to evaluate in (5) is at most (n − 1)2, so that the total amount of
algebra is bounded here by O(n5). Finally, finding the intersection of kernels can be done
just by means of solving the system of homogeneous linear equations in n variables given by
the n(n − 1)2 × n matrix















[A, B]

[A, B2]

...

[An−1, Bn−1]















. (6)

This is achieved by the Gaussian elimination algorithm again in O(n5) steps, hence the overall
complexity of finding N is O(n5).

2 Of course, one can always lower the exponent 3 to some extent by resorting to fast matrix multiplication schemes.
This may be of practical importance when working with large matrices, here however we are mainly interested in
establishing just polynomial complexity of our procedures.
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An equivalent formulation of Shemesh condition (dimN > 0) is that

det
n−1

∑
k,l=1

[Ak, Bl ]∗ · [Ak, Bl ] = 0

but it does not simplify the computation as the sum above involves (n − 1)2 terms, each one
computable with the arithmetic cost of O(n3) operations.

Let us turn to a more complicated problem of verifying the existence of a common invariant
subspace of prescribed dimension 2 ≤ k < n. This is partly solved by applying the Shemesh
criterion to exterior powers (wedge powers) of A and B. Recall that A∧k is the restriction of

A⊗k to the antisymmetric subspace of
(

C
n)⊗k

. More explicitly, A∧k is an m × m matrix with
m = (n

k), the elements of which are

(

A∧k
)

α,β
= det A[α|β] ,

where α and β stand for multi-indices α = (i1, i2, . . . , ik), with 1 ≤ i1 < i2 < · · · < ik ≤ n.
A[α|β] is a k × k submatrix of A with rows and columns specified by α and respectively β.
The space Nk corresponding to N (= N1) in (5) is now defined by analogy as

Nk =
m−1
⋂

i,j=1

ker
[

(

A∧k
)i

,
(

B∧k
)j
]

. (7)

The trick of using exterior algebra takes advantage of a simple fact that if λ1, . . . , λk are
eigenvalues of A with (linearly independent) eigenvectors v1, . . . , vk then λ1λ2 · · · λk is
an eigenvalue of A∧k with eigenvector v1 ∧ · · · ∧ vk. So if v1, . . . , vk span an invariant
k-dimensional subspace of A and B then obviously v1 ∧ · · · ∧ vk is a common eigenvector
of A∧k and B∧k. The corresponding sufficient condition, however, turns our to be more
complicated. Nontriviality of Nk guarantees the existence of an eigenvector shared by A∧k

and B∧k but it is now an object in the exterior algebra of Cn and, in general, it need not be
decomposable, i.e. of pure product form v = v1 ∧ · · · ∧ vk. Consequently the reconstruction
of a k-dimensional common invariant subspace of A and B from v may no longer be easy
if at all possible. The source of this difficulty resides in the fact that the spectrum of A∧k

or B∧k may be degenerate. This possibility has to be, therefore, excluded by an additional
assumption. As we will see shortly, such an assumption can be further relaxed to another
one postulating the nondegeneracy of eigenvalues of either A or B alone.

The generalized Shemesh criterion [9] takes the following form.

Theorem 3 (Generalized Shemesh Criterion).

Necessity: If A and B have a common invariant subspace of dimension 2 ≤ k < n, then Nk as
defined in (7) has positive dimension (i.e. A∧k and B∧k share an eigenvector).

Sufficiency: Suppose that A∧k has nondegenerate eigenvalues and det B 6= 0. Then if Nk 6= {0},
there exists a common k-dimensional invariant subspace of A and B.
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In order to show how one can simplify the extra conditions in the sufficiency part of the
above theorem, let us note that for an arbitrary matrix C the spectral shift transformation
C 7→ Ct = C − tI does not alter its invariant subspaces. The following two facts proved
in [9] allow one to preprocess, if necessary, the initial matrices A and B so that the extra
requirements are fulfilled, at the same time leaving their invariant subspaces intact.

Fact 1. For any singular complex matrix B, a shift t ∈ N can be computed by a finite rational
procedure so that det(B − tI) 6= 0.

The procedure is very simple: it computes det(B − tI) for t = 1, 2, . . . until a nonzero value
is found. Since the characteristic polynomial of B has no more than n distinct roots, the
computation must terminate in no more than n − 1 steps.

Fact 2. If all eigenvalues of A are nondegenerate and 2 ≤ k < n, then a shift t ∈ N can be
computed by a finite rational procedure so that the matrix (A − tI)∧k also has only simple
eigenvalues.

See [9] for the proof of Fact 2. Its essence is that one can probe subsequent values of the shift
parameter t = 0, 1, . . . until nondegeneracy of eigenvalues occurs, which is shown to happen
after no more than 1

2 kn2k of such tests.

We are equipped now to describe the complete algorithm determining the existence of
k-dimensional invariant subspace common to A and B. Let φA denote the characteristic
polynomial of A.

1. Check whether A has distinct eigenvalues by computing the resultant of φA and φ′
A (as

we have mentioned in Section 3, this can be done conveniently by expressing it as the
determinant of the Sylvester matrix [27] of φA and φ′

A) and checking whether it is nonzero.
If the test fails for A, try the same for B and switch A and B if B has simple eigenvalues.
If both tests fail, the generalized Shemesh criterion cannot be used.

2. If B is singular, apply the spectral shift t as in Fact 1. Replace B with B − tI.

3. Compute the matrix A∧k and check whether it has nondegenerate eigenvalues (see step 1).
If so, go to step 4, otherwise apply the spectral shift to A as described in Fact 2 and repeat
step 3.

4. Compute B∧k and Nk as in (7). If Nk has positive dimension, then A and B have common
k-dimensional invariant subspace.

It should be stressed again that Shemesh criterion yields a “yes/no” answer about the
extistence of a common eigenvector (or, respectively, of k-dimensional common invariant
subspace), but does not help in constructing them.

The complexity of the above algorithm is determined by n and k. The most time-consuming
operations are those performed on the exterior powers of A and B because of their size
m = (n

k), which grows roughly like nk for k = 2, . . . ,
[

n
2

]

. To obtain A∧k, one has to evaluate

m2 minors of A of size k× k, hence the computational cost is bounded by O(k3 n2k). Checking
for nondegeneracy of eigenvalues of A ∈ Mn costs as much as the evaluation of φA, which
can be done in O(n3) steps, plus the cost of computing the (2n − 1)× (2n − 1) determinant
of the respective Sylvester matrix, so its overall complexity is O(n3). Step 3 of the algorithm
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probing possible shift parameters performs no more than O(km2) of nondegeneracy tests,
each at the expense of O(m3) arithmetic operations. Therefore the complexity of step 3
evaluates to O(kn5k). Finally, the complexity of constructing Nk by (7) is, as shown before,
O(m5) or in terms of n and k O(n5k).

The estimation above shows that even for small values of k, although of polynomial time
complexity, the method is not very practical. Already for k = 2, the computational effort is
of the order O(n10) in the worst case.

Let us mention one more recent result [16] which shows that the nondegeneracy condition
can in fact simplify the original Shemesh criterion, slightly reducing its computational
complexity.

Theorem 4 (Jamiołkowski, 2012). Let A have only simple eigenvalues. Then the formula (5) for
the space N in the original Shemesh criterion can be simplified to

N =
n−1
⋂

k=1

ker
[

Ak, B
]

(8)

which reduces the complexity of its construction to O(n4).

Indeed, the number of commutators to evaluate in (8) is now at most n − 1, O(n3) arithmetic
operations each, and the system of homogeneous equations defining N is of the size n(n −
1)× n, so the complexity of solving it is also O(n4).

As the sufficiency part of the generalized Shemesh condition requires the nondegeneracy of
the spectrum of A∧k, so the formula (7) automatically simplifies analogously to

Nk =
m−1
⋂

i=1

ker
[

(

A∧k
)i

, B∧k
]

. (9)

Hence the complexity of finding Nk reduces to O(m4), that is O(n4k).

Let us note, however, that somewhat weaker assumption of diagonalizability of A does
not, in general, lead to a simplification of the Shemesh formula by limiting the number of
commutators that have to be computed. This is illustrated by the following simple example.
Let {e1, . . . , e4} be a basis in which A and B have the following form:

A =









1 1
1 2

3
3









, B =









2 1
2 1

2 1
2









,
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where we have suppressed all zero entries. Note that A is diagonalizable with twofold
degenerate eigenvalue 3. Its minimal polynomial has degree 3. Hence

ker[A, B] ∩ ker[A2, B] = ker[A, B] ∩ ker[A2, B] ∩ ker[A3, B] = Span{e4}

but

ker[A, B] ∩ ker[A2, B] ∩ ker[A, B2] = {0} .

In the next subsection we will explore an alternative approach based on the so-called
polynomial identities for matrix algebras.

5.2. Algebraic approach — polynomial identities

In algebra, polynomial identities are used to characterize various algebraic structures.
We will limit the exposition to a necessary minimum so as to make the present text
self-contained, focusing on applications to common invariant subspace problems.

Definition 3. An algebra A is said to be a polynomial identity algebra (a PI-algebra for short) if
there exists a polynomial P(x1, x2, . . . , xk) over the ring of integers in noncommuting variables xi

such that P(A1, A2, . . . , Ak) = 0 for all k-tuples of the elements Ai of A.

For example, a commutative algebra A is a PI-algebra with the polynomial Q2(x1, x2) =
x1x2 − x2x1. It turns out that special role is played by the so-called standard polynomials
which are natural generalizations of Q2,

Qn(x1, . . . , xn) = ∑
σ∈Sn

sign(σ)x
σ(1) · · · x

σ(n) , (10)

where the summation extends over the symmetric group Sn. Their importance is exemplified
by the Amitsur-Levitzki theorem on matrix algebras Mn.

Theorem 5 (Amitsur-Levitzki 1950). The full algebra Mn(C) satisfies the standard polynomial
identity of degree 2n,

Q2n(A1, . . . , A2n) ≡ 0 ∀ A1, . . . , A2n ∈ Mn ,

but it does not satisfy any polynomial identity of smaller degree.

In order to make a connection with the problem of common invariant subspaces, let us first
observe that if two matrices A and B share such a subspace W, then W is also invariant for
the entire algebra A(A, B) ⊂ Mn generated by A and B. In what follows we shall denote
this algebra by A for simplicity. So according to the Shemesh criterion (5), A restricted to N1

satisfies the standard polynomial identity Q2 ≡ 0, that is

(C1C2 − C2C1)v = 0 , ∀ C1, C2 ∈ A, ∀ v ∈ N1.
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Following [2] let us define the family of subspaces

Nk =
⋂

ker [Q2k(C1, . . . , C2k)C2k+1] , (11)

where the intersection extends over all (2k + 1)-tuples of elements Ci ∈ A. It turns out that
A restricted to Nk analogously obeys the identity Q2k ≡ 0. Of course, this is an interesting
property provided that Nk is not just the zero space.

Theorem 6. If Nk of (11) is nontrivial, then it is an invariant subspace for A and this algebra
restricted to Nk satisfies the standard polynomial identity Q2k ≡ 0, that is

Q2k(C1, . . . , C2k)v = 0 , ∀ C1, . . . , Ck ∈ A, ∀ v ∈ Nk.

Any other invariant subspace of A on which this algebra satisfies the identity Q2k ≡ 0 is contained
in Nk.

The proof can be found e.g. in [2]. The usefulness of this theorem can be appreciated by
noting that for subsequent values of k we obtain a filtration

{0} = N0 ⊂ N1 ⊂ · · · ⊂ Nn = C
n ,

which can yield partial answers to questions concerning invariant subspaces of specific
dimension. We stress here that each of Nk can be constructed by a finite rational procedure.
Namely, because of linearity of Q2k with respect to each individual variable, to find Nk it
suffices to make each Ci in the intersection (11) run independently through the elements of a
fixed basis of A.

The basis itself can be found by the following general procedure [1]. Consider finite products
of A and B, e.g. AB2 AB (called words over {A, B}) in lexicographic order:

I, A, B, A2, AB, BA, B2, A3, A2B, . . .

Words of a fixed length k form the k-th layer in this sequence. I alone forms here the zeroth
layer. Let Ak be the subspace of Mn spanned collectively by the layers 0 ≤ j ≤ k. Obviously,

A0 ⊂ A1 ⊂ · · · ⊂ Ap = Ap+1

for some p, the symbol ⊂ denoting here the proper inclusion. Then Ap = A(A, B) and the
first p + 1 layers form the spanning set for A.

To discuss the complexity of this procedure, note first that an obvious rough bound for p is
p ≤ n2 − 1, while there are various better estimates known in literature, see e.g. [10, 21, 22],
especially when some knowledge about A and B is available. In particular, if A and B
commute, then p < n, while the best general bound so far is that due to Pappacena [21],

p ≤ n

√

2n2

n − 1
+

1

4
+

n

2
− 2 ∼ O(n3/2) .
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However, bad news is that the k-th layer contains 2k words, so to construct Ak one has to
take account of about 2k+1 words. Then unless p turns out to be much smaller than n, we
are inevitably running here into the domain of nonpolynomial time complexity. So layers are
huge while the dimensions of subspaces Ak are small, not exceeding n2, and consequently
most of the new words from the k-th layer added in the process of forming Ak will turn out
linearly dependent with respect to the earlier processed ones. Yet p saturating the sequence
of inclusions of Ap may very well be comparable with n or even worse than that. The check
whether the next added word increases the dimension of Ak can itself be done by a Gaussian
elimination algorithm at polynomial cost.

Let us analyze in turn the complexity of computing Nk by (11) under the assumption that
a basis of A is given. Similarly as in the case of exterior-algebraic approach described
previously, the time complexity here depends critically on k. Firstly, the number of terms
in the standard polynomial Q2k grows very rapidly being equal (2k)!. Secondly, as indicated
above, the intersection in (11) has to extend over all (2k + 1)-tuples of d basis elements of A,
where d = dimA. Hence the number of terms to account for is d2k+1, which in the worst
case of d ∼ n2 is of the order of O(n4k+2). For k = 2 it is O(n10). We can see again that
such a direct method of construction of Nk can be carried out in practice only for small k.
It is a separate and interesting issue to explore to what extent can prior knowledge of some
properties of A and B simplify the computation of Nk. For instance, the nondegeneracy of
spectra of A or B can be expected to help.

In the discussion of consequences of Theorem 6 the following two corollaries can be
immediately formulated:

1. If W is an invariant subspace of A such that dim W ≤ k, then it is necessarily contained in Nk.

2. A has a nontrivial invariant subspace with dimension not exceeding k iff Nk 6= {0}.

While this constitutes some improvement over the previous exterior-algebraic treatment of
the existence of k-dimensional common invariant subspaces, the very question for a fixed
value of k cannot be fully answered on the basis of Theorem 6 alone. Let us mention here
only, without going into details which prove to be quite technical in this case, some more
results addressing this issue. In [9] the complete solution for k = 2 is given and it is indicated
that in the case of semisimple algebras A there is a complete rational solution for of the
problem for any 1 < k < n. In [3], the following theorem is proved.

Theorem 7. Let A = A(A, B) be a semisimple algebra. Then A has an irreducible3 invariant
subspace of dimension k iff dimNk−1 < dimNk.

Moreover, this result is further extended to arbitrary algebras by means of restricting the
analysis to the so-called socle of A, which is the maximal invariant subspace Λ of A such
that the restriction A|Λ is a semisimple algebra. Hence one can use Theorem 7 for A|Λ.
Then, since Λ can be shown to contain all irreducible invariant subspaces of A, the solution
turns out to be valid also for the original algebra A.

3 W is an irreducible invariant subspace of A if the restriction of A to W coincides with entire Mk , where k is the
dimension of W.
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It should be noted that for a finite-dimensional algebra A checking it for semisimplicity as
well as the construction of the socle of A can all be done by finite rational procedures. They
can be reduced to a Gaussian elimination on a d × d matrix, where d = dimA. Here again
we assume that some basis of A is given, for otherwise we run into the intractable problem
of constructing it.

Finally, let us point the reader to yet another approach [4] discussing a solution of the
common invariant subspace problem in the language of algebraic geometry and Gröbner
bases.

5.3. The application of Burnside’s theorem

Let us begin with the formulation of the theorem.

Theorem 8 (Burnside). Any subalgebra A of Mn(C) whose only invariant subspaces are {0} and
C

n is necessarily equal to Mn(C).

This result can be used to verify whether a given set of operators generates the whole
matrix algebra Mn, so it has natural application in analyzing sufficiency of various sets
of observables. Let us also note that the question of irreducibility of a quantum operation Φ

is equivalent to saying that the collection of Kraus operators for Φ (1) generates Mn.

When A = A(A, B), then Shemesh criterion is the tool that can be used directly to verify the
assumption in Burnside’s theorem: if N = {0} then A(A, B) = Mn. Suppose in turn that the
algebra A is generated by more than two operators, A = A(A1, . . . , Ap). We can adopt the
following strategy.

1. Compute Shemesh kernels N(Ai, Aj) for all pairs of operators.

2. Find the intersection Λ1 =
⋂

i,j N(Ai, Aj). If Λ1 = {0}, then A = Mn, otherwise continue
to step 3.

3. Replace the operators Ai with their restrictions to Λ1, Ai := Ai|Λ1
and carry on steps 1

and 2 to obtain Λ2. If Λ2 = Λ1, then Λ2 is the nontrivial invariant subspace of A and
consequently A 6= Mn. Otherwise iterate 3 with Λ2 in place of Λ1 to obtain Λ3 and so
on.

Clearly we have

Λ1 ⊃ Λ2 ⊃ · · · ⊃ {0} ,

so either all the inclusions above are proper and after a finite number of iterations we must
end up with Λt = {0}, or Λt = Λt+1 6= {0} for some t. Hence this procedure terminates.
Let us estimate its complexity. There are (p

2) ∼ p2 kernels to compute in step one, so its cost

is bounded by O(p2n5). The construction of Λ1 can be realized iteratively with the use of
Gauss elimination at the total cost of at most O(p2n3). Finally, the number of iterations of
step 3 is bounded by the dimension of A, that is by n2. Consequently the upper bound on
the complexity of the entire procedure is O(p2n7).
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6. Conclusions

We have seen that some rational computational procedures, while very useful for quantum
information theoretic analyses, have nonpolynomial time complexity which in principle
disqualifies them from practical applications. The polynomial complexity bounds obtained
for procedures using the Shemesh criterion may also look somewhat pessimistic, yet they
are certainly crude and we believe there is plenty of room for improvement if one uses
some extra knowledge about the operators taking part in the computation. There is an
apparent need for efficient algorithms for the construction of bases of finite-dimensional
algebras — without such methods many of the procedures discussed here cannot be carried
out efficiently. It is possible that some efficient Monte Carlo methods could be designed for
such a class of problems. Such situation is not uncommon in computational algebra, as many
of its problems belong to the BPP class. We hope to address some of these issues in future
research.
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